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Introduction: Porphyromonasgingivalis andTreponema species havebeen found to
invade the central nervous system through virulence factors, causing inflammation
and influencing the host immune response. P. gingivalis interacts with astrocytes,
microglia, and neurons, leading to neuroinflammation. Aggregatibacter
actinomycetemcomitans and Fusobacterium nucleatum may also play a role in the
development of Alzheimer’s disease. Interactomic hub genes, central to protein-
protein interaction networks, are vulnerable to perturbations, leading to diseases
such as cancer, neurodegenerative disorders, and cardiovascular diseases. Machine
learning can identify differentially expressed hub genes in specific conditions or
diseases, providing insights into disease mechanisms and developing new
therapeutic approaches. This study compares the performance of light gradient
boosting and logistic regression in identifying interactomic hub genes in P. gingivalis
and F. nucleatum-induced periodontitis with those in Alzheimer’s disease.
Methods: Using the GSE222136 dataset, we analyzed differential gene expression in
periodontitis and Alzheimer’s disease. The GEO2R tool was used to identify
differentially expressed genes under different conditions, providing insights into
molecular mechanisms. Bioinformatics tools such as Cytoscape and CytoHubba
were employed to create gene expression networks to identify hub genes.
Logistic regression and light gradient boosting were used to predict interactomic
hub genes, with outliers removed and machine learning algorithms applied.
Results: The data were cross-validated and divided into training and testing
segments. The top hub genes identified were TNFRSF9, LZIC, TNFRSF8, SLC45A1,
GPR157, and SLC25A33, which are induced by P. gingivalis and F. nucleatum and
are responsible for endothelial dysfunction in brain cells. The accuracy of logistic
regression and light gradient boosting was 67% and 60%, respectively.
Discussion: The logistic regression model demonstrated superior accuracy and
balance compared to the light gradient boosting model, indicating its potential for
future improvements in predicting hub genes in periodontal and Alzheimer’s diseases.
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Introduction

Alzheimer’s Disease (AD), first identified in 1906 by the

German neuropathologist Alois Alzheimer, is a progressive

neurological disorder that leads to cognitive and behavioral

difficulties, such as memory loss, trouble forming new memories,

and challenges with logical thinking and communication (1).

This gradual decline significantly affects quality of life and often

results in disabilities, anxiety, and depression. Key pathological

features of AD include neurofibrillary tangles (NFT) and

amyloid-beta (Aβ) plaques (2–5).

Periodontal disease (PD), a chronic condition affecting nearly

half of the adult population worldwide (6), has been linked to

systemic illnesses such as diabetes, cardiovascular diseases, and

rheumatoid arthritis. Recent research suggests that oral dysbiosis

in PD may contribute to the development of AD by enabling

oral bacteria to reach the brain through cranial nerves or cellular

infections. However, the specific pathogens and mechanisms

involved in this link remain unclear (7–9).

In periodontitis, dysbiosis triggers excessive inflammation

in susceptible individuals, leading to the destruction of the

periodontium, which includes the alveolar bone, periodontal

ligament, and cementum. Subgingival bacteria, especially those

associated with severe periodontitis, play a key role in this

process (2, 3).

Certain pathogens, such as Porphyromonas gingivalis and

Treponema species, can invade the central nervous system (CNS)

either directly or via their virulence factors (6, 10, 11). These

bacteria have been detected in animal models and in tissue

samples from AD patients. Emerging evidence suggests that

Aggregatibacter actinomycetemcomitans and Fusobacterium

nucleatum may also contribute to AD. Virulence factors like

lipopolysaccharide (LPS) and gingipains from P. gingivalis can

damage tissues, intensify inflammation, and alter the immune

response as periodontitis progresses (7, 12, 13). P. gingivalis and

gingipains interact with astrocytes, microglia, and neurons,

causing neuroinflammation by activating microglia and

promoting the release of pro-inflammatory molecules. Similarly,

F. nucleatum has been linked to AD in mice, inducing

morphological changes and elevated levels of TNF-α and IL-1β,

suggesting its role as a potential risk factor for AD (13, 14).

Interactomic hub genes are central in protein-protein

interaction networks, playing a crucial role in cellular regulation.

Disruption of these genes can lead to diseases such as cancer,

neurodegenerative disorders, and cardiovascular conditions (15,

16). Identifying and targeting these hub genes can help restore

normal physiological functions. Machine learning has emerged as

a powerful tool for analyzing gene expression, predicting diseases,

and identifying drug targets (17, 18). By identifying differentially

expressed hub genes, it offers valuable insights into disease

mechanisms and supports the development of new therapeutic

approaches. It can also enhance diagnostic accuracy and

prioritize drug targets, speeding up drug discovery and

improving treatment strategies (19).
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Predicting hub genes is vital for drug design. This study

compares light gradient boosting and logistic regression models

to identify interactomic hub genes involved in P. gingivalis

and F. nucleatum-induced periodontitis and their link to

Alzheimer’s disease.
Materials and methods

Gene expression database

We used the dataset GSE222136 from the NCBI Gene

Expression Omnibus (GEO) to analyze periodontitis and

Alzheimer’s disease. This dataset includes nine samples: three

controls, three infected with F. nucleatum, and three infected

with P. gingivalis—two periodontal pathogens linked to

Alzheimer’s disease (20). To validate hub genes, we used the

dataset GSE274532, which contains data from microglial HMC3

cells stimulated for 24 h with P. gingivalis strains W50, E8, and

K1A at a multiplicity of infection (MOI) 10.
Differential expression analysis

We identified differentially expressed genes (DEGs) using the

GEO2R tool, which compares sample groups within a GEO

Series (20). GEO2R uses a linear model to determine statistical

significance, helping identify upregulated or downregulated genes

and offering insights into biological processes.
Network analysis and hub gene
identification

We used Cytoscape software with the CytoHubba plugin to

create gene expression networks and identify hub genes (21).

CytoHubba ranks nodes in protein-protein interaction (PPI)

networks based on connectivity using the MCC method.

Additional tools like GeneMania were used to build co-

expression networks, aiding in biomarker and therapeutic

target identification.
Prediction of interactome hub genes

For hub gene prediction, we applied logistic regression and a

light gradient boosting model (LightGBM) using Python’s

Jupyter Notebook and the DataRobot tool. Outliers from the top

250 DEGs were removed before analysis. The dataset was split

into 80% training and 20% testing sets, with 10-fold cross-

validation to ensure reliable results.
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Light gradient boosting

Light Gradient Boosting (LightGBM) is a popular machine-

learning method known for its high computational efficiency,

memory efficiency, and accuracy. It uses a leaf-wise split

approach and a histogram-based algorithm to handle large

datasets and high-dimensional features. LightGBM optimizes

memory usage through Gradient-based One-Side Sampling

(GOSS), reducing data instances during training. It supports

large-scale datasets and provides flexibility in customization,

allowing users to fine-tune the model according to specific

requirements. LightGBM employs a tree-based ensemble learning

approach and uses gradient boosting to iteratively create an

ensemble of weak prediction models called decision trees. It

focuses on the leaf node with the maximum information gain in

each iteration, optimizing objective functions by adding weak

learners and adjusting training sample weights. Leaf-wise

splitting minimizes loss function during splits, reducing tree

nodes and improving performance. The dataset format allows

faster training and reduces memory usage, supporting various

data formats, including sparse datasets.

LightGBM creates decision tree ensembles, focusing on nodes

with maximum information gain. Key parameters include:

• num_leaves and max_depth: Control tree complexity.

• learning_rate: Adjusts the step size.

• n_estimators: Defines the number of boosting iterations.

• sample and sample_bytree: Determine the fraction of data and

features used.

Logistic regression

Logistic Regression is a statistical model for classification

problems, predicting the probability of an outcome belonging to

a specific class. It consists of an input layer, a linear function, an

activation function, a decision boundary, a loss function, an

optimization algorithm, and an output layer. The input layer

represents input features, which can be numerical, categorical, or

combined. The linear function calculates the weighted sum of the

features and adds the bias term, creating a linear boundary. The

activation function transforms the linear output into a

probability value between 0 and 1, with the sigmoid function

being the most commonly used. The model uses an optimization

algorithm to update the weights and biases iteratively, improving

its predictive performance.

An optimization algorithm’s parameters include the

regularization strength, solver, maximum_iter, penalty, and

tolerance for stopping criteria, which control the convergence

threshold and prevent overfitting, ensuring optimal performance.

Predicting outcomes of the hub model involves calculating a

weighted sum of features, assigning weights to each feature, and

adjusting these weights during training to optimize the model’s

performance. The activation function, like Sigmoid, takes the

linear output and transforms it into a more interpretable format.

The output represents the predicted probability of the class label,
Frontiers in Oral Health 03
indicating the confidence level of the prediction. The loss

function measures how well the model’s predictions match the

actual outcomes, aiming to minimize this loss during training.

Logistic Regression and LightGBM are the leading algorithms for

predicting outcomes related to interactomic hub genes in

periodontitis and Alzheimer’s Disease. Logistic Regression provides

interpretability, is straightforward, and serves as a baseline for

evaluating the effectiveness of more complex models. It is

computationally efficient, particularly with larger datasets, and can

manage multicollinearity. In contrast, LightGBM is well-known for

its outstanding performance with large datasets and high-

dimensional data, outpacing other gradient-boosting methods. It is

designed for efficiency, enabling faster training times and improved

handling of imbalanced data. Additionally, LightGBM features

built-in capabilities for evaluating feature importance, providing

valuable insights in biological contexts. Moreover, it offers

flexibility through a variety of customizable hyperparameters. Both

Logistic Regression and LightGBM effectively predict outcomes

related to interactomic hub genes in periodontitis and Alzheimer’s

disease. They achieve a balance of accuracy, interpretability, and

processing efficiency, with LightGBM utilizing a gradient boosting

framework for effectively managing large datasets, while Logistic

Regression is ideal for linearly related input features.
Results

The performance metrics demonstrate the effectiveness of the

Light Gradient Boosting and Logistic Regression models in

predicting outcomes related to interactomic hub genes in

periodontitis and Alzheimer’s disease. The models achieved an

accuracy of 68%, indicating moderate classification performance

with potential for further optimization. The precision of 68.75%

reflects a reasonable reduction in false positives, while the recall

of 97.06% highlights the models’ high sensitivity despite lower

precision. The F1 score, approximately 0.80, indicates a balanced

trade-off between precision and recall. High recall is particularly

important for identifying potential genetic markers or pathways

involved in disease processes, whereas precision is critical for

minimizing unnecessary interventions or misdiagnoses.

Differential gene expression analysis of the validation

dataset confirmed the hub genes identified in the study. Key

findings include:

• LZIC showing the highest statistical significance,

• TNFRSF9 demonstrating moderate significance,

• SLC45A1, GPR157, and SLC25A33 exhibiting weak

significance,

• CD30 being absent from the dataset.

After performing differential gene expression analysis, hub genes

were identified using Cytoscape with the CytoHubba plugin (21).

Figure 1 shows several nodes-174, edges-224, with

neighbors-3492. The top hub genes were TNFRSF9, LZIC,

TNFRSF8, SLC45A1, GPR157, and SLC25A33, induced by P.

gingivalis and F. nucleatum responsible for endothelial

dysfunction in brain cells. The figure describes the significance
frontiersin.org
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FIGURE 1

Network analysis of genes associated with endothelial dysfunction. Figure shows interactome visualization employs color-coded nodes to depict
entities or data points, edges to illustrate relationships, and a circular layout to organize nodes in a circular arrangement, likely utilized to examine
genes involved in endothelial dysfunction.
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of the network analysis in understanding the genetic interactions

implicated in endothelial dysfunction caused by bacterial

pathogens, particularly P. gingivalis and F. nucleatum. It

underscores the role of the identified hub genes as potential

targets for therapeutic interventions to mitigate these

pathogens’ effects on brain endothelial cells.

Figure 2 shows the ROC curve of algorithms. The ROC curve

(Receiver Operating Characteristic) is a graphical representation

of the performance of a classification model at different

classification thresholds. It plots the True Positive Rate

(sensitivity) against the False Positive Rate (1-specificity). The

AUC (Area Under the Curve) is a metric that quantifies the

model’s overall performance across all possible thresholds. It

ranges from 0 to 1, with 1 indicating perfect classification and

0.5 representing random guessing. The closer the AUC is to 1,

the better the model accurately distinguishes between the positive

and negative classes. This means the model can predict true

positives more frequently while minimizing false positives.

Conversely, an AUC value close to 0.5 suggests that the model is
Frontiers in Oral Health 04
ineffective at distinguishing between the classes and that its

predictions are similar to random guessing.

Figure 3 shows the confusion matrix of logistics regression and

light gradient boosting. The figure explains the components of the

confusion matrices, including true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). It emphasizes

the importance of these matrices in assessing the performance of

logistic regression and LightGBM models. The figure highlights

how these models contribute to predicting risk factors, guiding

the choice of the optimal model for clinical applications in

periodontal regeneration.

The Confusion Matrix allows for a more detailed

understanding of how well the model is performing and where it

might be making mistakes. It helps evaluate the model’s

performance in actual vs. predicted classifications. Other

performance metrics, such as accuracy, precision, recall, and F1

score, can be calculated from the Confusion Matrix.

Table 1 shows the accuracy of logistic regression and light

gradient boosting at 67% and 60%, respectively.
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FIGURE 2

Roc curve of algorithms. Figure shows the ROC curves of two models, logistic regression and light gradient boosting, are compared. The logistic
regression ROC curve, plotted with false positive rate (FPR) and true positive rate (TPR), shows poor performance with an AUC of approximately
0.5.The gradient-boosting ROC curve, which indicates better performance than logistic regression, is smoother and steeper in the right panel
(light gradient boosting).

FIGURE 3

Confusion matrix comparison of logistic regression and light gradient boosting models. Figure shows the comparison of the confusion matrices of two
models: logistic regression and light gradient boosting. Left panel (logistic regression): the matrix displays true labels (0, 1) and predicted labels (0, 1),
including true negative (TN), false positive (FP), false negative (FN), and true positive (TP) values. Right panel (light gradient boosting): the confusion
matrix illustrates true labels (Y-axis) and predicted labels (X-axis), offering insights into the classification performance of two models, with values
ranging from 0 to 134.

Yadalam et al. 10.3389/froh.2025.1463458
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TABLE 1 Accuracy of logistics regression and light gradient boosting.

SNO AUC Recall Precision F1
Logistics regression 67% 0.97 0.68 0.80

Light gradient boosting 60% 0.74 0.78 0.81

Yadalam et al. 10.3389/froh.2025.1463458
After applying hyperparameter tuning and evaluating the

logistic regression model on the testing set, the following

performance metrics were obtained:

• Accuracy: 68%

• Precision: 68.75%

• Recall: 97.06%

• F1 Score: approximately 0.80

The model demonstrates a slight improvement in precision

compared to the baseline, indicating a better balance between

true and false positives. However, the high recall suggests that

the model may be overly conservative. Overall, the model

correctly predicts outcomes 68% of the time, with a precision of

68.75% and a high recall of 97.06%, resulting in an F1 score of

approximately 0.80.

Figure 4 shows a lift chart of light gradient boost with moderate

lift showing good accuracy. A higher lift at a particular decile
FIGURE 4

Lift chart for light gradient boosting model. Figure illustrates the bins. Based
performance, the predicted line should closely align with the actual line, in

Frontiers in Oral Health 06
suggests that the model performs better in predicting the positive

outcome (in this case, churn) than random selection. The

optimal targeting point is often at the higher deciles, with the

highest lift. The lift chart helps machine learning practitioners

compare different models or algorithms and select the most

effective one for the task. It also aids in determining optimal

probability thresholds or cutoffs for decision-making, such as

setting thresholds for customer retention efforts based on the

model’s predictions.
Discussion

The oral cavity contains over 700 microorganisms, including

approximately 500 bacterial species. Research highlights a

positive link between periodontal disease and neurodegenerative

disorders, especially cognitive decline, suggesting that periodontal

pathogens could serve as targets for preventing neurodegenerative

diseases (22, 23). Studies have identified elevated IgG antibodies

against A. actinomycetemcomitans, P. gingivalis, and T. forsythia

in individuals with Alzheimer’s disease. Additionally, pathogens

such as P. gingivalis, T. denticola, and F. nucleatum can infiltrate
on predicted values, average target values, actual values, and the model’s
dicating an accurate prediction of the target variable.
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the central nervous system and trigger neuroinflammation (13, 14,

22–24). In this study, transcriptomic analysis of brain endothelial

cells exposed to P. gingivalis and F. nucleatum identified key

interactomic hub genes.

This study highlights several hub genes critical to the

development of periodontitis. TNFRSF9 (4-1BB) regulates T-cell

activation and survival, promoting inflammation and tissue

damage. LZIC is involved in cell proliferation and differentiation,

influencing inflammatory pathways in periodontal tissues.

SLC45A1 aids in metabolite transport, while GPR157 modulates

periodontal inflammation and immune responses. SLC25A33, a

mitochondrial transporter, plays a role in cellular energy

metabolism and may contribute to periodontal disease pathology.

In Alzheimer’s disease, the hub genes TNFRSF9, LZIC, CD30,

SLC45A1, GPR157, and SLC25A33 are implicated in immune

regulation, cellular transport, neuronal signaling, and mitochondrial

function. Understanding the roles of these genes could aid in

developing therapeutic strategies for disease management.

Postmortem studies detected P. gingivalis DNA in the

cerebrospinal fluid of 8 out of 10 Alzheimer’s patients, linking

gingipains in the brain to Alzheimer’s pathology. Furthermore,

oral administration of P. gingivalis has been shown to activate

microglial cells, increase proinflammatory cytokine production,

and induce neuronal death in specific brain regions in mice,

mimicking Alzheimer’s features (15, 16, 25, 26). These

pathological features include increased gene expression and

elevated production of the Aβ1-42 peptide.

One recent study employs machine learning and deep learning

to identify biomarkers for Alzheimer’s Disease. It achieved an AUC

of 0.979 for five specific genes using three gene expression datasets

and ranking algorithms. Seventy percent of upregulated hub genes

are potential AD targets, with microRNAs and JUN associated

with these genes (27). Another study introduces a new method

for early detection and diagnosis of Alzheimer’s disease using

gene selection techniques and deep learning. It uses Singular

Value Decomposition and Principal Component Analysis,

achieving high accuracy rates (28).

P. gingivalis is a well-studied periodontal pathogen strongly

associated with Alzheimer’s disease incidence and progression.

Genome-wide association studies have revealed that host genes

interacting with P. gingivalis are significantly linked to

Alzheimer’s disease. Its DNA and virulence factors have been

detected in Alzheimer’s patients’ brains, inducing Alzheimer-like

pathology in mice. Prior studies using the Boruta algorithm

identified 48 crosstalk genes between periodontitis and

Alzheimer’s, including C4A, C4B, CXCL12, FCGR3A, IL1B, and

MMP3 (29, 30). Similarly, our study revealed genes like

TNFRSF9, LZIC, TNFRSF8, SLC45A1, GPR157, and SLC25A33

that contribute to endothelial dysfunction in brain cells due to

P. gingivalis and F. nucleatum.

Previous studies (13, 15, 24, 31–35) have utilized

immunocorrelation analysis to identify immune-related genes,

cells, and pathways involved in both AD and periodontal disease

(PD). These studies revealed that M2 macrophages and NKT

cells are highly expressed in both conditions, suggesting potential

involvement of these immune cells in the pathogenesis of both
Frontiers in Oral Health 07
diseases. B-cells, CD4 +memory T-cells, and CD8 + naive T-cells

were also found to be elevated in both AD and PD, indicating a

potential role for infiltrating immune cells in disease progression.

These findings highlight the importance of immune responses in

the development and progression of both AD and PD.

The logistic regression model demonstrated superior

performance compared to the light gradient boosting model in

predicting interactomic hub genes, achieving an accuracy of 67%

compared to 60%, respectively (Figures 1–4; Table 1). The logistic

regression model exhibited high sensitivity (97.06%), indicating its

ability to accurately identify true positives. The model also

demonstrated a balanced performance with an F1 score of

approximately 0.80, indicating a good balance between precision

and recall. The low false positive rate of 68.75% further enhances

the clinical applicability of the model. These findings are

comparable to previous studies using machine learning models,

such as the random forest model, which achieved high accuracy in

predicting human-spike and drug-protein interactions (36).

This study highlights the strengths of machine learning models,

such as Logistic Regression and Light Gradient Boosting, in

predicting interactomic hub genes associated with periodontitis and

Alzheimer’s Disease. However, it is important to acknowledge the

limitations of these models. Data quality and sample size can

significantly impact model performance and generalizability. The

effectiveness of the models depends on the selection and quality of

the features used for training. Furthermore, interpreting the

biological significance of the model’s predictions can be complex.

Additionally, the models may exhibit biases towards more

prevalent classes, potentially leading to skewed performance metrics.

This study examines the roles of P. gingivalis and F. nucleatum

in periodontitis and Alzheimer’s disease. Confounding factors

include comorbidities, age, genetics, environmental influences,

sample size and diversity, and methodological differences.

Understanding these factors can enhance the validity and

reliability of findings, leading to more robust conclusions about

the involvement of specific pathogens in the development of

Alzheimer’s disease. Addressing these variables can result in

more precise therapeutic interventions and better outcomes in

both periodontal and cognitive health.
Conclusion

The logistic regression model showed better overall

performance than the light gradient boosting model in predicting

hub genes. Both models can be further improved to enhance

their accuracy and applicability in predicting hub genes

associated with periodontal disease and Alzheimer’s disease.
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