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Pleomorphic adenoma (PA) is the most common salivary gland tumor, accounting for
50%–60% of these neoplasms. If untreated, 6.2% of PA may undergo malignant
transformation to carcinoma ex-pleomorphic adenoma (CXPA). CXPA is a rare and
aggressive malignant tumor, whose prevalence represents approximately 3%–6% of
all salivary gland tumors. Although the pathogenesis of the PA-CXPA transition
remains unclear, CXPA development requires the participation of cellular
components and the tumor microenvironment for its progression. The extracellular
matrix (ECM) comprises a heterogeneous and versatile network of macromolecules
synthesized and secreted by embryonic cells. In the PA-CXPA sequence, ECM is
formed by a variety of components including collagen, elastin, fibronectin, laminins,
glycosaminoglycans, proteoglycans, and other glycoproteins, mainly secreted by
epithelial cells, myoepithelial cells, cancer-associated fibroblasts, immune cells, and
endothelial cells. Like in other tumors including breast cancer, ECM changes play
an important role in the PA-CXPA sequence. This review summarizes what is
currently known about the role of ECM during CXPA development.
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Introduction

Pleomorphic adenoma (PA) is the most common salivary gland tumor (SGT), accounting

for 50%–60% of these neoplasms (1). If untreated, it is estimated that up to 6.2% of PAs

undergo malignant transformation to carcinoma ex pleomorphic adenoma (CXPA) (2).

Multiple recurrences, male sex, advanced age, previous radiation therapy, and tumor size
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are the most frequently reported risk factors for the malignancy

process (1, 3, 4). CXPA can be characterized as a rare and

aggressive malignant tumor (5), that represents approximately 3%–

6% of all SGTs and presents a 5-year survival of around 63% (6,

7). Most of them affect the parotid glands, usually manifesting in

adult women between 50 and 70 years old (5, 7). Recent studies

showed that genomic instability (8, 9), metabolic shifts (10), and

changes in the tumor microenvironment (TME), mainly governed

by the myoepithelial cell (11), are the most important molecular

events oin the CXPA carcinogenesis.

TME is an active component that is in constant remodeling

(12–14). Neoplastic cells can regulate the microenvironment to

promote cell survival (15, 16). The role of the TME is now

becoming appreciated as an important component in cancer

development, which is driven by interactions between tumor cells
FIGURE 1

Schematic illustration of extracellular matrix (ECM) components in the tumor m
laminins, proteoglycan (PG) complex, collagen, and fibronectin. The interaction
components, such as integrins. Metalloproteinases (MMPs) promote the degr
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and their microenvironment. Many reports have stated that is

possible to reprogram genotypically malignant cells into

phenotypically normal cells by manipulating the TME and

inhibiting signaling pathways (17, 18). The extracellular matrix

(ECM) is the non-cellular component of the TME composed of

assembled macromolecules such as laminins, proteoglycan (PG)

complex, collagen, integrins, and cadherins. Several studies have

focused on the ECM etiology and genesis of neoplasms to

provide a targeted therapeutic basis (16, 17, 19–21). The highly

organized structure of the ECM is also home to important

biomolecules and growth factors, as well as biomechanical forces

that can modulate cancer cells to promote the metastatic cascade

(22). PA and CXPA are tumors that present a dense and

abundant ECM with high amounts of PGs and collagens

(Figure 1). In the PA-CXPA sequence, ECM is especially
icroenvironment of PA and CXPA. ECM is rich in macromolecules such as
between cells and ECM is mainly mediated by cell receptors of the matrix

adation and remodeling of ECM, favoring cell proliferation.
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TABLE 1 Potential role of the ECM during the transition from PA to CXPA
adenoma.

ECM
component

PA CXPA

Proteoglycans Luminal and abluminal cells
express proteoglycans.
Tenascin is most expressed by
epithelial cells

Loss of expression in epithelial
cells, with strong positivity in
myoepithelial cells, conferring
the myoepithelial cell
potential for tumor promotion

Collagen Different types of collagens
compose the extracellular
matrix of the PA, conferring its

Myoepithelial cells increase
the production of type I
collagen, especially on the

Scarini et al. 10.3389/froh.2023.942604
interesting as its structure and components change throughout the

PA malignant transformation, showing a potential promoting role

in the CXPA progression and invasion.

In this review, we provided an overview of the key components

of the ECM and their degradation enzymes aiming at improving

our knowledge of the mechanisms contributing to the

progression of the PA-CXPA sequence and CXPA dissemination.

We also discussed ECM-based diagnosis as well as the potential

new approaches for direct and complementary therapeutic targets

for this tumor.

morphological heterogeneity
and advantage in cell
proliferation

invasive front.
Collagen type IV is correlated
with CXPA metastatic
behavior

Integrin Usually expressed in the
luminal and abluminal cells. Its
role has been little explored in
the PA

Although scarcely explored in
CXPA, lower expression in
more advanced salivary
carcinomas is correlated with
invasiveness

Laminin Usually expressed in the ECM,
conferring advantages in cell
proliferation

Laminin is expressed in
benign myoepithelial cells
surrounding nests of
malignant epithelial cells. It
plays an important role in the
early stages of the
carcinogenic process

Fibronectin Usually expressed in the ECM.
Its role was little explored in
the PA

Although it may suppress the
tumor suppressor function of
myoepithelial cells in
carcinomas in situ, in the early
stages of CXPA, invasive front
cells lose fibronectin
expression

Cadherin In PA, it may be correlated
with tumor recurrence

Loss of E-cadherin expression
in malignant cells is correlated
with advantages in cell
proliferation and invasion

MMPs and
TIMPs

Myoepithelial cells express
MMP-2 and MMP-9, which
leads to the degradation of the
cell membrane and contact of
the myoepithelial cells with the
tumor stroma

Myoepithelial cells increase
the expression of MMP-2 and
MMP-9 and decrease the
expression of TIMP-2,
contributing to tumor
invasion

Legends: CXPA, Carcinoma ex pleomorphic adenoma; ECM, Extracellular matrix;

MMP, Metalloproteinases; PA, Pleomorphic adenoma; TIMP, Tissue inhibitors of

metalloproteinases.
ECM in PA-CXPA progression

Proteoglycans

Proteoglycans (PGs) are macromolecules formed by a central

protein in which one or more chains are covalently linked (23).

PGs are important in modulating the mechanical properties of

ECM, including its rigidity (24). The remodeling of the ECM

represents an important factor in tumor development as

significant modification in the synthesis of PGs occurs (25–27).

ECMs enriched with PGs are associated with malignant

transformation, inflammatory infiltration in the TME, and tumor

aggressiveness (24, 28). PGs are implicated in cell migration/

invasion and alteration of TME in different tumors such as

colorectal carcinoma, esophageal carcinoma, hepatocellular

carcinoma, and breast carcinoma (29–32). In all these carcinomas,

targeting PGs may provide new therapeutic approaches in the future.

Regarding PA, recently a systematic literature review

highlighted the importance of PGs in tumor development (33).

Their findings showed that while normal salivary gland

myoepithelial cells cannot secrete PGs, neoplastic myoepithelial

cells of PA produce numerous PGs reflecting tumor development

and its biological behavior (33). Xylosyltransferase II (XT-II), an

isoform of xylosyltransferase I (XT-I) is involved in the initial

step of PGs biosynthesis. Silencing of XT-I and XT-II genes via

RNAi blocked PGs biosynthesis in neoplastic myoepithelial cells

from the primary culture of salivary gland PA, leading to

inhibition of invasion, migration, and tumor implantation into

the fibroblast framework (34, 35). These findings provide

evidence for the crucial role of PGs in the formation of the PA

tumor stroma (Table 1). Indeed, over time, several PGs have

been identified and correlated with PA ECM including lumican,

chondromodulin-I, chondroitin 4S, chondroitin 6S, dermatan

sulfate, heparan sulfate, and keratan sulfate (36–40). In this

regard, it is worth citing syndecan-1 (CD138), a member of the

cell surface heparan sulfate PGs family. CD138 has been reported

in several types of tumors, including breast, urinary bladder,

gallbladder, pancreatic, ovarian, endometrial, and prostate cancer,

and normal tissues (41). In PA, however, CD138 expression did

not present any correlation regarding the tumor behavior (42).

Further studies, however, are encouraged to understand the role

of CD138 in the malignant transformation of PA.

Extremely common, the presence of myxoid stroma in PA has

already been correlated with recurrence (43). In this regard, among
Frontiers in Oral Health 03
many other structural components, the myxoid stroma of the PA is

rich in perlecan (37). This PG acts in the signaling of such growth

factors as bFGF (44). In PA, the presence of perlecan in the myxoid

stroma was critical for capsular invasion, and vascular involvement

of the neoplasm (45). We believe that the study of perlecan in the

matrix in the PA-CXPA sequence may provide important evidence

for the tumor invasion of CXPA and, consequently, distant

metastasis of this neoplasm.

Hyaluronan (HA) and its binding molecules, cartilage binding

protein (LP), and PGs (as aggrecan and versican) are structural

components of ECM (46, 47). HA-LP-aggrecan complexes are

present in the chondromyxoid matrix of the PA, but not in

malignant SGTs. In histopathological analysis, this finding is

crucial and may assist in distinguishing de novo carcinomas from

those originating in a PA (48). Indeed, aggrecan has long been

reported as an important character of the epithelial-mesenchymal
frontiersin.org
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transition (EMT) and tissue heterogeneity in PA (49, 50). While

versican is specific for malignant neoplasms (51), in PA it may

be present in mesenchymal fibrous areas and some myoepithelial

cells (48). This finding may indicate an area susceptible to PA

malignant transformation.

Homing cell adhesion molecule (CD44) is a transmembrane PG

related to cell-cell adhesion and cell-ECM adhesion. It interacts with

several ligands, including hyaluronic acid, collagen, FN, and laminin

(52). CD44 has been reported as an important character for PA

tumor initiation (53). Curiously, while the CD44 gene is

overexpressed in PA (54), the CD44 protein is downregulated (55–

57). CD44 protein expression is increased as malignant

transformation takes place (58, 59). Different results, however, can

be found in the literature. The use of different isoforms and

heterogeneity in analysis among different studies may justify the

reduced expression of CD44 in CXPA in other studies (56, 60).

CD44 has been recognized as one of the markers of multipotency

of neoplastic cells in SGTs (61) and this sheds light on its

potential as a therapeutic target for the treatment of CXPA.

In several cancers, including breast and colon carcinomas, the

tenascin family can be considered an important marker of tumor

progression (62). The expression of tenascin in PA is related to

tumor expansion (63). TN is observed in the stromal

compartment, being more pronounced in the denser stromal and

chondroid areas than in the myxoid and hyaline areas (64, 65).

The expression of tenascin in chondroid areas could be explained

by the fact that tenascin binds to chondroitin sulfate

proteoglycans of the matrix (62). Chondromyxoid differentiation

in the PA may be induced by tenascin (66). It is important to

note that tenascin in the PA is usually present among the

epithelial tumor cells that form the ductiform structures and are

therefore not in direct communication with the supporting

stroma (67). Other groups had already suggested that tenascin is

produced by epithelial cells of the SGTs (68).

Interestingly, during PA malignant transformation, this pattern

is altered. Tenascin expression is absent in the malignant ductal

epithelial cells of the CXPA while a strong and diffuse positivity

is present in the cytoplasm of the CXPA malignant myoepithelial

cells (69). These findings indicate the importance of tenascin as a

contributor to the myoepithelial cell-promoting potential in the

CXPA (11). Indeed, a key promoting role of tenascin in the

CXPA progression was evidenced in the study by Félix and

collaborators (2004) where all cases of CXPA presenting

positivity for tenascin showed metastases at some point during

the follow-up period (70) (Table 1). Furthermore, tenascin seems

to be important for CXPA tumor invasion and progression. In

the invasive areas, tenascin showed strong expression on the

tumor front of intracapsular and minimally invasive CXPA,

while its expression was focal within the tumor. Interestingly,

expression was low or negative in frankly invasive CXPA (70).
Collagen

Collagen represents about 30% of the total proteins in humans

and is the most abundant fibrous protein in the interstitial ECMs
Frontiers in Oral Health 04
(16, 23). The collagen superfamily is composed of twenty-eight

different types of collagens that differ in structure and properties

(71). In cancer, collagen is modified to provide modulation of

the TME favoring malignant cellular proliferation (72). Several

studies have shown that collagen is an important prognostic

factor correlated with cancer invasion, lymph node metastasis,

clinical stage, and treatment resistance of various types of

cancers, such as esophageal carcinoma, pancreatic carcinoma,

colorectal carcinoma, and ovarian carcinoma (73).

In the very first report on the diversity of collagen expression in

PA, the authors showed evidence of the relationship between

collagen and PA cell proliferation (74) (Table 1). Other studies,

however, showed that this tumor presents a heterogeneous

pattern of collagen expression. Type I and II collagens compose

extracellular collagen crystalloids, structures that can be found in

the tumor parenchyma (75). Type II collagen is also present in

the PA chondroid areas (49, 76) while type IV collagen is more

common in PA with hyaline, fibrous, and chondroid stroma (37).

Type VII collagen seems to have a more heterogeneous and

diffuse expression in different PA ECMs types (77). When

malignant transformation occurs, the interstitial matrix becomes

increasingly desmoplastic to allow invasion of cancer cells.

Tumor desmoplasia is a feature associated with increased activity

of cancer-associated fibroblasts (CAFs) (78). The role of CAFs in

CXPA seems to have been explored only recently. A single study

available in the literature using immunolabeling of vimentin and

α-SMA showed that CAFs are abundantly present in

carcinomatous areas of CXPA (79). Several clinical trials

targeting CAFs are currently active in different tumors, such as

head and neck cancer, gastrointestinal carcinoma, hepatocellular

carcinoma, breast carcinoma, melanoma, and other solid tumors

(80). This highlights the need for further exploration of the role

of CAFs in CXPA and other salivary carcinomas.

What is known so far, is that of all existing collagen types, type

I and IV collagens seem to be the most important in the PA

malignant transformation. Araújo and colleagues (2009),

analyzed epithelial components of CXPA at different stages of

invasion. The frankly invasive CXPA showed type I collagen

expression among the small nests of tumor cells that embraced

the invasive front. In these areas, direct contact of tumor cells

with type I collagen could be associated with reduced expression

of adhesion molecules E-cadherin and β-catenin and with

invasive behavior of ductal epithelial cells (81). On the other

hand, in the earliest stages, as in intraductal carcinomas, type I

collagen present an amorph and disorganized morphology (81).

In this initial stage, type I collagen would act by impairing the

function of myoepithelial cells as tumor suppressors, by inducing

the increase of fibroblast growth factor 2 (FGF-2.) Indeed, type I

collagen has the ability to affect tumor cell behavior (78). In

mammary gland cancer, for example, type I collagen is

deregulated and is implicated with more invasive behavior and

metastasis of tumor cells (82, 83). Type IV collagen appears to

be even more important and has already been related to CXPA

metastatic behavior, being significantly more expressed in CXPA

than in developed metastases (84). Indeed, type IV collagen is

involved in tumor invasion and metastasis in other similar
frontiersin.org
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models of tumorigenesis, such as colorectal cancer (85) and breast

cancer (86) (Table 1).
Adhesion proteins

Integrin
Integrins are transmembrane heterodimers that bind to ECM

components providing support for cell motility and invasion (87).

There are twenty-four different integrin dimers, each with different

tissue and matrix binding specificity (88, 89). Due to their complex

action on cellular mechanisms, an alteration in integrin-mediated

adhesion and signaling may participate in cancer initiation and

progression (87, 90). Crosstalk between integrin and ECM is

crucial for maintaining tumor, metastasis, and drug resistance (91).

Studies also pointed to a relationship between the activation of

these proteins and the maintenance of tumor stem cells (90).

In the normal salivary gland, the expression of integrins and

their subunits usually occurs in myoepithelial cells, basal cells,

and ductal cells (92, 93). Similar characteristics were found in PA

with basically all tumor cells positive for VLA-integrin.

Interestingly, this similarity in pattern could suggest a more

important pathogenic action of ductal basal cells (92). In a

similar fashion to the normal salivary gland, the expression of

integrin and all its subunits in PA can be noted in luminal cells

and intercellular contacts of myoepithelial cells (94). The role of

this protein in PA-CXPA progression has not yet been explored.

An increased expression of integrin in malignant salivary tumors,

in addition to its relationship with invasion capacity, has already

been reported (62). However, more aggressive salivary gland

carcinomas (SGCs) seem to present a lower expression of the

protein (94) probably due to its deterioration in face of cell

adhesion loss (95) (Table 1).

During the evolution of carcinoma in situ to an invasive CXPA,

the malignant luminal cells normally surrounded by benign

myoepithelial cells invade the stromal area, while myoepithelial

cells undergo a process of differentiation becoming autophagic

and senescent (96). The myoepithelial cell in the autophagy/

senescence process may produce metabolites that would be used

as energy by the epithelial cells. The epithelial cells may break

the basement membrane and invade the adjacent tissues (96, 11).

Recent studies have shown that the loss of integrin-mediated

cell adhesion induces autophagy, and it may contribute to the

autophagy of myoepithelial cells. As the role of integrin in the

PA-CXPA sequence is still unclear, more studies correlating these

hypotheses are needed. On the other hand, clinical trials have

failed to investigate the efficacy of therapies targeting integrins in

prostate cancer, colorectal cancer, melanoma, glioma, and other

solid tumors (97). Several promising possibilities of integrins as

therapeutic targets await clinical trials, this way studies focused

on the heterogeneous expression of integrin in PA-CXPA should

be encouraged.

Laminin
Laminins are extracellular glycoprotein constituents of the

basement membrane responsible for the stratification of the
Frontiers in Oral Health 05
epithelial cells and connective tissue (98, 99). About 16 laminin

trimers are reported in vivo. The distribution of laminin isoforms

depends on tissue type, and they are important for

embryogenesis, organogenesis, angiogenesis, and tissue repair

(100–102). In tumorigenesis, once activated, these proteins

promote cell proliferation, migration, differentiation, and

metastasis (98, 99). Indeed, laminin facilitates cell migration and

invasion in invasive ductal breast cancer (103), gastric cancer

(104), and bladder cancer (105). In addition, laminin may be

correlated with the immune response in ovarian cancer (104).

In the normal salivary gland, laminin is expressed in the

basement membrane, around the acini and ducts, associated with

the presence of the myoepithelial cells (93). In SGCs, laminin

expression is reduced, and its discontinuation is frequently

observed due to the destruction of the basement membrane in the

face of malignancy (93). Similarly, to the normal salivary gland

and other SGCs, in PA and CXPA laminin is expressed in the

ECM component (67). Studies demonstrated a pattern of intense

immunohistochemical labeling around neoplastic cell clusters (37,

84, 106). A similar pattern has also been noted in other SGCs

such as adenoid cystic carcinoma and SGCs (67, 106). While

CXPA laminin expression is prominent in benign myoepithelial

cells surrounding malignant areas, PA laminin expression in

myoepithelial cells was shown to be reduced (93, 107). This

pattern suggests a change in the myoepithelial cell phenotype

during CXPA development (109). With regards to the expression

of laminin in PA matrices, this protein is more frequently

observed in hyaline matrices when compared to myxoid and

chondroid matrices (37, 106). When malignant transformation

occurs, laminin expression was shown to be present in both

benign and malignant areas of the CXPA (84) (Table 1).

Fibronectin
Fibronectins are composed of two subunits covalently

connected with disulfide bonds at their C-termini (108). Several

stimuli trigger the production of fibronectin matrix fibers, and

continuous production is required to maintain the presence of

the prior fibronectin matrix (108, 109). In addition to being

involved in the stages of morphogenesis, remodeling, and repair

(109), the fibronectin matrix plays a favorable role in tumor

progression and is dramatically upregulated around the tumor

vascular network (16, 23). In head and neck cancer, fibronectin

may promote proliferation, migration, and invasion of tumor

cells and induces macrophage M2 polarization in vitro (110). In

breast cancer, fibronectin expression in tumor cells promotes

metastasis (111). Pharmacological inhibition of fibronectin in

breast cancer slowed cancer progression in vitro and in vivo, and

this highlights its role as adjuvant therapy in these tumors (112).

In PA, fibronectin exhibits strong reactivity in the fibrous

stroma (65), especially in the chondromyxoid matrix (66, 67). In

PA malignant transformation, in areas of in situ carcinoma,

fibronectin expression is shown to be increased when compared

to areas of residual PA. At this stage, fibronectin may assist in

inhibiting myoepithelial cell suppressor function (70) and,

therefore, contribute to tumor growth. Fibronectin showed a

different expression pattern in different types of CXPA invasion.
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While in intracapsular CXPA the pattern of the fibronectin

expression was found to be around ductal structures, in

minimally invasive and frankly invasive tumors the fibers

positive for fibronectin showed to be present among the

malignant cell nests. This may point to a dynamic performance

of the ECM in the progression of the CXPA (89). However,

some areas of the tumor edge of intracapsular and minimally

invasive CXPA do not express fibronectin. This may highlight

the conflicting roles of fibronectin throughout tumor progression

(113) (Table 1) and further studies are encouraged to define its

role in disease progression, especially given its recent role in

cancer therapy (114).

Cadherin
The cadherin superfamily is composed of over 100 members

there are expressed in the highest levels in distinct tissue types

during development (115). In malignant tumors, the cadherins

family is downregulated causing a reduction in cell-cell

adhesiveness (116). In breast cancer, tumor types of analogs to

SGCs, E-cadherin has been associated with invasion and

metastasis (117–119).

In the normal salivary gland, cadherins were found in the

membrane around acinar and ductal cells, but with absent

expression in myoepithelial cells (120, 121). In the case of PA

and CXPA, the pattern of expression is similar, with loss of

expression in carcinomatous regions associated with loss of cell

cohesion and invasion (81, 120, 121). In CXPA methylation of

the E-cadherin promoter was related to luminal differentiation,

high tumor grade, tumor size, and high TNM stage (122). In

contrast, in PA, overexpression of the cadherin-11 subunit has

been related to tumor recurrence (123). E-cadherin has already

been indicated as a mediator of adenoma-carcinoma progression

in pancreatic tumors (124). Few studies have evaluated the

relationship of this protein with the PA malignant

transformation. Araújo et al. (2009) showed that type I collagen

can reduce the membrane expression of E-cadherin in frankly

invasive CXPA, and maybe a factor that contributes to tumor

invasion (81). Genelhu and collaborators (2007) related the

expression of β-catenin—participant of the adhesion complex

E-cadherin/catenins—with molecular events in the phenotype

transition and initiation of PA-CXPA progression (125) (Table 1).
MMPs and TIMPs

MMPs are a group of zinc-dependent endopeptidases related to

the degradation and remodeling of the ECM. To date, 23 MMPs

have been identified and many are implicated in cancer,

especially MMP-1, MMP-2, MMP-3, and MMP-9 (126, 127).

MMPs can degrade the protein components of the ECM and

basement membrane, facilitating tumor invasion and progression

(126, 128). MMP-2 and MMP-9 are perhaps the most studied.

MMP-2 is known to cleave tenascin. MMP-9 can degrade

laminin, collagen IV, and FN (129). The action of MMPs is

regulated by the interaction of tissue inhibitors: TIMP-1, TIMP-

2, TIMP-3, and TIMP-4 (130). Alterations in TIMPs are present
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in all human cancers and play an important role not only in the

TME but also in cellular interaction with cytokines and growth

factors (130, 131).

A recent meta-analysis evaluated the relationships of variants

in MMP-2, MMP-7, and MMP-9 for cancer risk (132). The

results of this work showed that MMP-2 rs243865 is most

correlated with esophageal cancer and lung cancer, MMP-7

rs11568818 with bladder and cervical cancer, and MMP-9

rs3918242 with breast cancer. In breast cancer, the pattern of

expression of MMPs can assist in tumor prognostic classification.

It has been reported that neoplasms with high expression of

TIMPs were correlated with a more indolent clinical course and

good prognosis, while tumors with high expression of MMPs

were correlated with a more aggressive clinical course and

increased risk of recurrences (131).

In SGTs, the expression of MMPs have been shown similarities

across benign tumors (133) while in carcinomas, the imbalance

between MMPs/TIMPs is associated with tumor invasion and

metastasis. Overexpression of MMP-2 was associated with more

aggressive behavior (134), while MMP-7, MMP-9, and MMP-13

are related to a poor prognosis (135–137). The positive expression

of the MMPs inducer (EMMPRIN) was considered an angiogenic

factor in these tumors, reinforcing the promoting role of MMPs in

the induction, maintenance, and progression of SGTs (138).

Regarding PA, MMP-2, MMP-9, TIMP-1, and TIMP-2 seem to

control local invasiveness in vitro (139). A study using ELISA

compared MMPs and TIMPs in the salivary fluid of patients with

PA and salivary SGCs. Their results showed that MMP-8, TIMP-1,

and TIMP-2 are important biomarkers for the diagnosis of PA

(140). Although there is a high expression of MMP-2 and MMP-9

in the myoepithelial cells of the PA, the expression of MMP-2 is

significantly higher and more stable than MMP-9 (141). Regarding

MMP-2, in vitro assays showed that its action leads to the

degradation of the basement membrane and contact of myoepithelial

cells with the tumoral stroma. This mechanism may be dependent

on EGF interaction with tumor cells that act to modify the

expression of the E-cadherin/β-catenin complex (142, 143).

Given the MMPs changes found in PA and cancers, we could

hypothesize that MMPs may play a promoting role in the PA

malignant transformation, with the myoepithelial cells as a key

component (70). Corroborating with this hypothesis, a recent

study by Martinez et al. showed an increase in MMP-2 and

MMP-9 and decreased TIMP-2 mRNA and protein expression

when myoepithelial cells were exposed to epithelial cells

exosomes in vitro (144) (Table 1).

With regards to TIMPs in PA and other SGCs, different studies

have shown that the increase in MMPs expression is followed by an

increase in TIMP expression (especially TIMP-1 and TIMP-2) and

this may represent a regulatory mechanism to maintain the balance

of the MMPs/TIMPs ratio (141, 145).
Conclusions and future directions

In summary, in this work, we reviewed the complexity of the

ECM in the CXPA development and progression. The studies
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summarized here have revealed how the heterogeneity and

versatility of the ECM in the PA and during its malignant

transformation may affect the biology and behavior of these

tumors. Important changes in the components of the ECM in

this class of tumors including the presence of perlecan in PA and

its association with tumor recurrence as well as the higher

expression of fibronectin, collagen type I, and IV, and lower

expression of e-cadherin in the CXPA development. As in other

cancer types, this review reinforced the perceptions and

addressed PA-CXPA not only as a disease of cell transformation

and uncontrolled proliferation but also as changes in TME that

undergo dynamic remodeling during all stages of the PA-CXPA

sequence. Further knowledge of the role of ECM in this entity

may provide tools for promising therapeutic targets hampering

cancer cells’ ability to metastasize and effectively limit the spread

of CXPA malignant cells.
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