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dental pulp cells by inhibiting the
extracellular flux of ATP and
HMGB1
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Yuanpei He', Guangwen Li*** and Shiting Li**

1School of Stomatology, Southwest Medical University, Lu Zhou, China, 2Luzhou Key Laboratory of Oral
& Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest
Medical University, Luzhou, China

Introduction: Tissue repair can be promoted by moderate inflammation but
suppressed by excessive levels. Therefore, control of excessive inflammation
following removal of infection plays a critical role in promotion of pulpal
repair. Connexin 43 (Cx43) forms hemichannels (HCs) or gap channels (GJs)
to facilitate the delivery of small molecules between cells to regulate both
inflammation and repair. Understanding the role of Cx43 in dental pulp may
help develop a potential strategy to attenuate the inflammation and promote
the formation of reparative dentin in deep caries.

Methods: We firstly investigated the expression profile of Cx43 in infected
human third molars by histological analysis; then, we detected channel activity
of Cx43 and the effect of mediating release of small molecules in
lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells
(hDPCs) by molecular biology methods. Results were analyzed by one-way
ANOVA and the unpaired t-test. The level of significance was set at a = 0.05.
Results: Analysis showed that the expression of Cx43 was upregulated in human
third molars as the degree of infection increased, and Cx43 was not only
expressed in odontoblast layer, but also detected in cell-rich zone and pulp
proper. LPS activated Cx43 HCs in hDPCs while inhibiting GJs; blockade of
Cx43 HCs attenuated LPS-induced inflammation. Furthermore, LPS promoted
the extracellular release of adenosine triphosphate (ATP) and high-mobility
group box 1 (HMGB1) within hDPCs, thus exacerbating LPS-induced
inflammation. The blockade of Cx43 HCs inhibited the extracellular release of
ATP and HMGB1 within hDPCs.

Conclusion: Collectively, our finding suggested that Cx43 plays a key role in
infection and inflammation in dental pulp. LPS activates Cx43 HCs to mediate
the extracellular release of ATP and HMGB1 to exacerbate LPS-induced
inflammation of hDPCs.
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Dental caries is a common oral disease characterized by the
chronic and progressive destruction of hard dental tissues under
the influence of multiple factors, mainly bacteria. With disease
progression, bacterial components and metabolites diffuse within
the dentinal tubules, gradually invading the dental pulp.
Odontoblasts and dental pulp cells are known to detect infection
within the dentin and release autocrine and paracrine signaling
factors to combat infection (1-3), including antimicrobial
peptides to kill invading microorganisms, and chemokines and
cytokines to activate the inflammatory response of dental pulp
and eliminate foreign substances (4-6). During the early stages of
infection, odontoblasts participate in sensing the inflammatory
environment and regulating the innate immune response. In later
stages, pulp cells, endothelial cells, and resident immune cells in
pulp tissues are activated to respond to bacterial infection (7, 8).
The outcome of infection depends on the balance between
inflammation and regeneration (9, 10). If infection is not cleared
in time, the infected host cells begin to release a large number of
inflammatory factors. This process can lead to overactivation of
inflammation, thus causing further damage to the dental pulp, and
eventually, necrosis of the pulp tissues (11). Mild inflammation or
early infection control can maintain cytokines at relatively low
levels, and pro-inflammatory factors, such as lipopolysaccharide
(LPS), can interact with Toll-like receptor (TLR)-4 to induce the
osteogenic/odontoblastic differentiation of pulp cells via mitogen-
activated protein kinase (MAPK) and Nuclear factor kappa B
(NF-xB) signaling pathways (12, 13). These finding suggest that
there is a close relationship between inflammatory and reparative
responses in the dental pulp. Only when excessive inflammation is
controlled after the removal of infection, can the repair and
regeneration of pulp tissues occur. However, how to control the
excessive inflammation is not fully understood.

Connexin 43 (Cx43) is one of the most common and abundant
forms of connexin (14, 15) and forms gap junctions (GJs) or
(HCs) that

substances with a molecular weight of <1.5kDa [such as

hemichannels mediate the direct transfer of
adenosine triphosphate (ATP) and Ca®*] between adjacent cells
or between the intracellular and extracellular environments to
regulate physiological and pathological activities in a variety of
tissues and cells (16, 17). Moreover, Cx43 is known to play a
crucial role in maintaining balance between the intracellular and
extracellular environments by virtue of its channel activity (18-20).
Cx43 is involved in the inflammatory response in a variety of
tissues and organs and plays a positive role in tissue repair
(21-
levels in the odontoblast layer during the formation of dentin,
thus that Cx43 is

differentiation and mineralization (24—

). Previous research showed that Cx43 is expressed at high

indicating associated with odontoblast
). In our previous study,
we confirmed that Cx43 plays a role in the odontoblastic
differentiation of human dental pulp cells (hDPCs), potentially via
the mediation of GJs (28). Recent research identified changes in
the expression levels of Cx43 in infected pulp tissue, although
different opinions have been reported in relation to how the

expression profile changes (27, 29, 30). Two factors may be able to
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explain these contradictory findings. First, different degrees of
damage to carious teeth of clinical origin may lead to varying
degrees of pulpal response, secondly, the pulp may have been
experiencing different stages of inflammatory and reparative
responses. Nevertheless, these results suggested that Cx43 was
involved in the infectious and inflammatory response of dental
pulp. However, the role of Cx43 in the inflammatory response of
dental pulp has yet to be identified.

In the present study, we compared the expression profiles of
Cx43 in human teeth with superficial/intermediate caries, deep
caries and pulpitis, and investigated the effect of Cx43 channel
activity and its mediatory molecules on the LPS-induced
inflammatory response of hDPCs. Our goal was to determine the
specific role of Cx43 in the response of dental pulp tissues to
infection and inflammation.

Reagents

The main experimental reagents used in this study included
LPS from Sigma (USA), reverse transcription kit and SYBR
Premix Ex TaqTM Kit from Novagen (China), phosphorylated
NE-xB antibody (p-NF-xB) from CST (USA), NF-«xB antibody
from Abcam (USA), Toll-like receptor 4 (TLR-4) from Santa
(USA), Gapl9, Gap26, and HMGB1 from MCE (USA), ATP
reagent and ATP detection kit from Bi Yun Tian (China), ELISA
kit from Wuhan Sevier (China), and ethidium bromide (EB) and
LY from Sigma (USA).

Histological analysis

This study was approved by the Ethics Committee of the Affiliated
Stomatology Hospital of Southwest Medical University, approval
number [20180511001]. The human third molars diagnosed with
superficial/intermediate caries, deep caries, reversible pulpitis, and
irreversible pulpitis through clinical and radiological examinations
were selected for this experiment, with 3 samples in each group. The
impacted teeth were collected from adults and informed consent was
obtained from all participants. The teeth were fixed in 4%
paraformaldehyde solution for 48 h, followed by decalcification in
10% EDTA (pH 7.4) at room temperature for 12 months. For light
microscope analyses, tissues were embedded in paraffin. Thin
sections (4 um) were stained with hematoxylin and eosin or
processed for immunofluorescence analysis.

Cell culture

Healthy and intact premolars were extracted for orthodontic
treatment purposes at the Stomatology Hospital of Southwest
Medical University under approved guidelines by the Ethics
Committee of Southwest Medical University. All patients

provided informed consent. hDPCs were isolated and prepared
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as described previously (31). Cells were maintained in o-minimal
essential medium (Thermo Fisher Scientific Inc.) with 10% fetal
bovine serum (Thermo Fisher Scientific Inc.) and 1% penicillin/
streptomycin (Thermo Fisher Scientific Inc.) at 37°C in a
humidified atmosphere of 95% air and 5% CO,. Cells from
passages 3-10 were used for all experiments. hDPCs were
stimulated with 5 pg/ml LPS for 6 h. In subsequent experiments,
the cells were incubated with 2uM Gapl9 TFA for 30 min,
50 uM Gap26 for 1.5h, 5mM ATP for 6h, and 1 pug/ml
HMGBI for 24 h. Results arising from concentration screening

are shown in Supplementary Figure S1.

Immunofluorescence (IF)

Tissue slices or cell samples were permeabilized with 0.1%
Triton X-100 for 15 min, followed by blocking with 1% BSA for
1 h. Sections were then incubated with Cx43 (1:1000) or HMGB1
(1:50) at 4°C overnight. The following morning, the sections
were incubated with ALEXAFluor 488/647-conjugated secondary
antibodies (1:300, ab150077/ab150115; Abcam) for 1.5h, and
subsequently counterstained with DAPI (Solarbio, Beijing, China)
for 10 min. Finally, the samples were imaged using a LEICA
DM4000B microscope equipped with a Photometrics CoolSnapl
camera and corresponding software (Leica).

Short hairpin RNA gene knockdown

pLKD-CMV-EGFP-2A-Puro-U6 vectors containing Cx43/
GJal and negative control (mock) short hairpin RNA (shRNA)
sequences were purchased from OBiO Technology Company
(Shanghai, China). The Cx43/GJal and mock shRNA sequences
were 5 -CCTGGCTCATGTGTTCTAT-3" and 5 -TTCTCC
GAACGTGTCACGT-3’, respectively. hDPCs were transfected
with shRNA-Cx43 and shRNA-mock lentiviral particles for 12 h,
followed by 1 pug/ml puromycin selection for 3 days to acquire
cells that were stably transfected with lentiviral particles. The
results were shown in Supplementary Figure S2.

Real-time quantitative polymerase chain
reaction (QRT-PCR)

Total RNA was extracted from cultured cells and first-strand cDNA
was synthesized from 0.5 pg of RNA. Gene expression was analyzed by
qRT-PCR with an Applied Biosystems (Foster, CA) 7500 Real-time
PCR System in a total volume of 20 pl containing 10 mmol/L each of
specific primers (Table 1). Levels were standardized to the
housekeeping gene GAPDH and expressed as relative mRNA levels.

Western blotting (WB)

Total protein was isolated in RIPA buffer (R0278, Sigma-Aldrich),
separated by SDS-PAGE, and transferred to PVDF membranes (EMD
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TABLE 1 Gene-specific primers for PCR amplification.

‘ Primers (5'-3')

GAPDH F: ATGGGGAAGGTGAAGGTCG

R: GGGGTCATTGATGGCAACAATA
IL-1B F: GCCAGTGAAATGATGGCTTATT

R: AGGAGCACTTCATCTGTTTAGG
IL-6 F: CACTGGTCTTTTGGAGTTTGAG

R: GGACTTTTGTACTCATCTGCAC
IL-8 F: ACTTTCAGAGACAGCAGAGCACAC

R: CACACAGTGAGATGGTTCCTTCCG
TNF-o F: AAGGACACCATGAGCACTGAAAGC

R: AGGAAGGAGAAGAGGCTGAGGAAC
Cx43 F: CTGGGGGTGTATGGGGTAGA

R: TTCTTAGGGGTGTTTGCGGG
HMGBI1 F: GAACAACACTGCTGCGGATG

R: TCCTCCTCGTCGTCTTCCTC

Millipore). Subsequently, the membranes were incubated with a
blocking buffer containing 5% non-fat dried milk in TBS Tween-20
buffer and cultured at 4°C overnight with antibodies against NF-kB,
p-NF-xB (1:1000), TLR4 (1:1000), and Cx43 (1:1000), followed by
incubation with secondary antibodies at 37°C for 2 h. Blots were
developed with a Supersignal West Pico chemiluminescent substrate
kit (Pierce) with GAPDH serving as a loading control.

Ethidium bromide (EtBr) dye uptake
experiment

hDPCs were seeded into confocal culture dishes at a density of
1.5 x 10* cells per well. Subsequently, each well was treated with
5uM EtBr staining solution and incubated at 37°C in the dark
for 10 min. The cells were then fixed with 4% paraformaldehyde
for 10min, and observed and imaged under an inverted
fluorescence microscope.

LY scratch labeling dye tracing experiment

hDPCs were cultured in a 6-well plate at a density of 1.5 x 10*
cells per well. Subsequently, 1 ml of 0.5% LY fluorescent dye was
added. 3-4 straight scratches were made using a sharp scalpel,
and the cells were then incubated in a 37°C incubator for 10 min
in the dark. After removing the dye, the cells were fixed with 4%
paraformaldehyde for 10-15min and finally observed and
imaged under an inverted fluorescence microscope.

Enzyme-linked immunosorbent assay
(ELISA)

The protein levels of IL-1B, IL-8, and HMGBI1 were investigated
using commercially available enzyme-linked immunosorbent assay
kits according to the manufacturer’s instructions (GEH0002 and
GEHO0005 for IL-1B and IL-8, Wuhan Sevier Biotechnology Co.,
Ltd.; HM10235 for HMGBI, Bioswamp Biotechnology Co., Ltd.).
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Measurement of ATP production

ATP production was measured using an ATP detection kit in
accordance with the manufacturer’s instructions (Beyotime,
China). In brief, the culture supernatant of cells was collected
and mixed with ATP then,
fluorescence was detected by a microplate reader (Infinite M200,
TECAN, Vienna, Austria). Finally, the concentration of ATP was
calculated according to a standard curve.

standard solutions; relative

Statistical analysis

Values are expressed as the mean + standard deviation (SD).
Statistical analysis was carried out with SPSS version 20.0 and
GraphPad Prism version 9, and one-way analysis of variance
(ANOVA) and unpaired t-test were used to analyze the data.
The results of all experiments represent those of three
biological replicates. The mean fluorescence intensity was
quantified using Image] software (NIH), and subsequent
statistical analysis was performed using GraphPad. The data
were analyzed by one-way ANOVA, and a P-value <0.05 was
considered statistically significant.

Analysis of the expression profile of Cx43 in
infected human teeth

In healthy teeth, the dental pulp structure was complete and
uniform, with a palisade-like arrangement in the odontoblast
layer, a cell-free zone immediately adjacent to the odontoblast
). The
pulp cells were evenly distributed throughout the pulp proper,

layer, and a densely cell-rich zone beneath it (

and Cx43 was only weakly expressed in the odontoblast layer. In
superficial/intermediate caries, the expression of Cx43 in the
). As the
,D), the dentin was

odontoblast layer was significantly increased (
lesion gradually progressed (
destroyed and disintegrated, leading to the loss of the original
odontoblast morphology. Beneath the caries, the infiltration of
inflammatory cells in the pulp tissue gradually increased. In
addition, the expression of Cx43 was gradually upregulated, with
a small amount of Cx43 detected in the cell-rich zone. In cases
of irreversible pulpitis ( ,F), we observed vacuolar
degeneration of the odontoblasts. Furthermore, the pulp became
edematous with a significant infiltration of inflammatory cells,
leading to the formation of multiple small abscesses. At this
time, Cx43 was not only strongly expressed below the dentin but
also present in the pulp proper, showing a gradually increasing
trend of expression. Collectively, compared with healthy dental
pulp, the expression of Cx43 in infected dental pulp was
significantly upregulated ( ), suggesting that Cx43 plays
a key role in the infection and inflammatory response in human
dental pulp tissues.

Frontiers in
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LPS upregulated Cx43 expression and
activated Cx43-containing hemichannel
activity in hDPCs

Compared to the control group, LPS significantly
upregulated the mRNA levels of IL-1p, IL-6, IL-8, and TNF-o
within hDPCs (P <0.05), as well as the protein levels of IL-1B
and IL-8 (P<0.0001) ( ,B). And furthermore, LPS
also obviously increased the mRNA level of Cx43 in hDPCs
(P<0.001) (
intensity of Cx43 in the cytoplasm of hDPCs and on the cell

). We detected enhanced fluorescence

membranes between adjacent cells (P<0.01) ( ,E)
and upregulation of the protein levels of Cx43 within hDPCs
(P<0.01) ( ,6).

Cx43 predominantly exerts its functionality through its
constitutive channel activity. Therefore, we investigated the
channel activity of Cx43 in hDPCs under LPS stimulation.
Analysis demonstrated that LPS stimulated the activity of Cx43
HCs within hDPCs ( ,1), while inhibiting Cx43 GJs
( ,K), thus suggesting that Cx43 may play a role in
infected hDPCs by mediating HCs but not GJs.

Blockade of Cx43 HCs inhibited the LPS-
induced TLR4-Nf-xB pathway and
inflammation in hDPCs

In the physiological state, Cx43 GJs are normally open to

homeostasis  and critical
physiological Under

however, Cx43 GJs are often closed or downregulated; during

maintain  cellular perform

functions. pathological  conditions,
this state, Cx43 HCs can be activated to release a class of
endogenous molecules that are critical for the pathogenesis of
inflammation (32). Therefore, to investigate the role of the
channel activity of Cx43 in pulp inflammation, we treated
hDPCs with 2 uM of Gapl9, a specific peptide HC inhibitor
that targets Cx43 (18, 33). Analysis showed that Gapl9
significantly attenuated the fluorescence intensity of Cx43 in
the cytoplasm and cell membrane of hDPCs induced by LPS
( ,B). Further analysis showed that Gapl9 inhibited
the activity of Cx43 HCs in hDPCs ( ,D) and
promoted the activity of Cx43 GJs under LPS stimulation
( ,F), indicating that blockade of Cx43 HCs may
partially restore the physiological functionality of hDPCs.

LPS stimulates TLR-4 on the cell membranes of DPCs and
activates NF-xB signaling pathway, producing inflammatory
cytokines such as IL-1B and IL-6 (34). To elucidate the role of
Cx43 in the inflammatory response of hDPCs, we used Gapl9
and Gap26 [a Cx43 GJ channel inhibitor (35)] to block the
activity of Cx43 HCs and GJs in hDPCs, respectively; then, we
compared these effects with Cx43 inhibition. Analysis showed
that the blockade of Cx43 HCs significantly suppressed the
protein level of TLR-4 and the phosphorylation level of NF-xB
induced by LPS in hDPCs (P<0.01), which there were no
significant differences when compared to the inhibition of the
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FIGURE 1
The expression profile of Cx43 in human third molars (n = 3/group). Cx43 (red arrow) immunofluorescence staining and quantitative analysis in
infected teeth and healthy controls. Blue arrows: inflammatory cells; a/od: odontoblast layer; b: cell-rich zone; c: pulp proper; d: dentin; P: dental
pulp; (A) Healthy teeth; (B) Superficial/Intermediate caries; (C) Deep caries; (D,E) Irreversible pulpitis; scale bar: 20 um; (F) Quantitative
fluorescence analysis of Cx43 in various groups of dental pulp. **P < 0.01, ****P < 0.0001

expression of Cx43 (P> 0.05); the blockade of Cx43 GJs had no
significant effect (P> 0.05) ( -1). In addition, similar to
Cx43 inhibition, the blockade of Cx43 HCs significantly inhibited
the LPS-induced mRNA levels of IL-1B, IL-6, IL-8, and TNF-o
(P<0.0001) ( -
and TL-8 (P<0.0001) (
indicated that Cx43 regulates the LSP-induced inflammatory

), as well as the protein levels of IL-1B
,0). Collectively, these results

response in hDPCs by mediating the activity of HCs.

The extracellular release of ATP induced by
LPS stimulation exacerbated LPS-induced
inflammation in hDPCs

(DAMPs)
endogenous danger molecules that are released from damaged or

Damage-associated molecular  patterns are

dying cells and activate the innate immune system by interacting

Frontiers in

with pattern recognition receptors (PRRs), thus promoting a
pathological inflammatory response although they are known to
contribute to host defense (36). ATP, acts as a DAMP and is
released from the cytoplasm into the extracellular space to
interact with specific purinergic P2 type receptors (P2XRs)
to modulate inflammation (37). Furthermore, Cx HCs are known
to mediate the extracellular release of ATP and act in concert
with inflammatory cytokines to amplify the inflammasome
pathway to perpetuate chronic inflammation (38-40). However,
the role of ATP in LPS-induced inflammation in hDPCs remains
unclear.

In the present study, we found that LPS promoted the
extracellular release of ATP in hDPCs, thus resulting in a
significant increase in the extracellular level of ATP (P<0.01)
( ). Moreover, compared to LPS stimulation alone,
additional ATP stimulation enhanced the LPS-induced mRNA
levels of IL-1B, IL-6, IL-8, and TNF-o in hDPCs (P<0.01)

05


https://doi.org/10.3389/froh.2024.1496819
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/

Hu et al.

10.3389/froh.2024.1496819

&
~
C
N’

e Control
e LPS

-
- =)
=) =3

-

Relative mRNA level of
inflammatory factor
o

Inflammatory factor level
(pg/mli)

01 :
\;&
(D) Cx43/DAPI (E)

*%
2.0

1.8

1.6

Cx43/DAPI
a

1.2
1.0
0.8
> 3
& Q
& M
kK k¥
15000
=
<
£ 10000
s
o
-
@
& 5000
= .
I
a
w
0
> o
& 2
<;°(‘k M

FIGURE 2

***P <0.001, ***P<0.0001.

100000

10000+

Kok okok Kok k ok
[ l_I $ *x
x |
e Control o 10 °
s T
o LPS % s -ry
1000 3 ¢
100 B
nE: 4
104 | o 2
r.1 > %E!
T T % 0 T T
b >
\\«"& N [+4 & \g”
cp
(F) (G)
> ©
O
s < *x%
& P 3 20 —
C YV -
13
T 15
£ 10
2
o
GAPDH| s S0 ¢ 02
2
=]
5 o0
7] N o
14 C§§P K
K)
k] 30 **
2
E .
S
2. 2
€
2E
2 10
2
]
a 0
> @
cfé o

LPS upregulated Cx43 expression and activated Cx43-containing hemichannel activity. (A) gRT-PCR analysis of the mRNA levels of IL-18, IL-6, IL-8,
and TNF-a in hDPCs under LPS stimulation. (B) The protein levels of IL-1B and IL-8 were investigated by ELISA. (C) gRT-PCR analysis of the mRNA level
of Cx43. (D) IF was used to investigate the fluorescence intensity and localization of Cx43 in hDPCs. (E) Fluorescence intensity was quantified by
ImageJ software. (F) Equal levels of cell lysates were subjected to WB analysis to determine the protein levels of Cx43. (G) Protein bands were
quantified by Imaged software. (H,1) Analysis of the activity of Cx43 HCs by EB dye uptake and quantitative analysis. (J,K) Analysis of the activity of
Cx43 GJs via LY scratch labeling dye tracing and quantitative analysis. All these experiments were repeated three times. *P<0.05, **P<0.01,

(Figure 4B-E), along with the protein levels of IL-1B and IL-8
(P<0.01) (Figure 4F,GG). However, ATP stimulation alone did not
in hDPCs.
indicated that LPS activates the inflammatory response in hDPCs

induce inflammation Collectively, these results
and promotes the extracellular efflux of intracellular ATP from
hDPCs, while extracellular ATP further exacerbates the LPS-

induced inflammatory response in hDPCs.

The extracellular release of HMGB1 induced
by LPS stimulation exacerbated LPS-
induced inflammation in hDPCs

High-mobility group box 1 (HMGB1) is another DAMP and is

localized in the cell nucleus to exert critical functions in gene level.
However, when released into the extracellular space, HMGBI is

Frontiers in Oral Health

known to induce inflammation by activating the NF-kB pathway
by binding to TLR-2, TLR-4, and RAGE (36, 41). In this study,
we found that LPS induced the expression of HMGBI in the
cytoplasm in hDPCs (P<0.001) (Figure 5A,B), attenuated the
mRNA transcriptional level of HMGB1 (P<0.01) (Figure 5C),
and upregulated the extracellular protein level of HMGBI
(P<0.01) (Figure 5D), thus indicating that LPS promotes the
extracellular release of HMGB1 in hDPCs. Similar to the effect of
ATP, compared to LPS stimulation alone, additional HMGBI
also enhanced the LPS-induced mRNA levels of IL-1p, IL-6, IL-8,
and TNF-o in hDPCs (P<0.05) (Figure 5E-H), as well as the
protein levels of IL-1B and 8 (P <0.05) (Figure 5I,]). These data
suggested that LPS not only promotes the inflammatory response
of hDPCs
intracellular

but also leads to the extracellular release of
HMGBI, HMGBI1 further
exacerbates the LPS-induced inflammatory response in hDPCs.

while extracellular

06 frontiersin.org
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FIGURE 3
Blockade of Cx43 HCs inhibited the LPS-induced TLR4-NF-xB pathway and inflammation in hDPCs. (A) IF was used to investigate the fluorescence
intensity of Cx43 (white arrow). (B) Fluorescence intensity was quantified by ImageJ software. (C,D) Analysis of the activity of Cx43 HCs by EB dye
uptake and quantitative analysis. (E,F) Analysis of the activity of Cx43 GJs via LY scratch labeling dye tracing and quantitative analysis. (G) Equal
levels of cell lysates were subjected to WB analysis to determine the protein levels of TLR4, NF-xB, and p-NF-xB. (H,l) Protein bands were
quantified by Imaged software. (J-M) gRT-PCR analysis of the mRNA levels of IL-1B, IL-6, IL-8, and TNF-o. (N,O) The protein levels of IL-18 and
IL-8 were investigated by ELISA. All these experiments were repeated three times. shCx43: hDPCs transfected with shRNA-Cx43 lentiviral particles;
ns, no statistical significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <0.0001.

Cx43 HC blockade inhibited the
extracellular flux of ATP and HMGBL1 in
hDPCs

Our previous results demonstrated that LPS induces the
inflammatory response in hDPCs and simultaneously promotes
the release of intracellular ATP and HMGBL into the extracellular
space. Subsequently, the extracellular ATP and HMGBI further
exacerbate the LPS-induced inflammatory response in hDPCs
through autocrine or paracrine mechanisms. However, it remains
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unknown as to whether the extracellular efflux of ATP and
HMGBI1 in hDPCs is associated with Cx43 HCs. To investigate
the relationship between DAMPs and Cx43 HCs in hDPCs, we
blocked the activity of Cx43 HC with Gapl9 to investigate the
extracellular release of ATP and HMGBI. Analysis showed that
the blockade of Cx43 HCs with Gapl9 significantly attenuated the
LPS-induced extracellular release of ATP in hDPCs (P<0.01)
(Figure 6A), and significantly increased the mRNA transcription
level of HMGB1 in hDPCs (P<0.001) (Figure 6B), whereas
suppressed the extracellular protein level of HMGB1 (P<0.01)
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FIGURE 4
The extracellular release of ATP by LPS stimulation exacerbated the LPS-induced inflammation in hDPCs. (A) Analysis of the extracellular release of ATP
in hDPCs with LPS stimulation, as detected by an ATP detection kit. (B—E) gRT-PCR analysis of the mRNA levels of IL-1B, IL-6, IL-8, and TNF-o.
(F,G) The protein levels of IL-18 and IL-8 were investigated by ELISA. All these experiments were repeated three times. *P < 0.05, **P < 0.01, ***P < 0.001.

(Figure 6C). Moreover, IF results showed that the blockade of Cx43
HCs inhibited the LPS-induced the expression of HMGBI in the
cytoplasm in hDPCs (Figure 6D,E). Collectively, these results
demonstrated that LPS activates the inflammatory response in
hDPCs, while stimulating the activity of Cx43 HCs to promote the
extracellular release of ATP and HMGBI. Subsequently, the
extracellular ATP and HMGBI further exacerbate the LPS-induced
inflammatory response of hDPCs. The blockade of Cx43 HCs
attenuates the pro-inflammatory effects of LPS by inhibiting the
extracellular efflux of ATP and HMGBI in hDPCs.

Discussion

In this study, we first detected the expression profile of Cx43 in
normal teeth, superficial/intermediate caries, deep caries, and
pulpitis, and confirmed that Cx43 plays a key role in the
infection and inflammatory response of dental pulp tissues.
Subsequently, we performed in vitro studies to demonstrate that
LPS activates Cx43-containing HCs then mediate the
extracellular release of ATP and HMGBI to exacerbate the LPS-
induced inflammatory response in hDPCs.

Previous research showed that Cx43 is only expressed in the
odontoblast layer in healthy teeth (27). During the early stages of
pulp infection, there is a transient, significant, and orderly
increase in the expression levels of Cx43 at the site of infection
(29). Our analysis showed that the expression levels of Cx43 were
gradually upregulated as the degree of infection increased. We
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also found that Cx43 was expressed not only in the odontoblast
layer, but also in the cell-rich zone and in the pulp proper below
the infection, thus suggesting that the functionality of Cx43 is
activated in deep pulpal tissues to participate in the pulpal
infection and inflammatory response.

Cx43 forms HCs and can dock with HCs on adjacent cells to
form GJs, thus promoting intercellular and intracellular-extracellular
communication in various tissues of human body, including the
heart, nervous system, and vascular system (42). Nevertheless,
although Cx43 GJ and HC proteins coexist in the plasma
membrane, they are not usually activated at the same time. Instead,
these proteins exhibit their respective functions independently
under specific conditions or states, a discovery first made by
Retamal in 2007 (43). In the present study, we found that LPS
upregulated the expression of Cx43 in hDPCs, with expression
localized to the cell membrane, thus suggesting that the channel
activity of Cx43 may be involved in the LPS-induced inflammatory
response in hDPCs. Usually, Cx43 GJs are activated under
physiological conditions and remain closed under pathological
states; in contrast, Cx43 HCs are activated under pathological states
(32). However, previous study reported that LPS can activate GJs,
thus permitting the spread of intracellular infection and toxic
signals to neighboring cells and the extracellular space in the CNS
(44), thus suggesting that both Cx43 GJs and HCs may be involved
in the pathological processes of tissues and cells. Our results
showed that LPS stimulated the activity of Cx43 HCs in hDPCs
and inhibited the GJs, thus indicating a potential role of Cx43 HCs
in the infection and inflammation of dental pulp tissues.
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FIGURE 5
The extracellular release of HMGB1 by LPS stimulation exacerbated the LPS-induced inflammation in hDPCs. (A) IF was used to investigate the
fluorescence intensity and localization of HMGB1 in hDPCs. (B) Fluorescence intensity was quantified by ImageJ software. (C) gRT-PCR analysis of
the mRNA level of HMGBL. (D) The protein level of HMGB1 was investigated by ELISA. (E-H) gRT-PCR analysis of the mRNA levels of IL-1B, IL-6,
IL-8, and TNF-a. (I,J) The protein levels of IL-18 and IL-8 were investigated by ELISA. All these experiments were repeated three times. *P < 0.05,
**P<0.01, ***P<0.001

In infectious diseases, Cx43 exerts functionality in different
tissues and cells but does so in different ways. Previous research
showed that Cx43 GJs are enhanced to activate the inflammatory
response in macrophages infected by mycobacterium tuberculosis
(45), while Cx43 HCs are implicated in certain diseases,
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including diabetic retinopathy, skin disease, kidney disease and

). To further determine the

>

neurological disease (
channel activity of Cx43 during the inflammatory process of
hDPCs, we used specific channel inhibitors to block Cx43 HCs
or GJs, respectively. Our results showed that the blockade of
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FIGURE 6
The blockade of Cx43 HCs inhibited the LPS-induced extracellular release of ATP and HMGBL1 in hDPCs. (A) Analysis of the extracellular release of ATP,
as determined by an ATP detection kit. (B) gRT-PCR analysis of the mRNA level of HMGBL. (C) The protein level of HMGB1 was investigated by ELISA.
(D) IF was used to investigate the fluorescence intensity and localization of HMGB1 in hDPCs. (E) Fluorescence intensity was quantified by ImageJ
software. All these experiments were repeated three times. **P < 0.01, ***P < 0.001, ****P < (0.0001.

Cx43 HCs inhibited the LPS-induced TLR4-NF-kB signaling
pathway and inflammatory response in hDPCs, rather than the
GJs. Collectively, these results suggested that Cx43 HCs are
involved in the infection and inflammation of dental pulp tissue.

ATP is a crucial energy molecule for cellular metabolism.
Under physiological conditions, the extracellular levels of ATP
are low and serve as a signaling molecule for a variety of
biological activities. However, during inflammation, ATP is
released from the cytoplasm into the extracellular space, thus
resulting in a concentration that is more than 100-fold higher
than that under a normal physiological state (49). Subsequently,
ATP acts on P2XRs to activate signaling pathways, such as the
NE-xB pathway, thus exacerbating the inflammatory response
). Cx43 HCs have also been
shown to open to allow for the release of ATP, demonstrated in

and causing tissue damage (

a range of cell types, including Cx43 transfected C6 cells and
polymorphonuclear leukocytes ( ). However, the relationship
between ATP and Cx43 HCs in the LPS-induced inflammation
of hDPCs has yet to be fully elucidated. In the present study, we

Frontiers in

found that LPS promoted the extracellular release of ATP in
hDPCs, and that this extracellular ATP exacerbated the LPS-
induced inflammatory response, thus suggesting that ATP may
also promote inflammation in hDPCs via similar autocrine/
paracrine pathways. The blockade of Cx43 HCs significantly
reduced the LPS-induced extracellular release of ATP, thus
indicating that Cx43 HCs represent a key pathway for the
extracellular release of ATP in hDPCs. This finding is consistent
with previous studies in diabetic retinopathy, traumatic spinal
cord injury, and EAhy 926 human endothelial cells (39, 56, 57).
HMGBI plays a role in stabilizing the structure of nucleosomes
and regulating gene transcription. Under physiological conditions,
HMGBI is stably expressed primarily in the cell nucleus, as
of this study.
Additionally, in certain situations, such as pathological states,
HMGBI can be released outside the nucleus and into the
extracellular space to induce the inflammatory response (36, 58).

observed in the control group in

Previous studies also detected the cytoplasmic expression of
HMGBI in inflamed pulp tissues (59), while the expression of
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FIGURE 7
Schematic representation of the potential roles and mechanisms of Cx43 in LPS-induced inflammation in hDPCs. LPS interacts with TLR-4 on the cell
membrane, leading to the phosphorylation and subsequent degradation of lkBa, which in turn facilitates the nuclear translocation of NF-«B, ultimately
triggering inflammation in hDPCs. Additionally, LPS stimulates the activity of Cx43 hemichannels (HCs), promoting the extracellular release of ATP and
HMGBL1 through these channels. The released ATP may then bind to P2X7 receptors, further exacerbating LPS-induced inflammation via autocrine and
paracrine pathways. Concurrently, the activation of Cx43 HCs by LPS may initiate their fusion with vesicles containing HMGB1 on the plasma
membrane. This fusion results in the displacement of the Cx43 HC-HMGB1 complex from the cytoskeleton, allowing for the subsequent release
of HMGBL1 into the extracellular space. This released HMGB1 may then activate TLR-4 on neighboring cells, further promoting LPS-induced
inflammation. Dashed lines in the schematic represent hypothetical inferences.

HMGBI was confined to the nuclei in healthy dental pulp (60, 61).
In the present study, LPS induced the translocation of HMGBI
expression from the nucleus to the cytoplasm in hDPCs, thus
promoting it release extracellularly. Similar to the effects of ATP,
extracellular HMGB1 was also found to exacerbate the LPS-
in hDPCs. These
indicated that infection promotes the extracellular release of
HMGBI1 in hDPCs, and that extracellular HMGBI1 can act as a
factor

induced inflammatory response results

paracrine  pro-inflammatory to exacerbate local
inflammation. It is worth noting that the molecular weight of
HMGBI exceeds 1.5 kDa and that HMGB1 cannot be released
into extracellular space through Cx43 HCs. However, our results
that the blockade of Cx43 HCs inhibited the

translocation of HMGBI from the nucleus to the cytoplasm and

showed

its subsequent extracellular release in hDPCs. Similarly, previous
research showed that the extracellular release of HMGBI in
macrophages and human endothelial cells induced by LPS could
also be inhibited by Cx HC blockers (62). Some researchers
believe that the opening of Cx43 HCs may trigger the fusion of
Cx43 HCs with HMGBI-containing vesicles on the plasma
membrane, thus dislodging the Cx43 HC-HMGB1 complex from
the cytoskeleton and subsequently releasing HMGBI1 into the
extracellular space (32). Therefore, blocking the opening of Cx43
HCs by Gapl9 may inhibit the fusion of Cx43 HCs with
HMGBI-containing vesicles. However, further research is needed
to verify this hypothesis.

In the present study, we investigated the expression profile of
Cx43 in infected dental pulp tissues and confirmed that Cx43
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plays a key role in the infection and inflammation in dental pulp.
When LPS promotes the inflammatory response in hDPCs, it
simultaneously upregulates the expression of Cx43 and stimulates
the activity of Cx43 HCs, thereby facilitating the extracellular
release of ATP and HMGB1 by LPS from hDPCs. Subsequently,
the extracellular ATP and HMGBI1 may further exacerbate the
pro-inflammatory effects of LPS via autocrine/paracrine
mechanisms (Figure 7). Inhibiting the activity of Cx43 HCs
attenuates the LPS-induced inflammatory response in hDPCs by
reducing the extracellular release of ATP and HMGBI.
Therefore, the blockade of Cx43 HC may serve as a potential
strategy to attenuate the inflammatory response in infected
dental pulp tissues, thereby promoting the formation of
reparative dentin.
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