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This scoping review aimed to describe the differential microRNA (miRNA)
functions in osteogenic differentiation of periodontal ligament stem cells
(PDLSCs), and then analyze the potential of applying PDLSCs and miRNAs in
bone regeneration. The databases of PubMed, Google Scholar and EBSCO
search were performed by the 4 themes, including periodontal ligament stem
cells, miRNA, osteogenic differentiation, and tissue regeneration. The original
articles described miRNA functions in osteogenic differentiation of PDLSCs
were identified and selected for content analyze. The articles suggested that
PDLSCs have high potential in bone regeneration because of their
multipotency and immunomodulation. PDLSCs are conveniently accessible
and obtained from extracted teeth. However, recent evidence reported that
PDLSCs of various origins demonstrate differential characteristics of
osteogenic differentiation. Exosomal miRNAs of PDLSCs demonstrate a
regulatory role in tissue regeneration. The properties of PDLSCs associated to
miRNA functions are altered in differential microenvironmental conditions
such as infection, inflammation, high-glucose environment, or mechanical
force. Therefore, these factors must be considered when inflamed PDLSCs are
used for tissue regeneration. The results suggested inflammation-free PDLSCs
harvested from the middle third of root surface provide the best osteogenic
potential. Alternatively, the addition of miRNA as a bioactive molecule also
increases the success of PDLSCs therapy to enhance their osteogenic
differentiation. In conclusion, Exosome-derived miRNAs play a key role in
PDLSCs osteogenic differentiation during tissue regeneration. While the
success of PDLSCs in tissue regeneration could be uncertain by many factors,
the use of miRNAs as an adjunct is beneficial for new bone regeneration.

KEYWORDS
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Introduction

Periodontitis is an inflammatory disease of the periodontal tissue that causes bone

destruction. Periodontal defects could be regenerated using cell therapy (1). The stem

cell potential for therapy depends on cell origins such as bone marrow, adipose tissue,

embryo, umbilical cord, or dental origin (2). Periodontal ligament stem cells (PDLSCs)
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are pluripotent and able to repair the advanced periodontal defect

(3). PDLSCs therapy was demonstrated to regenerate periodontal

tissue in animal models and one human trial. In beagle dogs,

PDLSCs transplantation in the advanced periodontal lesion was

demonstrated without bone scaffold (3). Moreover,

transplantation of healthy PDLSCs regained the height of

alveolar bone more than HA/TCP scaffold alone in a

periodontitis swine model (4, 5). In the human randomized-

control trial, PDLSCs combined with bovine-derived bone graft

materials improved the alveolar bone height in periodontal

intrabony defects (6). When transplanted, PDLSCs induce

favorable host immune responses in the surrounding tissue (7)

by inhibiting T cell proliferation (8). These findings suggest a

benefit of PDLSCs therapy, while a scaffold or bioactive

molecules are essential addition in a critical-sized bone defect to

improve outcomes (9). In some cases, hopeless teeth were used

to provide multipotent PDLSCs for tissue regeneration.

Osteogenic potential is therefore the key to success (10), but

PDLSCs from different origins might be varied in osteogenic

potential. The recent evidence also suggested that inflammation

or aging could affect osteogenic potential.

Recent studies suggested that the success of PDLSCs therapy is

promising but this approach may have limitation on cell availability

and how to maintain osteogenic potential of implanted cells. The

question remains whether adding bone scaffold or bioactive

molecules increases the success of PDLSCs transplantation.

MicroRNAs (miRNA) are single stranded, 20–30 nucleotides

long, non-coding RNAs, that post-transcriptionally regulate gene

expression by partially or fully complementary pairing with their

targeted mRNAs for translation blockage or degradation (11).

MiRNAs can be secreted through an exosome pathway into

extracellular compartment before transported to target cells (12).

Extracellular miRNAs could mediate cell communication while

miRNAs function to control gene expression and protein

translation intracellularly (13). MiRNAs have been reported to

play a key role within exosomes derived from mesenchymal stem

cells that potentially regulate many cellular signaling pathways.

These findings therefore suggested miRNAs as the potent

mechanism of the PDLSCs to achieve bone regeneration. The

objectives of this scoping review are to describe the differential

osteogenic potential of PDLSCs in healthy or inflamed

conditions, and PDLSCs-associated miRNAs relating to their

functions in osteogenic differentiation. Since the success of

PDLSCs therapy may be hindered by local environment, the

potential application of miRNAs to improve PDLSCs properties

for desired outcomes in clinical settings is discussed.
Methods

Protocol design

Methods for this study were developed based on the scoping

review methodology presented by Arksey and O’Malley, 2005

(14) and Levac et al., 2010 (15). According to this framework,

five stages were undertaken: (1) identifying the research question;
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(2) identifying relevant studies; (3) selecting studies; (4) charting

the data; and (5) collating, summarizing and reporting the

results. The protocol of this study was registered in OSF

Preregistration (https://doi.org/10.17605/OSF.IO/KE4XU) before

data analysis.
Stage 1: Identifying the research question

The main research question focuses on understanding the

differential osteogenic potential of PDLSCs in healthy or

inflamed conditions and PDLSCs-associated miRNAs relating to

their functions in osteogenic differentiation. For these purposes,

the following questions guided this review.

1. Which characteristics of PDLSCs determine clinical success in

application? Did PDLSCs from different origins share similar

results in osteogenic potential? How to obtain desired

PDLSCs function?

2. Which miRNAs associate with the desired PDLSCs osteogenic

potential?

3. How differential miRNA profile affects PDLSCs osteogenic

potential under inflammation conditions?

4. What are potential applications of miRNAs to improve PDLSCs

properties in clinical settings?
Stage 2: Identifying relevant studies

To identify relevant studies to this review, databases included

electronic databases of the published literature including Google

Scholar, PubMed, and EBSCO (Figure 1). The search was

conducted on published literature from year 2000 to the present.

The language was limited to English. To ensure that all relevant

information was captured, hand-search on all reference lists of

included studies was performed to identify additional studies of

relevance. Search terms were determined with input from the

research team and collaborators. Database and other searches

combined terms from four themes: periodontal ligament stem

cells (PDLSCs), microRNAs (miRNA), osteogenic differentiation,

and tissue regeneration. Terms were searched in the title and/or

abstract and subject headings as appropriate. The search strategy

was developed by an experienced research librarian and co-

authors. The results were exported to Endnote and later

exported to Covidence software (16) for title and abstract

screening. The original articles described miRNA functions in

osteogenic differentiation of PDLSCs were identified and

selected for content analyze. Reviews and non-full text articles

were excluded. were To investigate the experience or

meaningfulness of a particular phenomenon, a description of the

PICo (population, phenomenon of interest, and context) (17)

elements is outlined below to guide the screening and

identification of relevant studies.

For the inclusion and exclusion criteria, the searches

population was focused on the human PDLSCs extracted from

human periodontal ligament tissue. Therefore, other types of
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FIGURE 1

Flow chart illustration the article selection.
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stem cells, such as bone marrow-derived or dental pulp-derived

cells, were excluded. For the phenomenon of interest and its

context, the search identified PDLSCs osteogenic potentials

reported in healthy, or various inflammatory conditions.

Therefore, osteogenic differentiation induced by other bioactive

molecules, such as BMP were excluded (Supplementary Table 1).

The potential of PDLSCs was related to their miRNA functions

to induce osteogenic differentiation.
Stage 3: Selecting studies

Title and abstract screening were done by two independent

reviewers to select studies related to the PICo format as

described above. Understanding of the inclusion and exclusion

criteria was calibrated through a pilot screening of a few studies

adhering strictly to the PICo criteria. Next, the full-text screening

was done by two independent reviewers selecting studies

according to the inclusion criteria. Studies with no full-text, or

meet the exclusion criteria, were excluded. Data were extracted

by two independent reviewers and inter-rater reliability will be

discussed against the themes. The results of the search were

reported and presented in a PRISMA flow diagram. Any

disagreements between the reviewers were discussed and resolved

through consensus.
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Stage 4: Extracting data

Key information was collected from the relevant studies

including publication year, authors and affiliation, title, research

questions, objectives, population, methods, miRNAs, context

(healthy or inflammation), and study findings. The data were

recorded in a table and outcomes were categorized. To ensure

the validity of the process, the table was piloted and tested

against a few studies by coauthors. Two independent reviewers

then extracted the data, and disagreements were discussed among

the team members. A quality appraisal of the primary studies

included in the review was assessed.
Stage 5: Collating, summarizing and
reporting the outcomes

According to the proposed questions, the scoping review

provided an aggregated synthesis of the evidence on the four

components including (1) Characteristics of Periodontal

Ligament Stem cells from different sources; (2) MicroRNA

functions during osteogenic differentiation of PDLSCs; (3)

MicroRNA functions in PDLSCs under inflammation conditions;

(4) Current application of stem cells and miRNAs in orofacial

bone tissue engineering. The data collected from the included
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https://doi.org/10.3389/froh.2025.1423226
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Limlawan and Vacharaksa 10.3389/froh.2025.1423226
studies was summarized narratively. The scoping review also

present our experiences and recommendations on the potential

use of stem cells and miRNAs as bioactive molecules in

bone regeneration.
Results

Selected study for reviews

From the databases of Google Scholar, PubMed, and EBSCO,

total 243 articles were identified. After duplicated record removal,

137 articles were removed. Total 106 article were screen by title

and abstract and 54 unrelated articles were exclude. Full-text

assessment for eligibility was done in 52 articles with the

exclusion of 8 articles due to being reviews and non-full text

article. Finally, 44 of the articles were included in this review.
Characteristics of periodontal ligament
stem cells from different sources

Periodontal ligament (PDL) tissue is composed of heterogeneous

cell populations including fibroblasts, endothelial cells, osteoblasts,

cementoblasts, and multipotent stem cells. The periodontal tissue is

always exposed to oral fluid filled with microorganisms which

contribute to the host immune response and PDLSCs osteogenic

differentiation (18). The PDLSCs, in the remnants of PDL retained

in extraction sockets (19), or transplanted PDLSCs in bone defect

(20), may contribute as osteoprogenitor cells for bone regeneration.

The putative stem cells in PDL tissue, or PDLSCs, derived from the

epithelial cell rests of Malassez, which have a role in the

maintenance and regeneration of periodontal tissues (21, 22). In

general, PDLSCs demonstrated a higher proliferating rate, stronger

collagen fiber formation, but lower osteogenic differentiation in

comparison to bone marrow-derived mesenchymal stem cells (23).

Nonetheless, PDLSCs retain a high potential in cell therapy

concerning their availability upon tooth extraction. One of the

PDLSCs advantages is the cells harvested from extracted tooth to

be used within the same person. PDL from orthodontic-extracted,

or uninfected teeth, provides healthy cells (24, 25), those can be

expanded in culture while retaining their multipotent property for

transplantation (3, 26). However, it is unclear whether inflamed

tissue from periodontal hopeless teeth provides adequate potential.

Therefore, it is important to consider the factors affecting PDLSCs

osteogenic differentiation. The characteristics and origins of

PDLSCs that could determine clinical success in its osteogenic

potential and clinical application should be clarified.

In healthy condition, stem cells extracted from PDL of the

middle or apical third of the root demonstrated different cell

surface markers and characteristics. PDL of the apical third

includes stem cells from periapical follicles (SCAP) (27). SCAP

are characterized by a specific marker, CD24 (28), and they are

likely to be a source of primary odontoblasts of root dentin (29).

In contrast to SCAP, PDL from the middle third was preferable

to be continued in cell culture (30) as they exhibit surface
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markers, including STRO-1, CD146, CD90, CD105 and CD44

(27, 31). Expression of CD24 correlates with multi-lineage

differentiation ability but inversely correlates with self-renewal

ability of SCAP (32). These markers represent the cells with

stemness in these mesenchymal stem cells (33).

Since the source of PDLSCs could be from hopeless teeth, it was

questioned whether aging or inflammation affected its potential. The

proliferation and the differentiation capacity of PDLSCs inversely

correlated to age. In the study by Zhang et al., PDLSCs obtained

from the 56- to 75-year-old donors significantly decreased

pluripotency compared to the 16- to 55-year-old donors (34). Li

et al. demonstrated that immunosuppressive ability of aged PDLSCs

decreased (35). Interestingly, the conditioned medium from PDLSCs

of younger donors enhanced differentiation and proliferation ability

of aged PDLSCs suggesting that the multipotency of an old PDLSCs

may be restored by the modulators released from the PDLSCs of

younger donors (36). It is therefore possible to culture PDLSCs from

the aged teeth, however the stemness of cells may be reduced (31, 34,

35). Whether the inflamed tissue could be a source of stem cell

transplantation remains controversial. PDLSCs from periodontitis

hopeless teeth have proliferation and migration potential (31), but

they demonstrated lower osteogenic differentiation and

immunomodulation (37). The study by Xu et al., reported that

osteogenic differentiation of PDLSCs may be impaired in

inflammatory condition due to P2X7 receptor downregulation (38).

Collectively, PDLSCs of inflamed tissue could be expandable, but the

osteogenic potential of PDLSCs appears compromised due

to inflammation.
MicroRNA functions during osteogenic
differentiation of PDLSCs

In the search for miRNAs associate with the desired PDLSCs

osteogenic potential, the data indicated several major cell signaling

pathways, including canonical Wnt/β-catenin (39–41), Smad (42,

43), MAPK (44) and epigenetic level-Histone deacetylase

(HDAC)6 (45), involved osteogenic differentiation of PDLSCs.

Wnt/β-catenin pathway
The Wnt proteins are the key molecules to regulate stem cell

functions and have a role in bone formation (40, 46). The

canonical or non-canonical pathways are categorized by the role

of β-catenin. The canonical Wnt signaling requires a function of

β-catenin in contrast to the non-canonical pathway (47). Several

miRNAs were reported to contribute in the canonical Wnt/β-

catenin pathway of PDLSCs osteogenic differentiation (Table 1).

Yet there was no report of miRNA function involved in the non-

canonical pathway. To initiate signaling, Wnt proteins bind

Frizzled (Fz) receptor family and co-receptors such as the low-

density-lipoprotein-related protein 5/6 (LRP5/6). In the canonical

pathway, β-catenin is translocated into nucleus and interact with

T-cell factor/lymphoid enhancer factor (Lef/Tcf) transcription

factor for osteogenic differentiation. The decrease of Wnt signal

was reported with miRNA-758, miRNA-214, and miRNA-17

expression or by forming a destruction complex. When miRNA-
frontiersin.org
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TABLE 1 MiRNAs involvement in osteogenic differentiation of PDLSC.

Pathway MicroRNA Effect Target References
Wnt/β-catenin pathway miRNA-17 Suppress TCF3: transcription factor of Wnt/β-catenin pathway (48)

miRNA-214 Suppress Activating transcription factor 4 (49)

miRNA-214 Suppress β-catenin gene CTNNB1 (39)

miRNA-374a Promote APC in β-catenin destruction complex (50)

miRNA-758 Promote Notch2 in Wnt/β-catenin pathway (41)

Smad pathway miRNA-7 Suppress GDF5 promoter of R-Smad1/5/8 phosphorylation (44)

miRNA-21 Suppress Smad5 (42)

miRNA-24-3p Suppress Smad5 (51)

miRNA-106a-5p Suppress BMP2 (52)

miRNA-222-3p Suppress Smad2 and 7 (43)

miRNA-4781-3p Suppress Smad5 (53)

NF-κB miRNA-125b Suppress NKIRAS2 in NF-κB Pathway (54)

Histone deacetylase miRNA-22 Promote Histone deacetylase 6 (45)

miRNA-22-3p Promote SIRT1 (55)

miRNA-153-3p Suppress Lysine demethylase 6A (56)

miRNA-383-5p Promote Histone deacetylase 9 (57)

Other Let-7b Suppress Collagen triple helix repeat containing 1 (58)

miRNA-10a-5p Suppress Brain-derived neurotrophic factor (59)

miRNA-21, 101 promote Periodontal ligament associated protein 1 (60)

miRNA-30c Suppress Osteocalcin (61)

miRNA-152-3p Suppress Integrin alpha 5 (62)

miRNA-155-5p Suppress E26 transformation specific-1 (63)

miRNA-181b-5p Promote PTEN in AKT signaling pathway (64)

miRNA-184 Suppress Nuclear factor I-C (65)

miRNA-218 Suppress RUNX2 (66)

miRNA-543 Promote Transducer of ERBB2,2 (67)

miRNA-589-3p Promote Activating transcription factor 1 (68)

miRNA-874-3p Suppress Vascular endothelial growth factor A (69)

miRNA-2861 Promote Unspecified (70)
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758 is expressed, Notch receptor 2 (Notch2) is targeted and

downregulated. As a result, both Wnt and β-catenin protein

decreased, and osteogenic differentiation was inhibited (41).

MiRNA-214 targets CTNNB1 mRNA, encoding β-catenin

protein (39) and the Activating Transcription Factor 4 (ATF4),

which is the transcription factor of β-catenin in PDLSCs (71),

leading to suppression of osteogenic differentiation (49). While

MicroRNA-17 targets the transcription factor, Tcf3, of the β-

catenin signaling (48), resulted in the inhibition of osteogenic

gene expression. In addition, cytoplasmic β-catenin level is

controlled by forming a β-catenin destruction complex. Casein

Kinase and glycogen synthase kinase 3 (GSK3) mediate

phosphorylation of β-catenin within the destruction complex for

ubiquitination (46). However, miRNA-374a targets adenomatous

polyposis coli (APC), an essential component of the APC/Axin/

GSK3/β-catenin destruction complex to increase cytosolic β-

catenin. Expression of miRNA-374a resulted in an increase of β-

catenin in the nuclear compartment to support osteogenic gene

expression (50). Taken together, the expression of these miRNAs

plays a role in the canonical Wnt/β-catenin pathway to regulate

osteogenic differentiation of PDLSCs.

Smad pathway
Complete activation of the Smad pathway, the key signaling

pathway in growth and development, results in transcription of

osteogenic genes (72). Smad proteins are receptors of the
Frontiers in Oral Health 05
transforming growth factor beta (TGF-B) superfamily. When the

ligand binds transmembrane receptor serine/threonine kinases,

R-Smad is phosphorylated and released to form a heterotrimeric

complex which is then translocated into the nucleus. Many

miRNAs have regulatory functions in the Smad signaling

pathway including miRNA-7, miRNA-21, and miRNA-222-3p

(Table 1). The expression of MiRNA-7 suppresses osteogenic

differentiation of PDLSC by targeting growth different factor5

(GDF5)-specific mRNA, which functions to promote

phosphorylation of R-Smad including Smad1, 5 and 8 (44).

MiRNA-21, -4781-3p, -24-3p suppresses osteogenic

differentiation by targeting the Smad5 gene (42, 51, 53). MiRNA-

222-3p suppresses osteogenic differentiation by targeting Smad2

and Smad7 which are known to promote osteogenic

differentiation (43). MiRNA-106a-5p suppresses osteogenic

differentiation by targeting bone morphogenetic protein 2

(BMP2), an important ligand for Smad pathway regulating the

differentiation (52).

Other pathways
During osteogenic differentiation, miRNAs involve in the

nuclear factor kappa light chain enhancer of activated B cells

(NF-κB) pathway, The p38 mitogen-activated protein kinase

(MAPK) pathway, epigenetic regulation, and other undefined

mechanisms. To promotes osteogenic differentiation of PDLSCs

through NF-κB signaling, miR-125b targets the NF-κB inhibitor
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interacting RAS-like 2 (NKIRAS2) (54), while miRNA-146a (73),

possibly through the downregulation of NF-κB (74).

In osteoblasts, the MAPK signal cascades positively regulate the

transcriptional activity of distal-less homeobox 5 (DLX5), Runt-

related transcription factor 2 (RUNX2) and Osterix (OSX) that

are involved in PDLSC differentiation (75). While the expression

of miRNA-7 results in reduction of osteogenic differentiation by

targeting the growth differentiation factor 5 (GDF5) required for

p38 phosphorylation in the signal activation (44). MiRNA-218

targets RUNX2, the master transcription factor for osteogenic

differentiation, which leads to suppression of osteogenic

differentiation in PDLSCs (66). MiRNAs also regulate Histone

deacetylases in osteogenic differentiation. MiRNA-22 and

miRNA-383-5p targets histone deacetylase 6 (HDAC6) and 9

(HDAC9) respectively, and therefore promote osteogenic

differentiation (45, 57). MiRNA-22-3p inhibits Sirtuin 1 Silent

mating Type information regulation 2 homolog 1 (SIRT1), a

class III histone/protein deacetylase, that mediated bone

resorption (55), resulting in an increase of osteogenic

differentiation (76). However, miRNA-153-3p suppresses

osteogenic differentiation by targeting Lysine demethylase 6A

(KDM6A) the Histone three lysine 27 (H3K27) demethylase (56).

Downregulation of some miRNAs, including miRNA-Let-7b,

-155-5p, -10a-5p, -152-3p, -874-3p, -184 and miRNA-30c occurs

during osteogenic differentiation. MiRNA-Let-7b targets Collagen

triple helix repeat containing 1 (CTHRC1) the promoter of

osteogenic differentiation (58). CTHRC1 is known to be a

protein secreted by mature osteoclasts, to stimulate osteogenesis

as a coupling factor for bone resorption to formation (77).

MiRNA-155-5p targets E26 transformation specific-1 (ETS1) (63)

which is a transcription factor known to be involved in

osteoblast differentiation (78). MiRNA-10a-5p targets a growth

factor brain-derived neurotrophic factor (BDNF) which is also

released by PDLSCs for osteogenic differentiation (59). MiRNA-

152-3p targets integrin alpha 5 (ITGA5) (62) which alters

PDLSCs cytoskeleton and cell cycle during osteogenic

differentiation (79). MiRNA-874-3p targets vascular endothelial

growth factor A (VEGFA) (69) an enhancer of angiogenesis and

osteogenesis (80). MiRNA-184 targets nuclear factor I-C (NFI-C)

(65) the downstream gene of RUNX2, which regulates osterix

expression in osteoblast differentiation (81). MiRNA-30c targets

bone gamma-carboxyglutamate protein (BGLAP) also known as

osteocalcin (61), the characteristic marker of osteoblasts, and a

large amount of secreted protein at the beginning of

mineralization (82). Nonetheless, some miRNAs, such as miR-

589-3p, -543, -2861, -185b-5p, -21 and -101 promote osteogenic

differentiation (60, 64, 67, 68, 70). MiRNA-589-3p targets

activating transcription factor 1 (ATF1) (68). MiRNA-543 targets

the transducer of ERBB2,2 (TOB2) which suppresses osteogenic

differentiation through cell cycle regulation (67). Exosome-

derived miRNA-185b-5p from mechanical-strained osteocytes

promote PDLSCs osteogenic differentiation by targeting

phosphatase and tensin homolog (PTEN), the inhibitor of PI3k

in PI3k/AKT signaling pathway (64). In addition, miR-21 and

miR-101 targets periodontal ligament associated protein 1

(PLAP1), the marker which indicates an inhibition of osteogenic
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differentiation of periodontal ligament cells for homeostasis of

periodontal tissue (60). Some miRNAs are related to PDLSCs

osteogenic differentiation, but their mechanism is not yet

clarified. The study by Zhou et al. demonstrated miRNA-18a and

miRNA-133a level are opposite to miRNA-141 and miRNA-19a

during osteogenic differentiation (83).

Collectively, there are many miRNAs involved in osteogenic

differentiation. These miRNAs can be proposed in the

application of tissue engineering and increase success of

clinical outcomes.

Some non-coding RNAs, including circular RNAs (circRNAs)

or long non-coding RNAs (lncRNAs), are known to have a

collaborative role with miRNAs to regulate cell function. The

following data of small non-coding RNAs emerged during the

search of osteogenic differentiation of PDLSC. CircRNAs form as

a miRNA and RNA binding sponge and prevent miRNA from

functioning (84). lncRNAs also have a role to regulate miRNA

expression by forming a sponge with transcription factors or

chromatin complexes to block their interaction and functions (85).

lncRNA and circRNAs were shown to be differentially expressed

in osteogenic differentiation (86, 87) as they may counteract

miRNAs binding on their target during cell differentiation (87).

Several lncRNAs, including H19, DANCR, MALAT1, MEG3 or

HOTAIR, contribute to osteogenic differentiation, or as a key

regulator in various types of cells (88). Collaborative functions of

these small non-coding RNAs to miRNAs function could not be

neglected, but it is not in a scope of this review.
MicroRNA of PDLSCs under inflammation
conditions

Inflammation is a host reaction to trauma, infections, toxic

substances, or injury aiming for tissue healing. Inflammatory

responses may occur against the implanted biomaterials when

regenerating the tissue as a foreign body (89). The crosstalk

between immune cells such as macrophages and the stem cells

can influence the regulation of bone regeneration (90). Therefore,

it is important to consider the alteration of stemness and

osteogenic potential of PDLSCs especially when inflamed tissue

becomes a source for cell therapy. This scoping review explored

how differential miRNA profile affects PDLSCs osteogenic

potential under inflammation conditions. Recent studies

mentioned different types of inflammation that is induced by

bacterial infection such as periodontitis, mechanical force in

orthodontic movement, high-glucose environment in diabetes, or

smoking. In these condition, differential expression of some

miRNAs (Table 2) compromises the osteogenic potential of

PDLSCs (31), while some miRNAs can restore the functions

(38). From these data, PDLSCs osteogenic potential appears to be

altered in inflamed periodontal tissue, but the underlying

molecular mechanisms remain poorly understood.

Periodontitis
PDLSCs collected from tissue with periodontitis may undergo

osteogenic differentiation through signaling other than the
frontiersin.org
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TABLE 2 MiRNAs involvement in osteogenic differentiation of PDLSC in inflammatory condition.

Inflammation MicroRNA Effect Target Reference
Periodontitis miRNA-17 Promote HDAC9 (91)

miRNA-21 Promote Spry1 (92)

miRNA-23a Suppress BMPR1B (93)

miRNA-23b Suppress RUNX2 (94)

miRNA-27a-3p Suppress IGF1 (95)

miRNA-138 Suppress Osteocalcin (96)

miRNA-182 Suppress FOXO1 (97)

miRNA-146a Promote NF-κB p65 (98)

miRNA-148a Suppress NRP1 (99)

miRNA-3679-3p
miRNA-6747-5p

Promote GREM-1 (100)

Force induction miRNA-21 Promote ACVR2B (101)

miRNA-195-5p Suppress WNT3A, FGF2, BMPR1A (102)

Diabetes miRNA-17 Promote Unspecified (103)

miRNA-31 Suppress Satb2 (104)

Smoking miRNA-1305 Suppress RUNX2 (105)
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canonical Wnt/β-catenin pathway. The increase of tumor necrosis

factorα (TNFα) during inflammation could inhibit osteogenic

potential of PDLSCs mainly through upregulating the canonical

Wnt pathway (106). In TNFα-stimulated PDLSCs, miRNA-23b is

expressed to suppress RUNX2 (94). Upon differentiation of

periodontitis PDLSCs, FOXO1 gene was increased and

competitively bind β-catenin to inhibit the canonical Wnt/β-

catenin (107). However, miRNA-182 was overexpressed under

Inflammatory conditions (97). MiRNA-182 targeted FOXO1 gene

leading to decrease of osteogenic differentiation in periodontitis

PDLSC (97). During infection, the bacterial lipopolysaccharide

(LPS) activate host immune responses (96, 98) and NF-κB

pathway to reduce the osteogenic differentiation of PDLSCs

(108). In contrast, the overexpression of miRNA-146a decrease

the NF-κB signaling, and rescued the osteogenic potential (74,

108). MicroRNA-146a was downregulated and IL-13 was

upregulated in PDLSCs derived from periodontitis-affected teeth.

Overexpression of microRNA-146a improve periodontitis by

downregulating IL-13 and inhibiting the proliferation of PDLSCs

derived from both periodontitis-affected teeth and healthy teeth

(109). MiRNA-138 and miRNA-148a were also increased in

periodontitis by LPS stimulation (96, 99), but function in

contrast to miRNA-146a (98). MiRNA-138 and miRNA-148a

targeted the osteocalcin promoter region and neuropilin 1

(NRP1), the member of the neuropilin family, respectively, to

regulate cell proliferation, apoptosis, and differentiation (96).

Therefore, expression of miRNA-138 and miRNA-148a were

related to an impairment of osteogenic differentiation in PDLSCs.

In PDLSCs extracted from inflamed tissue, the miRNA

involvement has been identified by comparing PDLSCs from

healthy and inflamed tissue. Under inflammatory conditions,

HDAC9 of the HDAC family plays a role in decreasing

osteogenic differentiation capacity of PDLSCs. Consistent to

HDAC9 function, PDLSCs from periodontitis tissue down

regulated miRNA-17 level (91). MiRNA-17 was able to inhibit

HDAC9 in inflamed PDLSCs and recover the osteogenic

potential to a healthy level (91). In addition, miRNA-17 targets
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3’UTR of Smad ubiquitin regulatory factor1 (Smurf1), which is

another negative regulator of osteogenic differentiation.

Therefore, downregulation of miRNA-17 in inflammatory

microenvironments resulted in lower osteogenic differentiation by

allowing the functions of HDAC9 (91) and Smurf1 (48). In

addition, miRNA-27a-3p and miRNA-23a levels are upregulated

in PDLSCs from inflamed tissue. MiRNA-27a-3p can target IGF1

gene which upregulates the osteogenic differentiation by

activation of PI3K/Akt signaling pathway (95), while MiRNA-23a

targets bone morphogenetic protein receptor 1B (BMPR1B) (93).

Increase of both miRNA-27a-3p and miRNA-23a in inflamed

PDLSCs resulted in impaired osteogenic activity of PDLSCs. In

contrast, exogenous miR-3679-5p and miR-6747-5p rescued

osteogenic ability of the PDLSCs from inflamed tissue by

targeting GREM-1, the BMP signaling inhibitor, and therefore

allowed the BMP-dependent osteogenic differentiation (100). In

addition, miRNA-21 level is downregulated, but Spry1, the

negative regulator of ERK-MAPK pathway, is up-regulated (92).

As miRNA-21 directly targeted Spry1, therefore overexpression

of miRNA-21 can rescue the impair osteogenic differentiation of

PDLSC under TNFα stimulation.

Force-induced inflammation
PDLSCs osteogenic differentiation ability changes under force-

induced inflammation during orthodontic tooth movement. The

inflamed PDL tissue under compressive or tensile force

demonstrates an alteration of blood flow and accumulation of

biological molecules such as neurotransmitters, cytokines, and

arachidonic acid metabolites to mediate inflammatory reactions

(110). The tensile force stretches PDL and favors osteogenic

differentiation (101, 102, 111), while the compressive force

enhances bone resorption. The role of miRNAs, such as miRNA

195-5p, miRNA-21, miRNA-29, in these conditions by

microarray have been reported (101, 102), and some miRNAs are

related to osteogenic potential of PDLSCs. Under a cyclic

application of tensile force, miRNA 195-5p, targeting Wnt3A,

fibroblast growth factor2 (FGF2) and BMP receptor 1 A
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(BMPR1A), was downregulated in the periodontal tissue of the

mouse model (111). The positive regulation of these molecules

therefore promotes osteogenic differentiation by RUNX2 and

OSX activation (111). Consistently, miRNA-21 was upregulated

resulting in increase of osteogenic differentiation in PDLSCs

along with downregulation of activin receptor IIB (ACVR2B), in

the same tensile force condition. MiRNA-21 targeted ACVR2B, a

transmembrane receptor kinase for activation of activin in the

TGF-β pathway which has a crucial role in cell differentiation

(101). MiRNA-29 is also involved in the extracellular matrix

remodeling by targeting extracellular matrix gene collagen 1A,

3A1 and 5A1. At the tension side, miRNA-29 is downregulated

resulting in an increase of extracellular matrix in contrast to the

compression side (112).

Diabetes mellitus
Diabetes mellitus is a chronic inflammation disorder that

affects whole body including periodontal tissue (113). The

periodontium demonstrates an accumulation of the advanced

glycation end products (AGEs) in extracellular matrices in

diabetic patients (113). The accumulation of AGEs leads to

inflammation of the periodontal tissues (114), and disturbs

PDLSC differentiation (115). Several studies have demonstrated

the high-glucose environment and AGEs affecting miRNA

expression in the PDLSCs culture. Stimulated with exogenous

AGEs in vitro, PDLSC differentiation was diminished along with

down-regulated miRNA-17, while transfection of miRNA-17

rescued the effect (103). In addition to miRNA-17, MiRNA-31

was also increased in the periodontal tissue of the diabetic mouse

model with induced periodontitis (104). The miRNA-31 was

shown to target SATB2, a special AT rich sequence binding

protein, mRNA which protein regulates a chromatin structure

during osteoblast differentiation (116). MiRNA-31 appeared

elevated in the high-glucose environment (117), while the

osteogenic differentiation of PDLSCs was inhibited (104).

Smoking
Smoking and nicotine are also the external stimuli that can

negatively affect tissue homeostasis. It was reported that smoking

delayed wound healing by inhibiting stem cells (118, 119).

PDLSCs cultured from smokers demonstrated a substantial

reduction of cell proliferation rate, migration capabilities, and

osteogenic differentiation (105). Another in-vitro study

demonstrated treatment of 1.0 mM nicotine reduced osteogenic

gene expression and mineralization of PDLSCs in culture (120),

while miRNA-1305 and miRNA-18b were upregulated in

contrast to downregulation of miRNA-3198 (105). As RUNX2

was targeted by miRNA-1305, the miRNA-1305 inhibitor

resolved the inhibitory effect of nicotine on osteogenic

differentiation in PDLSCs culture (26).

Interestingly, miRNA-17 and miRNA-21 might play a role in

both physiologic and inflammatory conditions, but they act

contradictory by targeting different mRNAs. As a result, the

expression of miRNA-17 and miRNA-21 alternately affects

different signaling pathways in physiologic or inflammatory

conditions. Reduction of HDAC9 by miRNA-383-5p in
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physiologic (57) and miRNA-17 (91) in periodontitis PDLSCs

promotes osteogenic differentiation. While reduction of RUNX2

by miRNA-218 in physiologic (66) and miRNA-23b in TNF-α

stimulated PDLSCs (94) (Sun et al., 2021) and miRNA-1305 in

nicotine-stimulated PDLSCs (26) suppress osteogenic

differentiation. Reduction of Osteocalcin by miRNA-30c in

physiologic (61) and miRNA-138 in LPS-stimulated PDLSCs (96)

also suppress osteogenic differentiation.
Current application of stem cells in
orofacial bone tissue engineering

Although stem cell therapies have demonstrated regenerative

potential for the treatment of periodontal defects consistently in

the preclinical studies (5), the benefit of stem cells remains

unclear in clinical trials (121). To summarize the potential of

PDLSCs therapy, and how miRNAs can improve PDLSCs

properties will be beneficial for clinical application. In some

studies, stem cells from different origins have been used in

combination with bone scaffold to enhance bone healing (122).

But another study showed no benefits of adding stem cells

compared to bone graft material alone (123). The challenge

remains in maintaining desired PDLSC characteristics at the

surgical sites where it could be affected by local environment and

immune reaction. In a diabetic rat model, bone regeneration was

affected by the RORα macrophage which is compromised in

hyperglycemic microenvironment (124), suggesting that the

inflammatory environment at recipient sites could hamper the

osteogenic differentiation of PDLSCs at the surgical site. In this

case, bioactive molecules like miRNAs, may improve the results

of stem cell therapy by upregulating osteogenic genes (125).

Despite the challenges, the therapeutic benefits of PDLSCs may

be attributed to its exosomal secretion, particularly relating to their

osteogenic differentiation, for a cell-free therapy. A recent study has

shown that exosome-loaded collagen sponge enhanced periodontal

regeneration in a rat model without detectable adverse effects. The

other study (126) demonstrated that exosome-derived miRNA-17

from nondiabetic-conditioned bone-marrow stem cells can rescue

osteogenesis and bone regeneration in rats with type 2 diabetes

mellitus. Thus, exosomal content could influence their

neighboring cells via a paracrine mechanism (127). The recent

study identified apoptotic bodies derived from mesenchymal

stem cells that are enriched with miR-223-3p (128). Targetscan

and luciferase activity predicted Itgb1 as a target of miR-223-3p,

which inhibited osteoclast differentiation and alveolar bone

resorption. When these apoptotic bodies were engulfed by pre-

osteoclasts, the exosomal miR-223-3p attenuated osteoclast

differentiation and bone resorption (128). Moreover, the mir338

cluster was enriched in gingival tissues of patients with chronic

periodontitis and a ligature-induced periodontitis mouse model

(129). Mir338 appeared to contribute to macrophage polarization

and osteoclastogenesis in periodontal tissue. Thus, an attenuation

of alveolar bone loss with ligature was observed in the mir338

knockout mice. Whereas the administration of miR-338-3p

antagomir prevented alveolar bone loss from periodontitis.
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Similar studies (130, 131) suggested that PDLSCs could release

soluble signaling molecules in condition mediums that alter the

immune microenvironment, such as macrophage polarization, to

enhance periodontal regeneration. Collectively, these studies

suggested the regulatory role of PDLSCs-derived exosomes that

can be applied in a cell-free approach. However, the active

molecules such as those miRNAs or exosomal contents need to

be properly extracted and handled with the delivery system

(125). Recently, several nano-delivery systems have been

suggested for miRNA therapy (132, 133). For example, the

injectable nanofibrous spongy microspheres were proposed as a

drug delivery vehicle (134). The system is composed of multiple

biological materials carrying bioactive molecules such as IL-2/

TGF-β and miR-10a to locally recruit and stimulate regulatory

T cell differentiation. This system also proposed to establish a

desirable microenvironment and rescue periodontal bone loss in

a mouse model.
Conclusions

This scoping review aimed to describe the differential miRNA

functions in osteogenic differentiation of PDLSCs, and analyze the

potential of PDLSCs and miRNAs therapy in bone regeneration.

The data suggested that functions of PDLSCs support new bone

induction. Periodontal and orofacial bone regeneration increases

along with osteogenic differentiation of transplanted PDLSCs.

Nonetheless, harvested PDLSCs may demonstrate differential,

sometimes unpredicted, characteristics therefore cell sources and

conditions should be carefully considered for clinical application.

Osteogenic differentiation of PDLSCs is also regulated through

various pathways including canonical Wnt/β-catenin, Smad,

MAPK, HDAC, and other pathways that involve miRNA

functions. PDLSCs were shown be influenced by local factors,

therefore its osteogenic potential has variation according to

microenvironment at the recipient sites such as bacterial

infection, force-induced tissue inflammation, smoking, or

hyperglycemic condition. Tissue inflammation tend to hamper

osteogenic potential of PDLSCs. Thus, the use of cells from

hopeless teeth, or cells transplanted in inflamed condition, could

be compromised in PDLSCs therapy. Nonetheless, emerging

from the search is the exosomal-derived miRNAs released from

PDLSCs that appeared to be key molecules of PDLSCs function

during bone regeneration. In this scoping review, the regulatory

functions of miRNAs as a bioactive molecule are remarkable in

both in vitro and in vivo model. Most studies indicate the

benefits of miRNAs, or the exosomal contents, derived from

PDLSCs, but also accept the limitation of using PDLSCs in

clinical application. Therefore, the data enlightens miRNAs as

the alternative approach, or an adjunct to cell therapy. Further
Frontiers in Oral Health 09
studies of the delivery systems will be required to efficiently

facilitate the use of miRNAs or PDLSCs-derived exosome in

clinical application.
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