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An inflammatory paradox:
strategies inflammophilic oral
pathobionts employ to exploit
innate immunity via neutrophil
manipulation
Dustin L. Higashi1, Hua Qin1, Christina Borland1, Jens Kreth1,2 and
Justin Merritt1,2*
1Division of Biomaterial and Biomedical Sciences, Oregon Health and Science University, Portland,
OR, United States, 2Department of Molecular Microbiology and Immunology, Oregon Health and
Science University, Portland, OR, United States
Inflammatory dysbiotic diseases present an intriguing biological paradox. Like most
other infectious disease processes, the alarm bells of the host are potently
activated by tissue-destructive pathobionts, triggering a cascade of physiological
responses that ultimately mobilize immune cells like neutrophils to sites of active
infection. Typically, these inflammatory host responses are critical to inhibit and/
or eradicate infecting microbes. However, for many inflammatory dysbiotic
diseases, inflammophilic pathobiont-enriched communities not only survive the
inflammatory response, but they actually obtain a growth advantage when
challenged with an inflammatory environment. This is especially true for those
organisms that have evolved various strategies to resist and/or manipulate
components of innate immunity. In contrast, members of the commensal
microbiome typically experience a competitive growth disadvantage under
inflammatory selective pressure, hindering their critical ability to restrict
pathobiont proliferation. Here, we examine examples of bacteria-neutrophil
interactions from both conventional pathogens and inflammophiles. We discuss
some of the strategies utilized by them to illustrate how inflammophilic
microbes can play a central role in the positive feedback cycle that exemplifies
dysbiotic chronic inflammatory diseases.
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Introduction

Inflammation is a natural and necessary biological response to infection, injury, and/or

antigen exposure. Clinically, the outward symptoms of inflammation include localized

heat, redness, edema, pain, and the loss of proper function to the affected area. On a

cellular level, the inflammatory process is highly complex and nuanced, but its

overarching goal is to eliminate the insulting agent, remove damaged cells, and initiate

wound healing.

Inflammation is a crucial protective response of the body when functioning properly.

However, its dysregulation can result in an array of diseases, such as atherosclerosis,

diabetes, irritable bowel syndrome, cancer, periodontal disease, and others (1, 2).

Interestingly, in many of these cases, local inflammation is associated with a dysbiotic
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shift in the microbial community of the affected site (3). These

population shifts not only serve to exacerbate pathogenesis, but

they may also serve as an essential step in the sequence of events

leading to the downward spiral of chronic inflammation (Figure 1).

During health, the oral microbiome is typically enriched in

commensal species, often organisms from genera such as Neisseria,

Actinomyces, Rothia, Corynebacterium, and Streptococcus. These

populations promote eubiosis with the host by limiting acidification

of dental plaque, antagonizing the growth of pathobionts, and

protecting the gingiva by dampening inflammation (4). For

periodontitis, which is a chronic inflammatory disease that damages

the supporting structures surrounding the tooth, disease is

characterized by a dysbiotic shift in favor of inflammophilic

microbes (i.e., those that thrive within an inflammatory

environment). Genera such as Parvimonas, Porphyromonas,

Fusobacterium, Prevotella, Tannerella, Treponema, and others

predominate concurrently with chronic gingival inflammation,

resorption of the alveolar bone, and the destruction of the

connective tissues supporting the teeth (5–8). Presently, we only

have a tenuous understanding of the polymicrobial aspects of

dysbiotic immunopathology, but studies hint at highly coordinated

and evolved processes.
FIGURE 1

Model of inflammatory dysbiotic disease. (A) Inflammophilic bacteria evoke
resident cells such as dendritic cells. (B) Neutrophils mobilize to sites of inf
phagocytosis and degranulation or (bii) NETosis. (C) Granule release causes
micobes. (E) Bacteria stimulate neutrophils to release cytokines, (F) providin
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For oral dysbiotic communities, members exhibit an exquisite

reliance upon polymicrobial synergism to promote and maintain

chronic inflammation. Through cooperation, microbes within

these communities are able to enhance colonization, optimize

nutrient acquisition, provide protection from environmental

insults, and bolster pathogenicity (9). Accordingly, a number of

studies have demonstrated how such synergism may occur

among prominent inflammophilic oral pathobionts. For instance,

Parvimonas micra has been shown to coaggregate with

Treponema denticola, Porphyromonas gingivalis, and

Fusobacterium nucleatum (10–12). Furthermore, P. micra can

utilize soluble factors from these organisms to enhance its own

growth, and can in turn, release factors that increase biofilm

formation and the growth of P. gingivalis and F. nucleatum (11).

Mixed biofilms of P. micra display increased resistance to sodium

hypochlorite treatment as compared to single species biofilms

(13). Coinfection with Prevotella intermedia was shown to

increase the virulence of P. micra in a murine abscess model

(14). P. micra may also influence the production of virulence

factors from other members of the community. For example, P.

micra is a potent stimulator of P. gingivalis gingipains, which are

secreted proteases that serve as key virulence factors involved in
the migration of neutrophils to the site of infection via signaling through
ection where they encounter bacteria leading to processes such as (bi)
the (D) breakdown of the ECM as well as the elimination of competing
g a positive feedback loop for mobilization of more neutrophils.
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host cell adhesion, nutrient acquisition, biofilm development, and

immune evasion (15).

The strength of the symbiotic relationships between

inflammophilic microbes is demonstrated by their frequent, if

not typical, associations across numerous diseases. Indeed, many

of the same species enriched in periodontitis are also highly

prominent in acute infections such as odontogenic abscesses

(16, 17). In malignant tumors, studies have demonstrated an

enrichment of many of the same genera as those found in oral

dysbiotic diseases, especially Parvimonas, Fusobacterium, and

Prevotella (18–21). Co-infections at typically sterile sites

throughout the body illustrate how members within these groups

can survive extensive journeys together to establish new

infections at distant extraoral sites (22, 23).

While it is now evident that inflammophilic bacterial

communities are able to survive and thrive in inflammatory

environments, the specific roles of each member remain

largely unknown in the polymicrobial context. To understand

the mechanisms of polymicrobial synergism in inflammatory

dysbiotic disease, it is necessary to first reveal how individual

species within these communities impact host immunity. Once

this baseline understanding is established, the field can then

compare how polymicrobial synergism modifies the expressed

phenotypes of more complex assemblages. With this in mind,

we recently presented new findings regarding neutrophil

interactions with the inflammophilic pathobiont P. micra while

at the 3rd International Conference on Oral Mucosal

Immunity and Microbiome. However, these results represent

only a small component of a much larger puzzle. Therefore,

the following sections will describe some prominent examples

of the interplay between neutrophils and inflammophilic

microbes as well as conventional pathogens to demonstrate the

broader implications for inflammatory dysbiotic disease,

especially among complex polymicrobial communities. We

discuss how aspects of inflammation provide a selective

advantage, particularly for the inflammophilic members within

these communities.
The neutrophil

Polymorphonuclear leukocytes (neutrophils) are a central

component of the innate immune system and make up the

majority of white blood cells in humans. As one of the first

defenders to sites of infection, neutrophils are key mediators that

influence the host response and play a central role in

pathogenesis and the resolution of disease (24–26). In recent

years, it has become increasingly apparent that neutrophils

engage in extensive crosstalk with both immune and non-

immune cells (27). They have been shown to induce the

production and secretion of cytokines from endothelial and

epithelial cells (28). Neutrophils induce the activation and

migration of macrophages and dendritic cells. They can also

facilitate the activation, inhibition, and differentiation of T cells

as well as promote B cell expansion (29). Amazingly, multiple

studies have reported that T and B cell activation can be directly
Frontiers in Oral Health 03
facilitated by a specialized subset of neutrophils capable of

presenting antigens via both MHC class I and class II (30, 31).
Granules

Neutrophils are mini-armories, possessing a vast array of

defensive and offensive weaponry to battle microbial infections.

These include multiple types of granules—tiny membrane-bound

organelles within neutrophils containing numerous components

like complement receptor, lactoferrin, metalloproteases, lysozyme,

elastase, collagenase, myeloperoxidase, defensins, and more (32).

These cargos are intimately connected with almost every aspect

of neutrophil biology and have a myriad of functions, including

the digestion of microbes, nutrient sequestration, antimicrobial

activity, and modulation of the adaptive immune response.
Extracellular degranulation

Granule contents are not only toxic to microbes, but they can

also damage host tissues following extracellular degranulation

(i.e., release of neutrophil granule contents to the extracellular

milieu). Certain infecting microbes are particularly adept at

provoking neutrophil degranulation. For example, a methicillin-

resistant strain of Staphylococcus aureus was shown to utilize a

phenol-soluble modulin to induce the phosphoinositide

3-kinase (PI3 K) dependent degranulation of neutrophils (33).

Streptococcus pyogenes induces degranulation through an M

protein-fibrinogen complex (34). Filifactor alocis engagement of

TLR2 induces the release of secondary specific granules (35). In

contrast, some microbes actively suppress neutrophil

degranulation. Chlamydia trachomatis produces a protease-like

activating factor (CPAF) that cleaves formyl peptide receptor 2

(FPR2) on neutrophils, preventing PI3K-induced degranulation.

Importantly, a C. trachomatis CPAF mutant was demonstrated

to be highly susceptible to neutrophil granules, unlike its

parental wild-type (36).

How does extracellular degranulation influence disease? It is

possible that certain microbes may actively induce granule release

as an adjunctive strategy to impair susceptible competitors,

usurping the antimicrobial arsenal of the host. For example,

endodontic infections are seeded by the oral biofilm, yet

persistent pressure from a neutrophil-rich immune response

results in an abscess community composition that exhibits little

resemblance to its original inoculum (16, 37). In particular,

much of the commensal microbiome antagonists of oral

pathobionts become depleted within the abscess environment,

whereas these same species comprise a prominent fraction of

normal dental plaque communities (38). Inducing degranulation

could also provide nutrition for bacteria. Granules contain

proteases that target not only bacteria but also extracellular

matrix (ECM) proteins such as elastin and collagen. Release of

these enzymes into the ECM facilitates the breakdown of host

proteins into smaller peptides, making them available for

bacterial consumption. It is worth noting that many of the
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commonly encountered inflammophilic pathobionts are also slow-

growing fastidious organisms that prefer to metabolize amino

acids, in contrast to the typical commensal species, which are

primarily fast-growing saccharolytic organisms. Thus,

inflammatory tissue destruction naturally provides a continual

source of soluble free peptides, which are the preferred carbon

sources for key inflammophilic organisms (39, 40). In the context

of host signaling, degranulation is also pro-inflammatory, which

serves to further promote an inflammatory growth environment

favorable to inflammophilic microbes and unfavorable to many

commensal species.
Phagocytosis and granule-phagosome
fusion

Neutrophils are professional phagocytes that possess an

uncanny capacity to engulf and eliminate bacteria. After

ingestion, neutrophil granules fuse with the bacterial phagosome

resulting in the release of toxic bactericidal compounds. While

an effective means to eliminate unwanted invaders, some

pathogens have evolved mechanisms to circumvent these defenses.

One strategy involves targeting neutrophil phagocytosis at its

initial stages. P. gingivalis signals neutrophils through TLR2

and C5aR leading to the proteasomal degradation of MyD88

and activating an alternate TLR2-Mal-PI3 K pathway that

inhibits phagocytosis (41). Neisseria meningitidis avoids

complement-mediated phagocytosis by binding host Factor H

(42), whereas Yersinia pestis produces a F1 capsule which directly

inhibits phagocytosis (43).

Following phagocytosis, the bacteria-containing phagosome

matures through fusion with antimicrobial granules, resulting in

the killing of the ingested microbe. A number of bacteria are able

to prevent killing after ingestion by neutrophils. Neisseria

gonorrhoeae can alter phase-specific production of the Opa

protein to prevent the accumulation of primary granule proteins,

thus enhancing their survival (42). The S. pyogenes M protein

has been shown to selectively prevent the fusion of primary

granules with phagosomes (44). Live F. alocis prevents primary

granule recruitment to its phagosome compared to heat killed

bacteria (45) and Mycobacterium smegmatis phagosomes fail to

fuse with primary granules (46).

Microbes may benefit from the manipulation of phagocytosis

and granule fusion in multiple ways. First, they avoid killing by

preventing the engagement of neutrophil granules altogether.

Extracellular bacteria remain unharmed while ingested bacteria

are afforded protection from external threats. Furthermore, these

intracellular bacteria could conceivably utilize the migrating

neutrophil to disseminate to new sites of infection.
Neutrophil extracellular traps (NETs)

Neutrophils can also produce extracellular traps (NETs) in

response to infection. Through a process called NETosis,
Frontiers in Oral Health 04
neutrophils elaborate structures comprised of extracellular fibers

of chromatin and granular proteins that are able to trap and kill

pathogens (47). While an effective defense against most

microbes, a number of bacteria have evolved strategies to subvert

NET production or function (48).

S. pyogenes produces the protease SpyCEP which cleaves

IL-8 to inhibit NET formation (49). S. aureus signaling through

the phosphatase Wip1, inhibits calcium signaling to

suppress NETosis (50). Pseudomonas aeruginosa adsorbs

host sialoglycoproteins to engage siglec-9 and inhibit NET

formation. S. pyogenes also engages siglec-9 for a similar

outcome, but does so via its production of a high molecular

weight hyaluronan capsule (51, 52). In group B Streptococcus, the

cell wall β-protein impairs NET formation through engagement

of siglec-5 (53).

In the presence of NETs, bacteria have evolved other means of

survival. Prevotella intermedia can degrade NETs through the

activity of NucA and NucD nucleases (54). Likewise, S. pyogenes

produces Sda1 and SpnA nucleases to digest NETs and promote

survival (55, 56). P. gingivalis produces the enzyme peptidylarginine

deiminase (PPAD), which was shown to citrullinate histone H3

and the antimicrobial peptide LP9, facilitating bacterial escape

and survival (57). Furthermore, P. gingivalis gingipain induces

the activation of protease-activated receptor-2 (PAR-2) to

induce NETs that lack bactericidal activity and also stimulate

P. gingivalis growth (58).

The manipulation of NETosis and NETs by microbes

demonstrates a highly evolved arms race which seems to involve

most aspects of neutrophil biology. The ability of microbes to use

compounds recognized as “self” molecules like hyaluronan and

sialoglycoproteins supports signaling through host-specific

pathways and demonstrates an ingenious form of molecular

mimicry to undermine host defenses. Many microbes naturally

promote NETosis as a consequence of their inherent pro-

inflammatory nature (48). For those that have evolved ways to

resist NET-dependent killing, the formation of NETs themselves

may even be beneficial due to its aggravation of the

inflammatory response (59). NETs contain many granular

components including proteases like elastase. As posited above,

the ability of these enzymes to digest the ECM may provide a

peptide-rich food source for surrounding microbes, especially

organisms that favor amino acid fermentation. Similarly,

antimicrobial NETs may also target competing species like

commensal organisms, further selecting for inflammophilic

community development. NETs may also delay wound healing,

which would encourage persistent infections (59).
Inflammatory signaling

Historically, neutrophils were not considered a major source

of signaling molecules and were primarily viewed as strict

responders to environment cues such as the chemokines

produced by activated epithelial cells (60). However, it is now
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well established that neutrophils actively secrete numerous signal

molecules, such as various cytokines (e.g., TNFα, IL-1β, IL-6, IL-

8), colony-stimulating and angiogenic factors, as well as growth

factors (61). Neutrophils treated with Mycobacterium

tuberculosis secrete IL-8 and GRO-α (62). P. gingivalis,

Peptoanaerobacter stomatis, and F. alocis induce neutrophil

release of TNFα, IL-1β, and IL-1RA (63).

The abundance of neutrophils present in dysbiotic inflammatory

infections suggests that bacteria having the ability to regulate anti- or

pro-inflammatory signaling cascades have likely tapped into a potent

feedback loop to actively modulate inflammation.
Conclusions and future directions

Inflammatory dysbiosis results from the disruption of normal

microbiome ecology, resulting in the overgrowth of normally low

abundance pathobionts. The species within these microbial

communities synergize to support their survival and growth by

actively promoting an ineffective inflammatory response. How do

these bacteria thrive in such a hostile environment designed to

inhibit bacterial growth? One explanation may lie in the fact that

many inflammophilic pathobionts have naturally evolved to

reside in such environments. For example, oral pathobionts like

P. micra typically reside within the gingival sulcus, an

environment continually bathed in gingival crevicular fluid

(GCF), which is comprised of many innate host defenses like

proteolytic enzymes, antibodies, complement, and neutrophils

(64). It is conceivable that the same phenotypes allowing

pathobionts to persist in the gingival sulcus could prove to be

pathogenic to the host when expressed in a different

environmental context, especially if such organisms were to

achieve high numbers in the community. Studies on microbe-

neutrophil interactions provide clues into the types of strategies

employed by individual inflammophilic bacteria. It is clear that

some microbes are able to commandeer and manipulate

neutrophil functions for their benefit. The looming question is

whether these same responses observed from individual species

still occur similarly in a polymicrobial context. For example,

some oral pathobionts provoke neutrophil NETosis, while others

inhibit this process. What is the final outcome when these

organisms coexist in polymicrobial communities? Is it simply a

numbers game, with the greater abundance organism yielding the

dominant effect upon surrounding neutrophils or is it an

altogether unique neutrophil response that does not resemble the

responses to the individual constituents of the community? One

could ask a similar question regarding neutrophil production of

signal molecules that direct downstream components of the

immune response.

These questions portend necessary future investigations of

inflammophilic synergism as a crucial next frontier in dysbiotic

pathogenesis research. A better understanding of the mechanisms

used by inflammophilic microbes to manipulate neutrophils
Frontiers in Oral Health 05
during infection may reveal new therapeutic strategies for the

treatment of dysbiotic inflammatory diseases. Indeed, therapeutic

approaches targeting neutrophil functions have already been

proposed for the treatment of ailments such as cancer,

pulmonary disease, and sepsis, with active clinical trials

investigating a number of medical indications (65). For

inflammatory oral diseases like periodontitis, therapeutic

approaches targeting pathobiont-induced neutrophil

immunopathologies may ultimately restrict pathobiont growth,

thereby reducing inflammation, tissue damage, and bone loss.
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