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Introduction: Peri-implantitis, a destructive inflammatory condition affecting the
tissues surrounding dental implants, shares pathological similarities with
periodontitis, a chronic inflammatory disease that impacts the supporting
structures of natural teeth. This study utilizes a network-based approach to
classify interactome hub genes associated with peri-implantitis and
periodontitis, aiming to improve understanding of disease mechanisms and
identify potential therapeutic targets.
Methods: We employed gradient boosting and Weighted Gene Co-expression
Network Analysis (WGCNA) to predict and classify these interactome hub
genes. Gene expression data related to these diseases were sourced from the
NCBI GEO dataset GSE223924, and differential gene expression analysis was
conducted using the NCBI GEO R tool. Through WGCNA, we constructed a
co-expression network to identify key hub genes, while gradient boosting was
used to predict these hub genes.
Results: Our analysis revealed a co-expression network comprising 216 genes,
including prominent hub genes such as IL17RC, CCN2, BMP7, TPM1, and TIMP1,
which are implicated in periodontal disease. The gradient boosting model
achieved an 88.2% accuracy in classifying interactome hub genes in samples
related to peri-implantitis and periodontitis.
Discussion: These identified genes play roles in inflammation, osteoclast
genesis, angiogenesis, and immune response regulation. This study highlights
essential hub genes and molecular pathways associated with peri-implantitis
and periodontitis, suggesting potential therapeutic targets for developing
innovative treatment strategies.
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Introduction

Peri-implantitis is an inflammatory condition affecting the tissues surrounding dental

implants, characterized by inflammation and progressive bone loss (1). The progression

from mucositis to peri-implantitis is not yet fully understood, displaying an early onset

and a nonlinear pattern of advancement. Clinically, peri-implantitis is marked by signs
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of inflammation, increased probing depths, and larger

inflammatory lesions than those typically seen in periodontitis.

Key risk factors for peri-implantitis include a history of chronic

periodontitis and inadequate plaque control, though associations

with smoking and diabetes remain inconclusive (1–3).

In cases of peri-implantitis, the mean probing depth (PD) and

clinical attachment level (CAL) are significantly greater at implant

sites affected by peri-implantitis compared to other sites. Moreover,

the presence of peri-implantitis, implant location, and examination

site have all been shown to be significantly associated with

periodontal measurements at adjacent teeth (2, 3). Studies have

also noted that the mean PD and CAL differ notably at sites

near implants with peri-implantitis compared to distant sites

(4–6). The presence of peri-implantitis and the location of the

tooth were significantly associated with PD and CAL values.

Furthermore, the examination sites (proximal to or away from

the affected tooth) were significantly associated with CAL and

gingival recession (GR) (5, 6).

Peri-implantitis and periodontitis are inflammatory conditions (1,

7). Bothdiseases share etiological factors, such as bacterial colonization,

host immune response, genetic predisposition, and environmental

factors (6–8). Common pathogens associated with periodontitis

include Porphyromonas gingivalis, Treponema denticola, and

Tannerella forsythia. Research shows that periodontitis increases the

risk of developing peri-implantitis, with patients with a history of

periodontitis showing a higher incidence of peri-implant

inflammation and destruction (4, 5, 9, 10). Peri-implantitis and

periodontitis involve Gram-negative bacteria, but peri-implantitis has

a more aggressive inflammatory response, larger, more vascularized

lesions, and higher levels of matrix metalloproteinases (MMP). The

disease progresses more rapidly, leading to quicker and more severe

bone loss, likely due to differences in microbial composition and host

defense mechanisms. Peri-implantitis causes faster and more severe

bone loss than periodontal disease due to a nonlinear progression of

bone destruction influenced by microorganisms, host defense

mechanisms, and the absence of a periodontal ligament (11).

The pathogenesis involves the host immune response, bone

homeostasis, and genetic factors (1). A comprehensive review of

clinical research indicated that periodontitis increases the likelihood

of peri-implantitis (7). Peri-implantitis is an inflammatory condition

characterized by the inflammation of the tissues surrounding

dental implants, leading to bone loss and potential implant failure.

Understanding the gene expression profiles associated with peri-

implantitis can help identify biomarkers for diagnosis,

pathogenesis, and potential therapeutic targets (11). Key aspects

of gene expression analysis include the inflammatory response,

bone remodeling and resorption, matrix metalloproteinases

(MMPs), microbiome influence, immune response genes, and gene

expression technologies. Peri-implantitis patients often have

elevated inflammatory response genes and bone remodeling

and resorption genes, indicating an active inflammatory process,

potential tissue destruction, and impaired healing. Peri-implantitis

is influenced by the microbiome, with immune response genes

upregulated or downregulated (9–11). Gene expression

technologies like PCR, microarray analysis, and RNA sequencing

aid in understanding the disease’s molecular landscape.
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Peri-implantitis increases the risk of complications in implant

therapy, including marginal bone loss and implant loss, and

is a significant factor in implant rehabilitation rates, according

to systematic reviews. Gene expression analysis showed higher

levels of proinflammatory markers in peri-implantitis in

periodontitis, and one previous study compared peri-implantitis

and periodontitis lesions, revealing differences in tissue structure

and vascular density, with conflicting data on vascular density in

peri-implantitis and periodontitis tissues (8, 12, 13).

Weighted Gene Co-expression Network Analysis (WGCNA)

(14–16) is a computational method that identifies genes with

highly correlated expression patterns by calculating pairwise

correlations. WGCNA is a powerful tool for analyzing high-

dimensional data, aiding in identifying key gene interactions,

biomarkers, and biological mechanisms in fields like genomics,

transcriptomics, and systems biology (14, 15). It groups genes

into modules based on topological overlap measures, providing

insights into gene regulatory networks, potential biomarkers, and

key disease drivers. The system creates a network of genes based

on expression data, identifying highly correlated genes that may

share biological functions or co-regulate each other (14–16).

Interactome hub genes are central hubs in molecular

interaction networks, mediating interactions between molecules

and pathways. They regulate multiple biological processes

simultaneously, potentially influencing disease development (14,

17). Studying these hub genes helps identify therapeutic targets

and develop personalized medicine approaches.

Machine learning analyses and predicts interactions between

interactome hub genes using molecular interaction networks and

gene expression data (18, 19). This process includes feature

engineering, model selection, training, validation, and application to

new data, providing insights into biological processes. A recent study

developed an Artificial Neural Network model for early diagnosis of

Periprosthetic Infection (PI). It identified 1,380 differentially

expressed genes, highlighting neutrophil-mediated immunity and

NF-kappa B signaling pathways. The model accurately diagnosed PI

at an early stage using 13 hub genes (20). Another study found

distinct risk groups for peri-implantitis based on immune profiles,

microbial dynamics, and regenerative outcomes. Low-risk patients

had higher macrophage ratios, reduced B-cell infiltration, and

enriched Fusobacterium nucleatum and Prevotella intermedia (21).

Research on the interactome gene analysis of peri-implant disease

is currently limited. Comprehensive studies are needed to better

understand the molecular mechanisms involved and their potential

connections with periodontal diseases. This knowledge could aid in

the development of effective prevention and treatment strategies.

Accordingly, our study aims to predict and classify interactome hub

genes by using gradient boosting and WGCNA.
Materials and methods

Dataset preparation

The dataset utilized for this study was obtained from the NCBI

Gene Expression Omnibus (GEO) repository under accession
frontiersin.org
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number GSE223924 (19). This dataset comprises samples from 20

participants, including 10 healthy individuals and 10 patients

diagnosed with periodontitis and peri-implantitis. Tissue samples

from healthy individuals and those affected by periodontitis and

peri-implantitis were collected and subjected to genetic analysis.
Differential gene expression analysis

Differential gene expression analysis was conducted using the

GEO2R tool (19). It facilitates the process by locating the desired

dataset, accessing it, selecting target and control samples, applying

appropriate normalization techniques, and initiating the analysis.

The tool performs background correction, normalization, and

statistical analysis to identify differentially expressed genes. The

results are tabular, with genes ranked based on their fold change

or p-value significance. Users can further explore the results by

selecting specific genes and visualizing their expression patterns

through various plots available within GEO2R.
Cytoscape – interactome hub genes

Network analysis using Cytoscape (22) and the CytoHubba

plugin involves adjusting parameters, running hub gene analysis,

and analyzing the results. CytoHubba generates a ranked list of hub

genes based on their importance scores, which can be visualized by

highlighting, adjusting node size or color, or creating subnetworks.
Gene ontology – Enrichr

Enrichr performs enrichment analysis (23) using the Gene

Ontology database. It provides tabulated results containing enriched

GO terms, associated p-values, and gene counts. Additionally,

Enrichr offers visual representations and bar plots for

interpretation, aiding researchers in understanding overrepresented

biological functions and identifying pathways.
WGCNA analysis

WGCNA is a bioinformatics method employed for analyzing

high-dimensional gene expression data. It aids in identifying co-

expression modules of genes and uncovering gene networks

correlated with specific phenotypes or conditions. The WGCNA

process encompasses data preprocessing, constructing a co-expression

similarity matrix, network construction, module identification,

module preservation, and stability analysis, functional enrichment

analysis, and module-trait association analysis. Data undergoes

normalization and log transformation, with quality control steps

executed to eliminate low-quality or unreliable data. The resultant

matrix is transformed into an adjacency matrix, indicating the

strength of gene connections. WGCNA further facilitates functional

enrichment analysis to explore biological processes, pathways, or gene

ontology terms linked with genes within each module (24).
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IDEP

Integrated Differential Expression And Pathway Analysis (IDEP)

(24) is a user-friendly web server providing a comprehensive analysis

pipeline for gene expression data, including WGCNA. To perform

WGCNA analysis using IDEP, prepare your gene expression data

in the appropriate format and upload it to the IDEP website.

Then, select the suitable data type and normalization method,

furnish experimental information, conduct quality control checks,

identify differentially expressed genes, and opt for the “Weighted

Gene Co-expression Network Analysis (WGCNA)” feature in the

“Gene Networks” section. Adjust parameters such as soft

thresholding power and minimum module size, and initiate the

WGCNA analysis by clicking the “Run Analysis” button. IDEP

generates a WGCNA network and identifies co-expression

modules based on the specified parameters. IDEP furnishes

visualizations and downloadable results post-analysis, enabling

exploration of the network dendrogram, module-trait relationships,

gene significance plots, and functional enrichment analysis results.
Machine learning of hub genes of top
DEGs

Dataset preparation

The study aimed to identify the top 100 hub genes from

differentially expressed genes (DEGs) to gain insights into

biological processes. Data preprocessing ensured data quality, and

the performance of the gradient boosting algorithm was assessed

by dividing the dataset into training and test sets, ensuring

sufficient data for training and evaluating model performance.

The gradient boosting algorithm (25), an ensemble method, was

utilized on the training dataset, leveraging multiple weak

prediction models to construct a robust and accurate model for

exploring gene interactions.
Gradient boosting architecture

The Gradient Boosting model with CatBoost architecture was

configured with a learning rate of 0.009, comprising 26 trees, a

regularization lambda of 0.05, and a limit of 5 individual trees.

This setup balances model complexity and regularization, aiming

to minimize overfitting and achieve optimal performance in

predicting interactome hub genes associated with peri-implantitis

and periodontitis. The model is trained with 26 trees, with a

higher lambda value employed to mitigate overfitting. The model’s

limit also ensures a maximum of 5 trees in the final ensemble.

The Gradient Boosting model with CatBoost presents

several advantages over alternative models. It automatically

handles categorical variables, reducing the necessity for manual

preprocessing. Regularization techniques control overfitting by

managing the shrinkage of individual tree weights, thereby

enhancing generalization to unseen data. The adaptive learning
frontiersin.org

https://doi.org/10.3389/froh.2024.1462845
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Yadalam et al. 10.3389/froh.2024.1462845
rate, set at 0.009, diminishes overshooting and enhances

convergence speed. Limiting the number of individual trees helps

prevent overfitting and excessive model complexity. The

architecture and parameters have been fine-tuned to predict

interactome hub genes associated with peri-implantitis and

periodontitis, resulting in enhanced predictive performance.

Accuracy assessment was conducted using the orange machine

learning tool (25).
Results

Figure 1 presents a volcano plot depicting the differential gene

expression observed in peri-implantitis and periodontitis. This

volcano plot visualizes the differential gene expression between

peri-implantitis and periodontitis. Each dot represents a gene,

plotted according to its statistical significance and magnitude of

expression change. The x-axis, labeled as “log2 (fold change),”

indicates the degree of expression change for each gene. Genes

on the right side (positive values) are upregulated, while those on

the left (negative values) are downregulated. The y-axis, labeled

“-log10 (p-value),” represents the statistical significance of each

gene’s differential expression. Higher points indicate greater

significance (lower p-values). In the plot, red dots represent

significantly upregulated genes (p < 0.05 and log2 fold change >

1), while blue dots represent significantly downregulated genes

(p < 0.05 and log2 fold change <−1). Gray dots represent genes

with changes that are not statistically significant, falling below

the typical significance threshold. This visualization helps identify

key genes with substantial expression changes, which may play a

role in the pathogenesis or progression of peri-implantitis and

periodontitis, aiding in the identification of potential biomarkers

or therapeutic targets.

Figure 2 showcases the interactome of the top 250 genes

identified by analyzing differential gene expression. This network
FIGURE 1

Volcano plot of top differential gene expression in peri-implantitis
and periodontitis.
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visualization presents a comprehensive view of the molecular

interactions and relationships between these genes, shedding light

on the underlying biological processes involved in peri-

implantitis and periodontitis.

This network comprises 216 nodes interconnected by 206

edges, demonstrating an average of 3.712 neighboring nodes per

node. The network exhibits a diameter of 12 and a radius of 6,

indicating the maximum and minimum eccentricity of any node

in the network. The characteristic path length of the network is

calculated as 4.409, representing the average shortest path length

between all pairs of nodes. Additionally, the network

demonstrates a clustering coefficient of 0.228, indicating the

degree to which nodes tend to cluster together. The density of

the network, reflecting the ratio of the observed connections to

the total possible connections, is calculated as 0.036.

Furthermore, the network displays a heterogeneity value of 1.079,

indicating the degree of variation in the number of connections

among nodes. Notably, the presence of 100 connected

components suggests the existence of multiple subnetworks

within the overall network structure.

Figure 3 showcases the interactome generated from analyzing

the top 100 hub genes utilizing CytoHubba. These hub genes

play crucial roles in biological networks and are central to

various cellular processes. Among the top five hub genes

highlighted in this interactome are IL17RC, CCN2, BMP7,

TPM1, and TIMP1, all of which have been implicated in

periodontal disease in conjunction with peri-implant disease. By

examining this interactome, researchers can gain insights into the

molecular interactions and pathways underlying the pathogenesis

of these conditions. The figure offers a comprehensive visual

representation of the key hub genes and their potential

interactions. It facilitates further exploration and understanding

of the molecular mechanisms involved in periodontal disease

with peri-implant disease.

Table 1 summarizes the accuracy and class accuracy metrics

derived from the application of gradient boosting in predicting

interactome hub genes. The accuracy of 97% indicates the overall

effectiveness of the algorithm in making correct predictions. In

comparison, % class accuracy of 88% highlights the accuracy

achieved for individual classes or categories within the dataset.

These metrics are crucial indicators of the algorithm’s

performance and ability to identify hub genes involved in

biological networks accurately.

The Gradient Boosting model demonstrates robust performance

in predicting interactomic hub genes associated with peri-

implantitis and periodontitis. It discriminates between positive

and negative samples, yielding an impressive Area Under the

Curve (AUC) of 0.976. Moreover, the model achieves a high

Classification Accuracy (CA) of 0.882, indicating that 88.2% of

samples are accurately classified. The F1 score, indicative of the

balance between precision and recall, stands at 0.857, signifying

a satisfactory trade-off between the two metrics. Notably, the

model exhibits a precision of 0.897, accurately identifying positive

interactomic hub genes 89.7% of the time. Furthermore, it

achieves a recall of 0.882, correctly identifying 88.2% of the

positive interactomic hub genes. The model’s capability extends
frontiersin.org
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FIGURE 2

Interactome of the top 250 genes of differential gene expression.
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to providing reliable probability estimates and effectively

distinguishing between positive and negative samples, as

evidenced by Table 1.

Table 2 comprehensively summarizes the confusion matrix

results derived from network analysis based on hub and non-hub

classifications. This matrix delineates the accuracy of classifying

nodes into hub and non-hub categories. Notably, the table

showcases the accuracy of correctly classifying hubs as hubs,

achieving a perfect accuracy rate of 100%. Additionally, it

highlights the accuracy of correctly identifying non-hubs as non-

hubs, yielding a rate of 87.5%. However, the table also reveals the

challenge in accurately classifying non-hubs, with only a 12.5%

accuracy rate for non-hubs incorrectly classified as non-hubs.

These results offer valuable insights into the performance of hub

and non-hub classifications in network analysis, aiding in

evaluating and refining classification algorithms.

A SHAP plot serves as a visual depiction of machine learning

model predictions employing the SHAP (Shapley Additive

explanations) value method. It elucidates the contribution of each
Frontiers in Oral Health 05
feature to the prediction through vertical bars, where longer bars

denote a more substantial impact, and positive bars signify an

enhancement in prediction. The plot commences with a base

value and iteratively incorporates or deducts each feature’s

contribution to ascertain the final prediction (Figure 4).

The Receiver Operating Characteristic (ROC) curve serves as a

graphical representation of the performance of a binary

classification model. It is constructed by plotting the True

Positive Rate (TPR), also known as sensitivity, against the False

Positive Rate (FPR) at various classification thresholds. TPR

represents the proportion of correctly predicted positive instances

out of all positive ones. In contrast, FPR represents the

proportion of incorrectly predicted positive instances out of all

negative instances (Figure 5).

Figure 6 presents the Lift curve depicting the effectiveness of a

binary classification model in identifying positive instances,

specifically for both hub and non-hub genes. This graphical

representation is particularly valuable in scenarios where positive

instances are rare or of paramount importance to predict
frontiersin.org
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TABLE 1 Accuracy and class accuracy of gradient boosting in predicting interactomic hub genes.

Model AUC CA F1 Precision Recall LogLoss Specificity
Gradient boosting 0.976 0.882 0.857 0.897 0.882 0.586 0.451

TABLE 2 Confusion matrix results for network analysis based on hub and
non-hub classifications.

Predicted
Actual Hub 100.0% 12.5%

Non-hub 0.0% 87.5%

FIGURE 3

Interactome of the top 100 hub genes using CytoHubba.

Yadalam et al. 10.3389/froh.2024.1462845
accurately. The Lift curve is constructed by plotting the proportion

of positive instances captured on the y-axis against the proportion

of the dataset examined on the x-axis. A higher Lift curve indicates

superior performance compared to random selection. This curve

aids in evaluating the model’s ability to prioritize positive

instances. It provides insights into its practical utility in genomic
Frontiers in Oral Health 06
research and other applications where accurate identification of

rare positive instances is essential.

Figure 7 presents a dendrogram showcasing the top modules

identified through dissimilarity clustering. Modules are groups of

tightly interconnected genes sharing similar expression patterns. This

dendrogram visualizes modules in different colors, with colored lines

indicating individual genes’ memberships to specific modules.

The WGCNA software facilitated the construction of a co-

expression network utilizing 1,000 differentially expressed genes.

Hierarchical clustering and a topological overlap matrix were

generated for analysis to ensure a scale-free topology,

employing a soft thresholding power 10. The figure displays a

dendrogram illustrating the top analytical modules identified

through dissimilarity clustering. Each module is represented by
frontiersin.org
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FIGURE 4

SHAP plot of the gradient boosting model.

FIGURE 5

ROC curve of hub and non-hub genes.

FIGURE 6

Lift curve of hub and non-hub genes.
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a distinct color in the dendrogram, with genes within each

module closely linked and marked by colored lines. This

method effectively identifies modules comprising densely

coupled genes, unveiling gene regulatory networks and co-

regulated biological processes.
Frontiers in Oral Health 07
Figure 8 showcases the top modules identified through

WGCNA analysis. The figure highlights ten hub genes within

these modules, indicating their pivotal role in mediating

interactions and regulating biological processes. Researchers can

gain valuable insights into the underlying molecular mechanisms
frontiersin.org
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FIGURE 7

Dendrogram of top modules.

FIGURE 8

Top modules with ten hub genes.
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and regulatory networks associated with specific phenotypes or

conditions by focusing on these top modules and hub genes.

Figure 8 visualizes key gene modules and hub genes identified

through WGCNA analysis, facilitating further exploration and

understanding of complex biological systems.

Figure 9 illustrates the selection of an optimal soft-

thresholding power in the weighted gene co-expression

network analysis, using two key metrics: Mean Connectivity

and Scale Independence.

Top Plot (Mean Connectivity): This chart shows the average

connectivity of nodes (genes) within the network across different

soft threshold powers. As the soft threshold power increases, the

mean connectivity decreases, reflecting a reduction in the
Frontiers in Oral Health 08
number of connections each gene has. This trend suggests that

increasing the power enhances the specificity of connections,

focusing on stronger correlations and reducing weaker,

potentially noisy connections.

Bottom Plot (Scale Independence): This chart displays the

scale-free topology fitting index R2 across various soft threshold

powers. The goal in WGCNA is to select a power that achieves a

high R2 value (typically above 0.8), indicating that the network

approximates a scale-free topology. In this case, the red line

indicates an R2 threshold of 0.8. As the soft threshold power

increases, the R2 values approach or exceed 0.8 around a specific

power level, indicating the network’s suitability for scale-free

topology at that point.
frontiersin.org
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FIGURE 9

Analysis of scale-free topology fitting index R2 and mean connectivity.
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TABLE 3 Enriched genes of module hub genes.

FDR nGenes Pathway
1 2.62E-16 95 Defense response

2 8.24E-16 84 Response to external biotic stimulus

3 8.24E-16 90 The biological process involves interspecies interaction
between organisms.

4 8.24E-16 84 Response to other organism

5 2.25E-15 53 Response to bacterium

TABLE 4 Enriched module hub genes in clusters.

FDR genes Fold
enriched

Pathway

1 1.05E-11 33 4.667488341 Cytokine-cytokine receptor
interaction

2 4.82E-10 19 7.405813953 Rheumatoid arthritis

3 1.65E-08 17 6.865757768 IL-17 signaling pathway

4 3.28E-08 17 6.475657895 Viral protein interaction with cytokine
and cytokine receptor

Yadalam et al. 10.3389/froh.2024.1462845
Together, these plots help determine the optimal power to

achieve a balance between preserving key gene connections

(higher connectivity) and achieving a scale-free network structure

(high R2 value). This balance is essential in identifying

meaningful gene modules that correlate with biological traits in

the study of peri-implantitis and periodontitis.

Figure 10 comprehensively visualizes the analyzed genes

through a heat map graphic and a topological overlap matrix.

The heat map provides a graphical representation of the pairwise

similarities between genes, allowing for the identification of

clusters or modules of co-expressed genes. Brighter colors in the

heat map indicate stronger similarities, while darker colors

signify weaker similarities.

Table 3 provides an overview of the enriched genes associated

with module hub genes, categorized into clusters based on highly

enriched and statistically significant pathways. Each pathway

listed in the table is accompanied by the number of genes

enriched within that pathway, ranging from 53 to 95.
FIGURE 10

Heat map and topological overlap matrix of analyzed genes.
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Noteworthy pathways identified include defense response and

external biotic stimulus-response, highlighting the biological

processes and mechanisms that regulate gene expression within

these modules.

Table 4 presents an overview of enriched module hub genes

grouped into clusters, highlighting pathways associated with

diverse biological processes. The table categorizes these genes

based on their involvement in pathways, with each cluster

representing a distinct functional module enriched with hub

genes. Pathways listed in Table 4 range from 53 to 95 genes,

reflecting the complexity and diversity of biological processes

regulated by these hub genes.

The analysis results reveal the involvement of cytokine-

cytokine receptor interaction, rheumatoid arthritis, IL-17

signaling pathway, and viral protein interaction with cytokine

and cytokine receptors. These pathways play pivotal roles in

various biological processes, offering valuable insights into the

potential functions of the analyzed genes.

Table 5 provides an overview of the cellular components

associated with hub genes demonstrating high connectivity

within a biological network. Cellular components represent

subcellular structures or compartments where proteins, encoded

by hub genes, are predominantly localized and exert their

functional roles.
TABLE 5 Cellular components of hub genes.

FDR nGenes Pathway
size

Fold
enriched

Pathway

1 3.14E-33 199 4,673 2.198723934 Extracellular region

2 2.31E-19 150 3,577 2.075214341 Extracellular space

3 5.24E-13 62 987 2.994557823 Secretory granule

4 8.82E-12 66 1,165 2.683848797 Secretory vesicle

5 7.73E-11 44 603 3.373650108 External encapsulating
structure
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Discussion

Dental implants are a popular treatment for tooth loss, offering

functional, aesthetic, and quality-of-life benefits. However, placing

implants in periodontitis-prone patients can be challenging (9, 26).

Factors such as patient compliance and peri-implant microbiota

significantly affect implant success. Previous studies highlight the high

prevalence of peri-implant disease in patients with advanced

periodontitis, underscoring the need for regular maintenance and

monitoring. These studies emphasize the correlation between implants

and the likelihood of disease, stressing the importance of oral hygiene,

smoking cessation, plaque control, and supportive care (4–6).

Previous research examined plaque samples from individuals with

teeth or implants to explore oral microbiome dysbiosis in periodontitis

and peri-implantitis. Results indicated that inflammation reduced

subgingival connectivity and increased supragingival connectivity

(27, 28). Subgingival microbiota stability decreased with periodontitis

and peri-implantitis. The findings highlight that hub species are

important in future research because dysbiosis affects bacterial

correlations, community architecture, and local stability under

these conditions (13).

Previous studies found that peri-implantitis lesions had more

pronounced inflammatory cell infiltrates and a larger inflammatory

cell infiltrate extending to the bone crest than periodontitis

(1, 11–13). Another study (7) compared the histologic features of

severe periodontitis and severe peri-implantitis lesions, revealing

larger and more advanced peri-implantitis lesions with distinct onset

and progression mechanisms. This study also identified differential

gene expression using the GEOR TOOL (27) (Figures 1–3).

The dendrogram displays modules in different colors, revealing

gene regulatory networks and co-regulated biological processes using

WGCNA analysis. The study utilized a hierarchical clustering tree

and topological overlap matrix, revealing a scale-free topology fitting

index R2 and mean connectivity for various soft threshold powers,

with an R2 value of 0.9 identifying two modules of gene co-

expression (Figures 7–10; Tables 3–5). Top genes identified through

ontology analysis reveal cytokine receptors and IL-17 pathways,

commonly involved in periodontal and peri-implant disease.

Top hub genes include IL17RC, CCN2, BMP7, TPM1, and

TIMP1, which are involved in periodontal and peri-implant

diseases. Studies involving hub genes include the IL-23/IL-17

axis (29), crucial for periodontitis development, promoting

proinflammatory cytokines and alveolar bone loss. Another study

indicates a reverse relationship between IL-23R and IL-17RA in

chronic and aggressive periodontitis patients, potentially linked

to RANKL activation and alveolar bone loss. Previous studies

explore the role of IL-17 in peri-implantitis and periodontal

diseases, revealing a correlation between IL-17 genotypes and

susceptibility, suggesting a molecular-level control of IL-17

release. Elevated IL-17 levels are observed in periodontitis cases.

CCN2 (30), a CCN protein, is crucial for bone and cartilage

growth, orofacial development, mandibular morphogenesis, tooth

germ development, and tissue remodeling linked to fibrotic

disorders and periodontal fibrosis. CCN2/CTGF (31) is essential

for periodontal tissue development and regeneration, with
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stronger expression in sparse cell cultures and enhanced by TGF-

β. It stimulates DNA synthesis, cell growth, and specific marker

expression. ACTN1 and ACTN2 proteins, known for crosslinking

F-actin and anchoring actin to intracellular structures, were

associated with FAM49B and TPM1 in mitochondria and the

cytoskeleton in periodontal and peri-implant diseases. TIMPs, an

MMP-9 inhibitor (32), may be biomarkers for diagnosing and

monitoring periodontitis by reducing MMP activity linked to

tissue destruction and disease progression.

The accuracy and class accuracy of gradient boosting showed

97% and 88%, respectively, in predicting interactome hub genes

(Tables 1, 2; Figures 4–6). The gradient boosting approach for

predicting interactome hub genes requires validation with

independent datasets to assess its reliability and generalizability.

Integrating multi-omics data can comprehensively understand the

regulatory mechanisms underlying hub gene selection biology of

hub gene selection in periodontal diseases with peri-implantitis.

This study uses a network-based approach to classify interactome

hub genes associated with periimplantitis and periodontitis,

revealing key genes involved in inflammation, osteoclast genesis,

angiogenesis, and immune response regulation. The study

identified 216 genes, with top hub genes like IL17RC, CCN2,

BMP7, TPM1, and TIMP1 involved in periodontal disease. The

study identifies key genes for developing novel treatment strategies

and highlighting molecular pathways. However, validation through

independent datasets is crucial for confirming its reliability.

Integrating multi-omics data could provide a holistic view of

biological processes, leading to more nuanced insights into the

pathogenesis of periodontal diseases. Data quality and availability

issues, as well as inherent complexity of machine learning models,

pose challenges. As the dataset was sourced from the NCBI GEO

database, the sample size was predetermined by the original study

authors, and we are thus limited by the data available within this

resource. While our analysis is constrained by this existing sample

size, we acknowledge the importance of validating our findings

with larger datasets. Future research should address these

limitations, incorporate advanced methods for interpreting

machine learning outputs, and explore the functional roles of

predicted hub genes through laboratory experiments.
Conclusions

Gradient boosting is a promising method for predicting

interactome hub genes, revealing key regulatory genes in biological

networks associated with peri-implantitis and periodontitis.

However, independent and multi-omics data validation is needed

to improve model robustness and generalizability. Experimental

validation is also crucial to confirm the functional relevance of

these predicted genes. Furthermore, understanding the regulatory

mechanisms of these hub genes can lead to the development of

targeted therapies and improved diagnostic tools for periodontal

and peri-implant diseases. Future research should focus on

integrating advanced computational techniques with experimental

approaches to enhance the precision and applicability of hub gene

predictions in clinical settings.
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