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Aberrant immunity in the
oral cavity—a link with
rheumatoid arthritis?
Jennifer Malcolm and Shauna Culshaw*

Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
There are well established epidemiological links between rheumatoid arthritis
and periodontitis. Recent data have started to shed light on the mechanisms
that might underlie the relationship between these two complex diseases.
Unravelling the roles of distinct pathways involved in these mechanisms has
the potential to yield novel preventative and therapeutic strategies for both
diseases. Perhaps most intriguingly, this represents an area where
understanding the biology in the oral cavity might reveal fundamental
advances in understanding immune regulation and the relationships between
the host and microbiome. Here we seek to discuss aspects of the adaptive
immune response that might link periodontitis and rheumatoid arthritis.
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Introduction

Autoimmune diseases predominantly develop in individuals with genetic susceptibility

after exposure to environmental factors; suggesting gene:environment interactions are

necessary to drive loss of immune tolerance, and emergence of pathological adaptive

autoimmune responses to host tissues. However, it is increasingly clear that autoreactive

CD4+ T cell and autoantibody responses can develop consequent to chronic

inflammatory or metabolic disturbances, even in the absence of defined genetic

susceptibility (1–3). Further, evidence is emerging that environmental exposures and

environment: gene interactions driving autoimmunity may be temporally and

functionally distinct (4–6). This raises the possibility that adaptive autoreactivity

emerges consequent to environmental exposures as a component of chronic

inflammation; and favours the progression to autoimmune disease only in genetically

susceptible individuals.

Rheumatoid arthritis (RA) is a joint destructive autoimmune disease associated with

adaptive immune responses towards post-translationally modified self-proteins. This

autoreactivity can be readily detected as autoantibodies reactive with self-proteins

containing citrulline modifications, known as ACPA. Importantly, ACPA can emerge

asymptomatically in patient sera many years before the onset of joint inflammation,

and strongly associate with chronic inflammatory insults at mucosal surfaces, such as

smoking and periodontitis (5, 7). In people expressing human leukocyte antigen (HLA)

class II alleles containing an amino acid motif known as the shared epitope [HLA-SE,

reviewed (8)], this initial ACPA response can evolve and mature; a process associated

with the transition to symptomatic joint inflammation. This is supported by recent data

revealing that HLA-SE alleles are required for the transition from ACPA positivity to

ACPA positive RA (as is widely used in the literature, in the following discussion,
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ACPA positivity/ACPA positive RA refers to seropositivity) (5, 6).

A corollary to these data is that the pathways predisposing to

ACPA positivity can occur independently of HLA-SE risk alleles

following exposure to relevant environmental insults, and only

predispose to autoimmune disease in genetically susceptible

individuals. This distinction suggests that autoreactivity

secondary to chronic inflammation or infection precipitates

autoimmune responses that may either progress, or not progress,

to autoimmune disease based on genetic susceptibility.

Here we review recent developments related to the impact of

gene: environment interactions in the pathogenesis of

rheumatoid arthritis. Using these new developments as a

framework, we discuss the implications for understanding

mucosal inflammatory disease and risk for RA, using

periodontitis as an exemplar. Finally, we review data derived

from recent mechanistic studies that offer clues and new

hypotheses to determine how aberrant inflammation in the oral

cavity predisposes to the development of RA.
The distinction between ACPA
positivity and ACPA positive RA

Retrospective serological studies of patients with RA reveal the

presence of ACPA many years before the onset of clinically evident

joint inflammation (4, 9, 10). Smoking is the strongest

environmental risk factor for ACPA positivity and progression to

ACPA positive RA (11). In a large Swedish twin study, smoking

was associated with ACPA positivity, but APCA positive RA was

associated with smoking only in individuals expressing HLA-SE

(HLA-shared epitope) risk alleles (12). This observation that

smoking, not HLA-SE, confers risk for ACPA positivity, while

smoking in an HLA-SE background confers risk for ACPA

positive RA was replicated in a meta-analysis (6). Subsequent

studies have revealed that ACPA’s in ACPA positive RA show

somatic hypermutations, as measured by variable-domain

glycosylation. This ACAP maturation is dependent on HLA-SE

(13). Glycosylation of IgG ACPA is largely absent from ACPA

positive individuals who do not progress to RA (14). Notably,

somatic hypermutation is a T-cell dependent process—T cells

help B cells to generate an array of antibody variants, with

selection for those antibodies with highest affinity. Therefore,

HLA-SE-restricted antigen-presentation to CD4+ T cells is

implicated in the transition from ACPA positivity to ACPA

positive RA (5, 13).
Mucosal origins of ACPA

Identification of smoking as the predominant environmental

risk factor for ACPA positive RA, together with observations that

ACPA emerge in patients sera up to ten years before the

development of joint inflammation, have led to the hypothesis

that ACPA are triggered at mucosal surfaces subject to chronic

inflammatory insults (15, 16). In support of this mucosal origin

hypothesis is the finding that diverse mucosal inflammatory
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diseases are associated with elevated ACPA positivity compared

with healthy individuals (Table 1). How ACPA are triggered, and

the biological function of ACPA at mucosal surfaces remain

unclear. It is possible that ACPA could represent a biomarker for

shared inflammatory pathways occurring at distinct mucosal

surfaces, in response to diverse environmental exposures.

ACPA positivity in individuals without arthritis is associated

with the presence of mucosal inflammatory exposures, including

smoking, but also exposure to dysbiotic microbial communities

in the gingival and intestinal tissues (Table 1). This suggests that

the disease processes that give rise to ACPA, and subsequently

predispose to the development of ACPA positive RA in

genetically susceptible individuals are active at mucosal surfaces

subject to chronic inflammatory insults. In both periodontitis

and inflammatory bowel diseases, the homeostatic relationship

between host-tissues and the resident polymicrobial communities

in health is lost, leading to immune-mediated tissue damage

driven by dysregulated host immune responses to dysbiotic

polymicrobial communities. Thus, in both diseases, environment

and/or genetic factors change the interaction between host-tissues

and resident polymicrobial communities, leading to a break

down in mucosal barrier function. It has been posited that the

mucosal IgA ACPA response may have a protective role in

binding and neutralising citrullinated proteins released during

NETosis, and that systemic IgG ACPA responses develop

consequent to breached mucosal barrier function (15). In

support of this hypothesis, it was recently demonstrated that

people with both RA and periodontitis can suffer repeated

breaches in mucosal barrier function, leading to oral

bacteraemia’s and changes in circulating monocyte populations.

Further, the authors revealed that resident bacteria in the mouth

can be externally citrullinated (presumed to be the result of

NETosis) and that hypermutated ACPA derived from RA

plasmablasts can bind citrullinated oral bacteria (25).
Oral mucosal origins of ACPA

As indicated above, the gingival tissues are a site of potential

ACPA induction. Serological studies of patients with

periodontitis reveal small, but measurable, serum ACPA

(Table 1). Whilst the autoantibody profile in patients with

periodontitis is variable, and the titres are relatively low, the

disease itself is common, and the autoreactivity is greater than

observed in healthy controls. Autoantibodies against both

citrullinated (anti-CCP) and native forms of proteins (specific for

both host and microbial) have been observed. As such, there is

evidence of an adaptive immune response to microbial antigens

and antigens that share homology with human proteins, such as

α-enolase, and host proteins such as vimentin and fibrinogen

(26). It is noteworthy that only very few infectious diseases

appear to result in anti-CCP immunity. Auto-antibodies against

both native and citrullinated peptides have been documented in

patients with TB (with reports varying between around 6% of

patients up to 37% of patients). There are small studies reporting

anti-citrullinated peptide immunity in leishmaniasis, and some in
frontiersin.org
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TABLE 1 Association of ACPA positivity with mucosal exposures in patients without RA.

Reference Disease/biomarker % positive (unless otherwise described)

IgG Anti-CCP IgA Anti-CCP Anti-CEP Anti-REP
(17) Healthy controls (n = 30) 0 N/A Significantly higher titres in

periodontitis compared with
healthy controls.

Significantly higher titres in
periodontitis compared with
healthy controls.

Periodontitis (n = 39) 7.7 N/A

P. gingivalis positive (n = 16) 18.8 N/A

P. gingivalis negative (n = 23) 0 N/A

(18) Healthy controls (n = 98) 1 N/A 3 2

Periodontitis (n = 96) 1 N/A 12 16

(19) Healthy controls (n = 36) 5.6 8.3 N/A N/A

Periodontitis (n = 114) 13 16 N/A N/A

Bronchiectasis (n = 80) 21 10 N/A N/A

Cystic Fibrosis (n = 41) 24 27

Rheumatoid arthritis (n = 86) 86 74

(20) Healthy controls (n = 36) 5.6 2.8 N/A N/A

Ulcerative colitis (n = 227) 13 37

Crohn’s disease (n = 164) 17 32

Rheumatoid arthritis (n = 86) 86 74

(21) Healthy controls (n = 39) 2.6 N/A N/A N/A

Tuberculosis (n = 47) 32

(22) Healthy controls (n = 18) 6 N/A N/A N/A

Tuberculosis (n = 49) 32

(23) Healthy controls (n = 237) 0.4 N/A N/A N/A

Tuberculosis (n = 89) 6.7

(24) found no evidence of ACPA positivity in several other infections/infectious diseases, including Mycoplasma, Toxoplasma, Salmonella, Malaria, Leishmaniasis.

N/A, Not applicable.
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hepatitis C, Lyme disease, Chagas disease and Yersinia infections.

Interestingly, these anti-citrullinated peptide antibodies were not

found in malaria, syphilis, salmonella, chlamydia, legionella,

streptococcus pyogenes, nor infectious endocarditis. It should be

noted that these studies used different assays and so absolute

comparisons are challenging. Nonetheless, not all infection

appear to carry equal risk for ACPA positivity.

Some studies point to a relationship between ACPA-positive

RA and periodontitis associated bacteria (27); other studies show

associations specifically with Porphyromonas gingivalis (28–30).

P. gingivalis is associated with periodontitis and described as a

keystone pathogen capable of orchestrating microbial dysbiosis

(31). P. gingivalis expresses a P. gingivalis Peptidyl Arginine

Deiminase, (PPAD) that converts arginine residues to citrulline

on both microbial and host proteins. Together with the

combined expression of P. gingivalis’ arginine gingipain, a

protease capable of cleaving proteins at arginine peptide bonds,

PPAD can generate non-endogenous C-terminal citrullinated

peptides. The candidate autoantigens human fibrinogen and

α-enolase were proteolytically cleaved and citrullinated following

incubation with P. gingivalis (Wegner, 2010). There is a

connection between P. gingivalis-mediated citrullination,

inflammation in the gingivae and the subsequent generation of

ACPA (28–30).

Whether anti-citrullinated autoimmunity can be triggered in

the periodontal tissues and progress to joint inflammation

consequent to failed mucosal compartmentalisation and

evolution of the ACPA response remains to be determined.
Frontiers in Oral Health 03
Antigen-processing and presentation

Data demonstrating that the periodontal tissues replicate the

citrullinome of the arthritic joint (32), that oral bacteria are

highly citrullinated (25), and the hypothesis that ACPA might

evolve to bind citrullinated proteins at mucosal surfaces are

intriguing (15), especially when considered in light of a recent

study revealing that citrullination alters antigen-processing,

leading to presentation of cryptic epitopes recognised by CD4+ T

cells from patients with rheumatoid arthritis (33).

Previous experimental studies have revealed that T cells

reactive with immunodominant self-epitopes are rendered

tolerant, while T cells potentially reactive with immunorecessive

or “cryptic” self-epitopes can escape tolerance (34, 35). During

normal physiological self-antigen processing, cryptic epitopes are

defined as those that are normally hidden from T cell

immunosurveillance because they are not available to bind (or

cannot bind) MHC complexes. However, under inflammatory

conditions, modification of self-proteins, for example via post-

translational modification, can change how self-proteins are

processed by altering proteolytic cleavage, leading to the

generation of new epitopes, or modified-epitopes with altered

affinity for MHC complexes (36). Indeed, oxidative modifications

introduced to the host cell proteome during metabolic stress are

linked with changes in MHCII antigen-processing (2).

The study by Curran et al, reveal that citrullination of host

proteins alters their antigenic processing giving rise to an

alternative set of MHC epitopes compared with epitopes
frontiersin.org
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presented following processing of unmodified proteins. Since

cryptic self-epitopes can have homology with microbial epitopes

(37), and T cells reactive with cryptic self-epitopes can be

engaged by immunisation with foreign antigen (38), it is

conceivable that altered-antigen presentation following processing

of modified proteins could underlie hypotheses relevant to

bystander activation and molecular mimicry.

Notably, while some cryptic epitopes are implicated in the

induction and propagation of pathogenic autoimmunity, others

can help to down-regulate pathogenic autoimmune responses

(36). In a model of adjuvant-induced arthritis (AA) in the Lewis

rat, diversification of the T cell response to cryptic epitopes from

mycobacterial 65 kDa heat-shock protein (Bhsp65), which are

cross-reactive with a rat heat-shock protein, alleviate the course

of AA (39). Furthermore, immunisation of Lewis rats with

cryptic peptides derived from Bhsp65, protected mice from

induction of AA following immunisation with Mycobacterium

tuberculosis H37Ra (37). These data demonstrate that adaptive

autoimmune responses can be engaged in both the propagation

and regulation of autoimmune disease depending on the nature

of the epitopes presented to autoreactive CD4+ T cells.

Importantly, while in the Lewis rat induction of AA induces both

arthritogenic and regulatory autoimmune responses, in a related

strain of rat (Fischer 344) the course of AA can be modulated

solely by exposure to environmental factors. Fischer rats raised in

a barrier-facility are susceptible to AA, in contrast Fischer rats

raised in a conventional facility had a reduced incidence of AA.

Notably, naïve Fischer rats raised in the conventional facility

demonstrated evidence of prior T cell activation towards

regulatory cryptic epitopes derived from mycobacterial Bhsp65.

This was attributed to spontaneous priming of T cells against

regulatory epitopes of Bhsp65 from molecular homologues

derived from microbes present in the conventional facility (40).

These data demonstrate that environmental exposures can

modulate the course and severity of autoimmune disease by

determining whether the outcome of adaptive self-recognition is

immunopathogenic or immunoregulatory.
Functional consequences of antigen
modification

Post-translational modification (PTM) poses a danger for the

development of autoimmunity by changing how proteins are

processed for antigen-presentation, potentially giving rise to

cryptic (33) and/or modified-epitopes (2, 3) recognised by

autoreactive T cells. Whereas cryptic epitopes are anticipated to

be recognised as “non-self” and to recruit a different T cell

population compared with T cells recruited by dominant self-

epitopes, PTM-modified epitopes can be recognised as non-self

(2, 3), or as we have shown, can change the interaction between

antigen-presenting cells and antigen-specific CD4+ T cells,

leading to altered functional responses (41).

CD4+ T cells from OTII mice express a transgenic T cell

receptor specific for ovalbumin peptide323–339 (pOVA) and are

useful for studying the interaction between antigen-presenting
Frontiers in Oral Health 04
cells and functional outcomes in CD4+ T cells. Using this

system, w modified the C-terminal arginine of pOVA to generate

C-terminal citrullinated pOVA (pOVA-cit) to show that pOVA-

cit changed the interaction between antigen-presenting cells and

OTII T cells, leading to changes in T cell function in the context

of immune-priming and immune-tolerance. Importantly, we

demonstrated that OTII T cells responding to pOVA-cit were

less dependent on co-stimulatory checkpoints for robust effector

responses, compared with the OTII response to native pOVA.

Further, using an oral tolerance model, we demonstrated that

immunisation with pOVA-cit was sufficient to breach immune

tolerance to native ovalbumin in vivo. This proof-of-concept

study reveals that non-endogenous C-terminal citrullination

can change the way CD4+ T cells “see” and respond to

MHCII antigens.

The OTII TCR recognises a 9 amino acid core epitope (329–

337) of pOVA (42). Therefore, the citrullinated residue (339) of

pOVA: cit is predicted to be in the peptide-flanking region, and

available to interact with the OTII TCR. Modification of flanking

regions of MHCII peptides can determine CD4+ T cell

functional outcomes, by selecting different populations of CD4+

T cells, or as predicted for pOVA: cit, by modifying the affinity

of MHCII: peptide interactions with cognate TCRs (43, 44).

Ultimately, whether endogenous or non-endogenous

citrullination favours T cell autoimmunity will be dependent

upon the T cell repertoire selected in the thymus, and at the site

of inflammation.
Discussion

The epidemiological relationship between periodontitis and RA

well-established (45), and there is good evidence that periodontitis

and infection with P. gingivalis are risk factors for ACPA positivity,

at least in some patients. However, it remains to be determined

whether ACPA positivity consequent to periodontitis, or P.

gingivalis exposure favours transition to ACPA positive RA—and

if so, whether this is based on genetic susceptibility, or other

factors. Periodontitis is highly prevalent and a significant

challenge for affected individuals, and its socioeconomic costs are

substantial (46). Understanding the aberrant immune response in

periodontitis has potential to improve treatment and prevention.

Moreover, we propose that periodontitis could represent a

platform to determine the causal pathways underlying the

emergence and maturation of ACPA responses predisposing to

RA. Broadly, there is an opportunity to understand fundamental

and causal pathways of autoimmunity, autoimmune pre-disease,

and perhaps the clinically manifest autoimmune disease. There is

a significant clinical unmet need for this information. Patients

with Rheumatoid arthritis (RA) have benefitted from

transformative advances in therapies. RA disease remission (or

relatively low disease activity) is achieved for more patients than

ever. However, advanced therapies are expensive, can have

significant side effects, and are not effective in every patient.

Partial response and non-response still represent an unmet need,

and therapy is usually lifelong therapy (47). The goal of drug-
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free remission remains elusive. RA still inflicts significant burdens

on individuals and society. Annual direct costs (e.g., medications,

medical and other care, adaptations) and indirect costs (e.g., lost

productivity) are estimated at USD10,000–30,000 per patient,

with some estimates up USD83,000 (48). Of patients treated with

anti-TNF over 6 years who were consistently defined as “in

remission” 57% of these patients report some compromised

physical function (49). A study of 640 patients over 8 years found

that 20% of RA patients who were defined as in remission

reported Health Assessment Questionnaire (HAQ) scores > 1;

indicating moderate to severe disability (50). The HAQ scores

were significantly higher in patients with progressing RA who did

not achieve remission. However, these and other studies (51) show

that a sizable proportion of patients considered to achieve “good”

outcomes still suffer. Understanding the biology in the mouth may

offer transformative approaches to these significant challenges.
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