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Selective modulation of the bone
remodeling regulatory system
through orthodontic tooth
movement—a review
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of Bern, Bern, Switzerland, 2Laboratory for Oral Molecular Biology, Department of Orthodontics and
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Little is known about how tissues mediate the ability to selectively form or resorb
bone, as required during orthodontic tooth movement (OTM), facial growth,
continued tooth eruption and for healing after fractures, maxillofacial surgical
repositioning or implant dentistry. OTM has the unique ability to selectively
cause apposition, resorption or a combination of both at the alveolar
periosteal surface and therefore, provides an optimal process to study the
regulation of bone physiology at a tissue level. Our aim was to elucidate the
mechanisms and signaling pathways of the bone remodeling regulatory system
(BRRS) as well as to investigate its clinical applications in osteoporosis
treatment, orthopedic surgery, fracture management and orthodontic
treatment. OTM is restricted to a specific range in which the BRRS permits
remodeling; however, surpassing this limit may lead to bone dehiscence. Low-
intensity pulsed ultrasound, vibration or photobiomodulation with low-level
laser therapy have the potential to modify BRRS with the aim of reducing
bone dehiscence and apical root resorption or accelerating OTM. Unloading
of bone and periodontal compression promotes resorption via receptor
activator of nuclear factor κB-ligand, monocyte chemotactic protein-1,
parathyroid hormone-related protein (PTHrP), and suppression of anti-
resorptive mediators. Furthermore, proinflammatory cytokines, such as
interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor-α, and prostaglandins
exert a synergistic effect on bone resorption. While proinflammatory cytokines
are associated with periodontal sequelae such as bone dehiscence and
gingival recessions, they are not essential for OTM. Integrins mediate
mechanotransduction by converting extracellular biomechanical signals into
cellular responses leading to bone apposition. Active Wnt signaling allows β-
catenin to translocate into the nucleus and to stimulate bone formation,
consequently converging with integrin-mediated mechanotransductive signals.
During OTM, periodontal fibroblasts secrete PTHrP, which inhibits sclerostin
secretion in neighboring osteocytes via the PTH/PTHrP type 1 receptor
interaction. The ensuing sclerostin-depleted region may enhance stem cell
differentiation into osteoblasts and subperiosteal osteoid formation. OTM-
mediated BRRS modulation suggests that administering sclerostin-inhibiting
antibodies in combination with PTHrP may have a synergistic bone-inductive
effect. This approach holds promise for enhancing osseous wound healing,
treating osteoporosis, bone grafting and addressing orthodontic treatments
that are linked to periodontal complications.
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1 Introduction

Bone is not an inert structure, but rather a highly dynamic

tissue that is constantly remodeled. To maintain a balance

between bone formation by osteoblasts and resorption by

osteoclasts, a bone remodeling regulatory system (BRRS) is

required (1–4). The BRRS contributes significantly to the

structural integrity of our skeletal system by allowing bones to

specifically respond to mechanical stressors as well as to other

biological components, such as the endocrine, immunological,

and neurological systems (5). Any imbalance in bone

remodeling can cause osteoporosis or osteopetrosis (6–10). The

BRRS also has an endocrine function. Osteocytes synthesize

and secrete fibroblast growth factor 23 (FGF23), which is

known to act on distant organs. In the kidney, FGF23 inhibits

1α-hydroxylation of vitamin D and promotes phosphorus

secretion, while in the parathyroid glands it leads to reduced

secretion of PTH (8). Additionally, the BRRS enhances insulin

synthesis in pancreatic β cells and increases glucose

consumption in the peripheral tissue via osteocalcin in

osteoblasts (11, 12).

Orthodontic tooth movement (OTM) requires the

application of external forces to teeth, which elicits highly

precise cellular responses that culminate in periodontal

ligament (PDL) remodeling leading to bone resorption at the

compression side of the moving tooth and bone apposition

at the tension side. Indeed, the BRRS is selectively mediated

by the PDL, a fibrous joint that suspends the root of each

tooth in its alveolar bone socket. This mediation promotes

resorption and apposition on both sides of the tooth root,

which is necessary for successful OTM. Cells in the PDL

play important roles in translating orthodontic stressors into

biochemical signals that influence bone biology locally (13).

The PDL is required for OTM since tooth movement does

not happen when the ligament is partially absent, as

observed in cases of ankylosis (14). However, it is still

unclear how orthodontic forces precisely resorb or form bone

to allow tooth movement, and how these remodeling processes

are restricted, particularly at the alveolar cortical bone plate.

The purpose of this review is to elucidate the role of the

PDL in modulating bone biology locally, to decipher the

involvement of parathyroid hormone-related protein (PTHrP)

and sclerostin as important signaling molecules during

OTM, and to propose strategies for avoiding OTM-related

adverse effects.
Abbreviations

BMP, bone morphogenetic proteins; BRRS, bone remodeling regulatory system;
GCF, gingival crevicular fluid; IL, interleukin; LIPUS, low-intensity pulsed
ultrasound; LLLT, low-level laser therapy; LRP5, low-density lipoprotein
receptor-related protein 5; MCP-1, monocyte chemotactic protein-1; M-CSF,
macrophage colony-stimulating factor; OPG, osteoprotegerin; OTM,
orthodontic tooth movement; PBM, photobiomodulation; PDL, periodontal
ligament; PTHrP, parathyroid hormone-related protein; PTHR1, PTH-
Receptor-1; RANKL, receptor activator of nuclear factor kappa-B-ligand;
sRANKL, soluble RANK-Ligand; Wnt, wingless.
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2 Signaling of resorption in the
periodontal pressure zone

A constant orthodontic force can cause continuous tooth

movement by frontal resorption in the post-lag phase (15)

(Figure 1). Osteoclasts are the only cell type capable of dissolving

the bone matrix by secreting acids and specific proteases; thus,

they play an essential role in bone remodeling in both health and

disease. They are derived from hematopoietic stem cells in the

bone marrow, which are released into the peripheral circulation

as monocytes, cluster at the sites of bone resorption, and then

differentiate into multinucleated osteoclasts (16). During

physiological bone turnover, capillaries in the Haversian channels

allow monocytes to travel throughout the body, including

compact bone, where they develop into osteoclasts (1). For

instance, during the initial 3 days of post-fracture wound healing,

monocyte chemotactic protein-1 (MCP-1) is produced at the

fracture site recruiting monocytes that differentiate into

macrophages and osteoclasts (17).

The molecular and cellular mechanisms governing osteoclast

differentiation have been widely studied. Macrophage colony-

stimulating factor (M-CSF), expressed by fibroblasts, pericytes,

and osteoblasts (18), and receptor activator of nuclear factor κB-

ligand (RANKL) are critical factors for osteoclastogenesis.

Although M-CSF is essential for the survival and proliferation of

osteoclast precursor cells, RANKL, a member of the tumor

necrosis factor superfamily, stimulates the development of

precursor cells into osteoclasts and its levels are thought to

correlate with the activation of osteoclast differentiation (16, 19).

Nonetheless, full differentiation of myeloid precursor cells into

osteoclasts and their survival are dependent on the combined

activity of M-CSF and RANKL. RANKL exists in two forms: a

membrane-bound protein and a soluble molecule (sRANKL)

(20). Activated osteocytes and osteoblasts secrete sRANKL, which

activates osteoclasts and induces bone resorption. It also

promotes osteoclast cell differentiation by activating the RANK

receptor on hematopoietic pre-osteoclastic cells (18, 21). Other

transcription factors, including c-Fos, NF-κB, and nuclear factor-

activated T-cells-1 also play relevant roles in modulating

osteoclast differentiation (22, 23).

During OTM, compressed PDL fibroblasts upregulate RANKL,

PTHrP, and MCP-1 while simultaneously downregulate

osteoprotegerin (OPG) to mediate resorption at pressure

zones (24–31).
2.1 RANKL/OPG

Osteoclast activity is primarily controlled by RANKL signaling,

which can be inhibited by osteoblastic cell-secreted or serum OPG

(20). As a result, the balance of RANKL and OPG at the PDL

compression side contributes significantly to bone remodeling

(32), with a higher RANKL/OPG ratio favoring RANKL-

mediated osteoclastogenesis.

Indeed, human gingival crevicular fluid (GCF) samples were

analyzed for sRANKL and OPG during OTM. Twenty-four
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FIGURE 1

Bone resorption ahead of a root (pressure zone) and bone
apposition in the periodontal tension zone. In a rat model for
translational tooth movement, the second and third molars have
been extensively displaced beyond the cortical surface of the
alveolar bone. In the pressure area (left to the roots), resorption
lacunae containing multinucleated osteoclasts are actively
resorbing bone ahead of the root. The periodontal ligament (PDL)
is wider in the tension area (right side of the roots), resulting in
increased tooth mobility. Osteoblasts form bone in the tensile area
to restore the PDL back to its normal width. A clear demarcation
between older and younger bone is visible at the site where the
alveolus was previously located, as the newly formed bone has not
yet undergone complete remodeling (15).
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hours after orthodontic force application, sRANKL levels increased

significantly, while OPG levels remained lower in the GCF samples

when compared to untreated teeth (33–35). PDL fibroblasts

upregulate sRANKL while decreasing OPG levels in vitro in

response to physiological orthodontic compressive forces,

resulting in an elevated RANKL/OPG ratio, facilitating bone
Frontiers in Oral Health 03
resorption for the root (29, 31). The kinetics of sRANKL

upregulation revealed that its level peaked on day 2 and then

dropped to control levels by day 4. Simultaneously, 48 h of OTM

force application resulted in the greatest decrease in OPG levels,

which only gradually returned to normal (29). Similar findings

were reported in an in vivo OTM model in rats (36). Low force

elicited a robust increase of sRANKL during the early phase of

OTM, followed by a rapid normalization around the transition

between early and late phase. The most substantial drop in OPG

occurred in the early phase of OTM, and its levels reverted to

baseline between days 6 and 58 of OTM treatment. As a result,

the RANKL/OPG ratio initially increased in the early stages of

OTM before stabilizing in the kate stages. This suggests that

signaling mechanisms other than direct and continuous RANKL

secretion are involved in the maintenance of pre-root bone

resorption (Figure 2).
2.2 PTHrP

As a regulator of calcium and phosphorus levels, PTH plays a

dual role in bone remodeling. PTH or PTHrP interaction with the

PTH/PTHrP type 1 receptor (PTHR1) on osteocytes and

osteoblasts increases bone turnover (37, 38), enhancing both

apposition through decreased sclerostin production and enhanced

osteoblast quantity and survival, as well as resorption via

RANKL-mediated osteoclast activation.

PTH is clinically used in patients affected by osteoporosis and

has been shown to stimulate bone catabolic or anabolic activity (7).

This dual role depends on the presence of cofactors and

circumstances of administration (37, 39). In contrast to

continuous long-term exposure to PTH, which results in bone

resorption, intermittent PTH application promotes bone growth

(40). During tooth movement, the resorptive pathway is

prominent due to persistent PTHR1 activation, which accelerates

OTM. Under compressive conditions, PDL fibroblasts elevate

PTHrP expression (28), activating osteoclasts and keeping

resorption ahead of the root. In line with this, continuous, rather

than intermittent, PTH administration in rats increases osteoclast

numbers and speeds tooth displacement (41). PTHrP stimulates

PTHR1 on osteoblasts and adjacent osteocytes, upregulating the

resorption-promoting cytokines RANKL and M-CSF while

downregulating OPG (8, 39, 42–44).

Furthermore, PTHR1 activation in osteocytes promotes bone

mass through a low-density lipoprotein receptor-related protein 5

(LRP5)-dependent pathway that inhibits the Wingless (Wnt)

antagonist sclerostin (39). The discovery of biallelic loss-of-

function mutations in the LRP5 gene in osteoporosis-

pseudoglioma, an autosomal recessive disease characterized by

loss of osteoblast function and thus low bone mass demonstrated

the importance of the Wnt co receptor LRP5 in bone remodeling

(45). In contrast, a gain-of-function LRP5 variant, LRP5V171, has

been reported to cause an autosomal dominant syndrome

characterized by osteoblast hyperactivity, high bone density with

a thickened mandible and torus platinus (46). Recently, the DNA

of seven patients with dental anomalies and oral extoses was
frontiersin.org
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FIGURE 2

Selective modulation of the bone remodeling regulatory system (BRRS) for resorption by mechanotransduction in the late phase of orthodontic tooth
movement (OTM). Periodontal fibroblasts initiate periodontal remodeling in the pressure area by increasing secretion of receptor activator of nuclear
factor κB-ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) and by reducing secretion of osteoprotegerin. Cytokines,
prostaglandins, and growth factors play a pivotal role in the initial phase of tooth movement, enabling macrophages to remove necrotic tissue—
especially after tipping movements. In the late phase of tooth movement, periodontal fibroblasts, the relaxation of periodontal fibers, and possibly
the epithelial rests of Malassez modulate the BRRS so that bone resorption occurs in front of the root. Parathyroid hormone-related protein
(PTHrP) activates surrounding cells of the osteoblastic lineage to release soluble RANKL (sRANKL), which together with the release of monocyte
chemotactic protein-1 (MCP-1) increases osteoclastogenesis. Unloading of the PDL reduces the anabolic responses of osteoblasts in the pressure
area, resulting in resorption along the entire root length during bodily tooth movement.
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sequenced and several variants of the LRP5 genes were

found (46, 47).

PTHrP plays a vital function in tooth eruption and movement.

Primary failure of eruption is an autosomal dominant hereditary

disease that causes pathological impairment of tooth eruption

and mobility due to a heterozygous PTHR1 mutation (48–50).
2.3 MCP-1

During tooth movement, MCP-1 is produced by human PDL

fibroblasts in a force-dependent manner, increasing the number

of osteoclasts on the alveolar bone and root surface (26). MCP-1

levels are also elevated in obesity, which has been shown to have

a systemic effect on the BRRS by suppressing osteoblasts and

osteocytes (51–53). MCP-1 along with RANKL, RANKL/OPG

(54), and Dickkopf-1 (55), a soluble inhibitor of Wnt/β-catenin

signaling, stimulate osteoclast development and activity. Aside
Frontiers in Oral Health 04
from fat cells, osteoblasts express adiponectin and its receptors

(56), indicating a direct influential link to bone metabolism.

Therefore, there is compelling evidence that adipose tissue

accelerates tooth movement (51, 57).
3 Role of inflammation in the
periodontal pressure zone

Soon after the activation of orthodontic appliances, patients

experience the initial symptoms of an inflammatory reaction,

including pain, increased blood flow, and discomfort during

chewing, which normally last a few days (58, 59). At the

molecular level, mechanical force applied to periodontal cells

triggers a biological response known as aseptic non-bacterial-

induced inflammation. The PDL compression side is

distinguished by changes in the vascular network, such as

vasodilatation caused by distorted nerve endings and the release
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of vasoactive neurotransmitters, increased permeability, and vessel

squeezing. Local hypoxia develops, followed by the formation of

necrotic areas (60). Within 1–2 days of tooth movement in

pressure zones, the altered microenvironment triggers the release

of cytokines, prostaglandins, and growth factors (e.g.,

cyclooxygenase-2, IL-1, IL-6, IL-8, tumor necrosis factor-α),

allowing macrophages to repair necrotic areas in the PDL.

Elevated RANKL/OPG ratios (61–65), IL-1, IL-6, or IL-17, and

tumor necrosis factor-α levels stimulate osteoclastogenesis and

bone resorption in the PDL microenvironment (66, 67). The

remodeling of the PDL is then initiated and supported by

osteoclasts. However, because the compressed PDL precludes

osteoclast differentiation, osteoclasts must be recruited from the

surrounding alveolar bone using a mechanism called

undermining resorption (66, 67). Linear tooth movement by

frontal resorption can only commence if the necrotic patches in

the PDL are eliminated and the PDL is repopulated with cells.

IL-1, which binds to IL-1 receptors, directly affects bone

metabolism by inducing osteoclast activity (68). In this context, it

is worth mentioning that IL-1 gene cluster polymorphisms are

associated with the tooth movement velocity, and that naturally

occurring IL-1 receptor antagonists diminish the number of

TRAP-positive osteoclasts, thus reducing tooth movement (69,

70). Clinicians should be aware that numerous IL-1 and IL-6

gene variants increase the risk of external apical root resorption

during OTM, demonstrating the strong impact of inflammatory

mediators on the activity of osteoclasts and odontoclasts/

cementoblasts, both of which are derived from circulating

precursor cells in the PDL (71). IL concentrations in the GCF

vary significantly over time when teeth are moved with constant

force. The source of inflammatory mediators during tooth

movement may not only be compressed fibroblasts but also

bacterial-induced gingivitis, tissue irritations caused by the

appliance, or the presence of necrotic tissue regions in the

pressure zone, which explains the varying concentrations and

inconsistent effects of long-term pain reliever use on OTM

rate (36, 65, 72).

Patients taking non-steroidal anti-inflammatory medicines for

pain treatment may experience an altered OTM process since an

inflammatory reaction appears to be unavoidable. Non-steroidal

anti-inflammatory drugs suppress cyclooxygenase, the enzyme

responsible for the synthesis of prostaglandins; both components

are plentiful in the PDL’s resorptive compression zone during

OTM. However, in the late stages of OTM with constant forces,

inflammation may be regulated to physiological levels, with

inflammatory mediators playing a smaller role in signaling.

Ibuprofen and loxoprofen are examples of pain medicines that

have no effect on tooth mobility (72). Nevertheless, practitioners

should evaluate the medication used by their patients,

particularly since orthodontic treatment in the adult population

has increased dramatically in recent decades.

Given the potential to accelerate OTM by inflammatory

mediators, numerous procedures, including corticotomy,

piezocision, and micro-osteoperforation, have been used to

induce a regional acceleratory phenomenon (73). However,

excessive proinflammatory factors, each patient’s genetic
Frontiers in Oral Health 05
predisposition (e.g., gene polymorphisms in inflammatory

mediators), or the combination of sterile inflammation with a

microbe-induced inflammatory reaction, such as in patients with

periodontitis, may result in adverse side effects during or after

OTM treatment (74, 75). Unwanted tissue lesions related with

OTM include external apical root resorption, alveolar bone

dehiscence, and gingival recessions (76, 77).

Indeed, various IL-1 and IL-6 polymorphisms have been found

that increase the risk of external apical root resorptions during

OTM (71, 78). For all of these reasons, OTM is regarded to be

safer when proinflammatory cytokines are at physiological levels

and the inflammatory pathways are not overactive. Furthermore,

increased proinflammatory mediators are not necessary for tooth

movement, particularly during the post-lag phase (36, 79).
4 Apposition in the tension zone

While the alveolar bone in front of the root resorbs, permitting

tooth movement, the wider PDL on the opposite (rear) side must

be restored to normal by the apposition of new bone (Figure 3).

Osteoblasts, which differentiate from mesenchymal stem cells

(MSCs), are bone-forming cells that secrete the bone matrix. The

commitment of MSCs to differentiate into osteoblasts necessitates

the spatiotemporal expression of particular genes. These include

the transcription factors Runt-related transcription factor-2

(Runx2) and Osterix. Runx2 is a master regulator of osteoblastic

differentiation, as evidenced by the complete lack of osteoblasts

in Runt-related transcription factor-2-null mice (80).

Osteoblasts function as mechanosensors, transforming external

mechanical inputs into biological signals within the cell. As a result,

they can respond to a wide range of external stimuli by producing

cytokines and mediators such as OPG, RANKL, and bone

morphogenetic proteins (BMPs). Mechanotransduction occurs

when extracellular matrix proteins interact with integrin

receptors, which are linked to the cell’s cytoskeleton via

numerous integrin-binding proteins (27, 81, 82). Mechanical

stimuli are vital for bone physiology; for instance, mechanical

loading is required for mandibular osteoblast survival in order to

preserve the mandibular alveolar process (83). While physical

exercise has only a slight effect on bone mass, it is well

recognized that the reduced gravity force experienced by space

travelers causes a decline in bone mineral density (84–86). The

most important signaling molecules for osteoblastic activity are

Wnt- and BMP-activated signaling cascades.
4.1 Wnt signaling

Wnt signaling is a key regulator of osteoblast differentiation.

Wnt proteins bind to the Wnt-receptor complex, which consists

of a transmembrane G-protein coupled receptor from the

Frizzled family and an LRP co-receptor (87) or a Ryk or Ror

tyrosine kinase (88). Binding or mechanical stimulation activates

intracellular cascades, including the canonical pathway, which

stabilizes and translocates β-catenin to the nucleus. β-catenin, a
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FIGURE 3

Columnar shaped bone apposition at the periodontal tension zone.
The PDL is wider in the tension zone. Osteoblasts (dark blue) are
actively depositing osteoid, which is mineralized thereafter (dark
pink to light pink) to restore the normal width of the
periodontium. This primary bone is characterized by immature
bone trabeculae which are aligned along the direction of traction
exerted by the periodontal fibers. Secondary bone can be
identified by its osteon-like shell structure and the light pink color
(visible on the left corners). Characteristic bone layers of osteons
are not visible in fresh bone, indicating it has not undergone
remodeling yet (15).
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transcriptional coactivator, regulates gene transcription in response

to Wnt signaling activation. Wnt signaling can be activated in bone

tissue when secreted frizzled-related protein 1, Sclerostin, or

Dickkopf-1 are missing or present in low concentrations. Active

Wnt signaling increases the number and activity of osteoblasts

(89–91) by upregulating the direct target genes RUNX2 and OPG

in osteoblasts (92, 93).

In a rat OTM model, orthodontic force application increased

Wnt3a, Wnt10b, and β-catenin levels in the tension side of the

PDL (94). This result is consistent with increased osteoblast

activity on the tension side. During tooth movement,

mechanotransduction is assumed to be the primary mechanism

of Wnt activation in osteoblasts (Figure 4). Collagen fibers,

which are attached to the cell membrane via integrins, are

stretched, producing intracellular signals. Wnt and integrin

signaling pathways converge to stabilize and translocate β-catenin

into the nucleus, promoting bone formation through gene

expression (95, 96). The binding of a Wnt cytokine to the Wnt-

receptor complex results in the release of intracellular β-catenin
Frontiers in Oral Health 06
(97). For example, exercise training upregulates apelin expression

in muscles, which has a paracrine effect on surrounding bones

by activating the Wnt pathway in osteoblasts, hence boosting

bone formation (98, 99). It is hypothesized that this mechanism

shapes the bone’s surface. Increased Wnt activation increases

OPG release from osteoblasts and reduced osteoclast activation,

which slows bone resorption (97). Overactivation of Wnt10b has

been linked to delayed incisor eruption, increased mandibular

bone, and higher femoral bone mineral density (100).
4.2 BMP signaling

As osteoclasts resorb bone, growth factors such as BMPs are

released from the mineralized bone matrix, attracting osteoblasts

to the site of resorption. BMPs belong to the transforming

growth factor-β superfamily and control bone metabolism

through both SMAD-dependent and SMAD-independent

pathways. Twelve different BMP ligands (101) have been

discovered to bind with variable affinity to different BMP

receptor complexes. BMPs bind as dimers to their receptors,

often in combination with other molecules, eliciting a wide range

of responses depending on the BMP ligand–receptor

combination. Although not all BMPs are osteogenic effect (102),

the deletion of various BMP signaling mediators leads to a bone

phenotype during skeletal development or to bone defects later

in life (103). For instance, BMP receptor-1B deletion causes

temporary and gender-specific osteopenia, suggesting that

alternative signaling pathways may compensate for this

component in bone formation (104).

BMPs are potent osteogenic mediators that influence stem

cell differentiation and bone fraction healing (105, 106). BMP-2

is considered the gold standard for bone regeneration and its use

in orthopedics has been encouraged in cases of non-union

fracture and spinal fusion (107, 108), as well as for regenerative

purposes in dentistry (109). Osteocytes and osteoblasts in

Haversian canals express BMP-2, which is induced upon

encountering mechanical stress (110). However, mechanical

tension not only elevates levels of BMP-2, but also BMP-4 (111).

Several BMPs, including BMP-2, BMP-4, BMP-5, BMP-6, BMP-

7, and BMP-9 have been shown to improve bone formation

and/or regeneration (106). One way that BMP signaling may

enhance bone growth is by boosting Wnt signaling. Indeed, most

BMPs, including BMP-4 and BMP-7, and to a lesser extent,

BMP-2, BMP-3, BMP-5, and BMP-6, increase Wnt expression

(105). These findings indicate that some BMPs can promote

bone formation through β-catenin translocation, analogous to

integrin-dependent mechanotransduction or Wnt activation by

muscle activity via apelin.

BMPs could possibly be implicated in tooth movement (112).

BMP-2 levels in the tension sides of the PDL rise in response to

the tension strain (113). BMP-2 stimulates mineralization in pre-

osteoblastic cells through an autocrine loop, resulting in a

synergistic effect with Wnt activation (47, 114). This autocrine

BMP activation and mechanotransduction via integrins may

cause an increase in stem cells and Wnt activation in the tension
frontiersin.org

https://doi.org/10.3389/froh.2025.1472711
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


FIGURE 4

Selective modulation of the BRRS for apposition by activation of osteoblasts in the late phase of OTM. Osteoblasts are stimulated by several pathways
to form osteoid. Tension on the extracellular matrix is transduced into intracellular signal cascades via integrins, while Wnt activates the Wnt-receptor
complex, both resulting in the migration of β-catenin into the nucleus, where it modifies gene expression. The response is further modulated by bone
morphogenetic proteins (BMPs) and BMP antagonists.
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zones during the first 10 days of OTM (112). Maintaining optimal

orthodontic force is critical because the amount of compressive

strain influences BMP-2 induction (2).

BMP antagonists bind to extracellular BMPs, inhibiting the

activation of type I and type II receptors to form a trans-

phosphorylated receptor complex (115). Various BMP

antagonists have been described in developmental gene

expression and in physiologic BRRS, such as Noggin, Chordin,

Crossveinless-2, Twisted gastrulation, Gremlin-1, Gremlin-2,

Gremlin-3, NBL1, Cerberus, Sclerostin, and sclerostin domain

containing protein-1 (116, 117). The regulation of the expression

of Gremlin-1 could be particularly important during tooth

movement, as it is much higher than other BMP antagonists in

the gingiva and the periodontium (30).
5 Cortical bone during tooth
movement

OTM requires the balanced resorption and deposition of

alveolar bone at the PDL compression and tension sides,

respectively. However, the success of OTM is determined not

only by the amount, duration, and frequency of force application,

but also by anatomical boundaries that must be respected.

Indeed, there is universal agreement that the thickness of the

cortical plate is a clear limit for OTM. Moving the teeth towards
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the periosteum, or even outside the labial or lingual alveolar

plate increases the risk of bone thinning and alveolar bone

abnormalities, such as bone dehiscence (Figure 5). In rats, the

alveolar bone plate has limited adaptability, accounting for less

than 20% of the tooth diameter. This would be equivalent to one

millimeter at the cemento–enamel interface in humans, however

some inter-individual variation is to be expected (15).

During OTM, mechanosensitive cells such as PDL fibroblasts,

osteoblasts, and osteocytes regulate the BRRS by transducing

external input into the cell and activating signaling pathways,

resulting in specific gene expression modification. Wnt molecules

promote bone formation through the Wnt/β-catenin signaling

pathway, increasing the number of osteoblasts per surface and

resulting in increased bone mineral density (97, 100).
5.1 Sclerostin

Under normal settings, osteocytes produce large amounts of

sclerostin, an extracellular glycoprotein that prevents excessive

bone apposition while allowing for normal bone remodeling (39).

Sclerostin, a competitive Wnt antagonist, inhibits ligand binding

to the Wnt co-receptor LRP5/6 (97, 117, 118). As a result,

sclerostin suppresses replication and differentiation of pre-

osteoblasts into osteoblasts while promoting osteoblast apoptosis

(39, 119, 120). Hence, elevated concentrations of sclerostin
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FIGURE 5

Sequelae of tooth movement far beyond the periosteal surface. The left histomicrograph presents a mesial root cross section of the third molar
obtained from a control rat, representing normal alveolar bone and periosteum covering the roots. The right histomicrograph displays a mesial
root cross section of the third molar obtained from a rat in the experimental group. The root was displaced (to the left side) in an extreme
expansive movement beyond the initial alveolar surface, causing complete bone dehiscence and a fusion of the periosteum with the PDL (yellow
arrows) (15).
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around osteocytes restrict excessive new bone formation. The

timing of sclerostin production is critical for differentiating

osteocytes from osteoblasts in the apposition area of a bone

multicellular units (BMUs) (120). In this region, single

osteoblasts differentiate into osteocytes, which are then enclosed

within the circular layers of the osteon (119). Differentiated

osteocytes on the other hand, maintain lengthy extensions to

surrounding osteocytes, establishing a canalicular network that

allows for signal exchange (120). Osteocytes along the

periosteal and endosteal surfaces communicate directly with

osteoblasts, blood vessels, stem cells, and bone marrow cells

through continuous channels and by secreting cytokines or

macrovesicles (121).
5.2 Sclerostin depleted areas facilitate
Wnt-activation

When teeth are shifted faciolingually towards the periosteum,

the alveolar bone’s ability to adjust is limited. Alveolar bone

dehiscence is correlated to the amount of movement beyond the

alveolar surface and is not modulated by the magnitude of the

orthodontic force, as long as the force is applied within a

physiological range (15). OTM-mediated pressure zones towards

the alveolar bone plate result in bone apposition at the

periosteum and simultaneous resorption ahead of the root
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(Figure 6). β-Catenin-positive cells are primarily observed in

tension zones with high bone apposition, but also on the

periosteal surface (112). When a root is moved close to the

alveolar surface, bone mass and the number of osteocytes

decrease, resulting in lower levels of sclerostin near the periosteal

surface. Subsequently, PTHrP secreted by PDL fibroblasts binds

to osteocytes, further inhibiting sclerostin secretion (39). This

creates a sclerostin-depleted region at the alveolar surface where

Wnt receptors are unblocked, leading to increased activation via

the canonical route with stable and nuclear β-catenin. As a

result, osteoblasts are activated, and multipotent precursor cells

in the periosteum start to proliferate and differentiate into

osteoblasts. Therefore, bone apposition is enhanced at the

periosteal surface when sclerostin levels are low (Figure 7).

Furthermore, low levels of sclerostin, an antagonist of BMP-6

and BMP-7 (115), promote the activation of the canonical BMP/

Smad pathway, which may be another relevant signal cascade

that leads to limited bone apposition at the alveolar surface.
5.3 Medication affecting periosteal bone-
forming

BRRS and OTM are influenced by a variety of pharmacological

substances (8, 9, 122). The findings presented herein provide novel

therapeutic avenues for minimizing the likelihood of acquiring
frontiersin.org
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FIGURE 6

Limited adaptability of the alveolar bone when a root is moved
towards the periodontal surface. The histomicrograph of a section
through the mesial root of a rat’s third molar, shifted towards the
periosteum, is shown alongside three-dimensional reconstructions
of the micro-computed tomography data. The capacity of bone to
adapt is limited during the process of tooth movement towards
the periosteum, a finding that has significant implications for the
selection of clinical strategy during orthodontic treatment
planning. The perforated, thinned alveolar wall is indicative of
intense remodeling processes. Osteoblasts located in the
periosteum are responsible for bone formation (a), while
osteoclasts situated in the PDL facilitate bone resorption (r). The
adaptability of bone varies significantly among individuals and is
estimated to be less than one millimeter in humans (15).
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OTM-related hard tissue defects. Reducing sclerostin

concentrations with an anti-sclerostin antibody or anti-miR-19a/

b medication enhances bone mineral density and content, which,

when paired with bone-loading activities, can result in increased

cortical bone thickness (123–125). The combination of anti-
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osteoporosis drugs such as sclerostin inhibiting antibodies and

periodontal PTHrP may have a synergistic effect, potentiating

bone growth. This could be a potential method for promoting

production of new bone during tooth movement and lowering

the risk of periodontal sequelae through medication.
6 Discussion

The PDL and bone tissue are very responsive to mechanical

stimulation. External force can be perceived by PDL fibroblasts,

osteoblasts, osteocytes, and osteoclasts, altering their

differentiation status and activity, and thus the entire local

microenvironment. Indeed, the tissue remodeling required for

OTM is a complex yet precise regulatory mechanism that

involves the environment, neighboring cells, and mechanical

sensors (e.g., integrins, Yes-associated protein/transcriptional

coactivator with PDZ-binding motif, cytoskeleton, Smad

signaling, Wnt signaling) within a single cell (126). However,

OTM is more than just a periodontal response to external

stresses. Tooth movement is the consequence of a complex

network of highly coordinated and interrelated biological and

mechanical processes involving numerous variables. Clinical

factors include the amplitude of orthodontic force, the speed of

tooth movement, the direction (mesio-distal, facio-oral, intrusion

vs. extrusion) and amount of movement, and the patient’s age.

Adults have less elastic and flexible alveolar bone (127), fewer

progenitor cells and PDL fibroblasts, and a slower bone turnover

rate than younger individuals (128). Furthermore, adult patients

seeking orthodontic treatment may already have modest

periodontal issues, which can jeopardize the effectiveness of

OTM (74, 75). A better understanding of BRRS and

inflammation is essential to mitigate potential adverse

consequences during facio-oral OTM. BRRS is regulated during

OTM to cause local resorption ahead of the root or apposition,

restoring the usual width of the PDL. OTM has the potential to

influence subperiosteal bone biology. Subperiosteal bone

apposition occurs when the root moves against the periosteum.

The extent of this apposition varies greatly between individuals.

Conflicting findings have been published regarding whether

micro-osteoperforation or corticotomies accelerate tooth

movement by increasing bone resorption at pressure zones or

not (129). The rapid acceleratory phenomenon (RAP) is

characterized by increased vasodilation, enhanced capillary

permeability, and elevated levels of soluble inflammatory

mediators, and it occurs during wound healing following a

surgical procedure (130, 131). Already, mobilizing a

mucoperiosteal flap is enough to cause a RAP through wound

healing (130, 131). Wound healing involves inflammatory cells

including activated macrophages, neutrophils, T-lymphocytes as

well as proinflammatory mediators like IL-1, IL-6, IL-8, tumor

necrosis factor-α, prostaglandins and interferon-c, which

promote bone resorption during tooth movement (131). But in

addition to their potential to speed up tooth movement, surgical

adjunctive interventions also carry a risk of adverse effects like

loss of tooth vitality, bacteremia or, via increased tissue
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FIGURE 7

Sclerostin-depleted areas stimulate periostal bone apposition allowing simultanous presence of resorption ahead of the root and apposition at the
alveolar surface. Compressed periodontal fibroblasts secrete PTHrP, which diffuses over Haversian canals and activates neighboring osteocytes,
thereby favouring bone resorption in the pressure zone of the periodontal ligament. However, PTHrP also reduces the secretion of sclerostin by
osteocytes via interaction with the PTHrP receptor type 1 (PTHR1). The suppression of osteocyte sclerostin secretion, in conjunction with the
shrinkage of the periosteal bone plate, creates a sclerostin depleted area, where the Wnt-receptor complex and osteoblast precursor cells are less
inhibited, thereby promoting bone apposition at the periosteal surface.
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inflammation, periodontal issues, severe root resorption, or cortical

bone dehiscence (129, 132–134).

Addressing orthodontic discrepancies or space deficiencies that

exceed the adaptability of the BRRS requires clinical interventions

such as growth modification, space creation through intermaxillary

expansion, narrowing of teeth by grinding (interproximal enamel

reduction), distalization and/or extractions of permanent teeth,

controlled tooth movements against extraoral or skeletal

anchorages, or orthognathic surgery (135–141). Distracting parts of

the cortical alveolar bone wall during tooth movement and bone

grafting has been proposed as a further clinical approach to

enhance the alveolar limits and decrease treatment time (142, 143).

The impact of corticotomies and micro-osteoperforations lateral to
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the roots on accelerating tooth movement and reducing or

repairing bone dehiscence, when facio-oral tooth movements are

planned, remains without supporting evidence (133, 129, 134).

Being mindful of the duration of orthodontic therapy is an

important consideration, especially in older patients. It is

believed that prolonged treatment periods may increase the risk

of acquiring caries, external root resorption, and gingival

inflammation, primarily due to poor oral hygiene. As a result,

non-invasive procedures to accelerate tooth movement without

jeopardizing the structure of the teeth or the periodontal tissues

are gaining popularity. The application of low-intensity pulsed

ultrasound (LIPUS), photobiomodulation (PBM) with low-level

laser therapy (LLLT), and vibration has been proposed as less
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FIGURE 8

Bone tissue, modulated by the bone remodeling regulatory system (BRRS). The Bone Remodeling Regulatory System (BRRS) provides complex
regulation of calcium homeostasis, genetic skeletal development (intramembranous ossification, tooth eruption) and functional needs for
adaptation to environmental changes (skeletal function, tooth displacement). Feedback mechanisms such as the Ca-sensitive apoptosis of
osteoclasts and the interaction of osteoblasts, osteocytes and osteoclasts are important for an optimal bone shape, structure and quantity. The
most important mediators in BRRS and their source cells are: PTH (parathyroid glands), locally produced PTHrP (chondrocytes, fibroblasts), FGF23
(osteocytes), sRANKL (osteocytes, osteoblasts, fibroblasts), Sclerostin (resting osteocytes), OPG (fresh osteocytes, osteoblasts),
mechanotransduction over periostin/integrin (extracellular matrix), Wnt (muscle cells, fibroblasts), BMPs (kidney, osteoblasts, osteocytes,
chondrocytes), MCP-1 (fibroblasts), M-CSF (fibroblasts), adiponectin (adipocytes), IL-6 (monocytes, macrophages, adipocytes), leptin (adipocytes),
FasL (T lymphocytes, macrophages), estrogen (ovaries, mesenchymal cells of adipose tissue including that of the breast, osteoblasts,
chondrocytes, vascular endothelium and aortic smooth muscle cells), calcium (bone resorption and serum), phosphorus (bone resorption and serum).
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invasive methods to positively influence BRRS during orthodontic

tooth movement:

LIPUS is thought to effect bone remodeling, and thus OTM, by

transmitting external energy waves to periodontal tissues.

Periodontal cells sense these micromechanical stresses and

convert them into biological signals via mechanotransduction

processes (e.g., the integrin/mitogen-activated protein kinase

pathway). This causes cellular alterations, which have been

shown to accelerate OTM in mandibular organ cultures and

animal models by increasing alveolar bone remodeling

(144–146). Additionally, LIPUS was demonstrated to reduce

orthodontically-induced root resorptions (147). However, the
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precise cell-specific molecular mechanisms leading to these

favorable effects of LIPUS on OTM remain speculative. It appears

that LIPUS activates mechanotransduction pathways in osteoclasts

and osteoblasts (148), which stimulates RANKL expression in

osteoclasts (149) and the levels of RUNX2, OPG, and ALP in

osteoblasts (150–152). The favorable result of LIPUS treatment on

the appearance of root resorptions has been attributed to its

suppressive effect on cementoclast activation and signaling

modifications that lead to enhanced tissue regeneration (151, 153,

154). However, it should be emphasized that there are many

contradictory findings in the literature, and several studies could

not disclose any beneficial effects of LIPUS on the rate of OTM
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and/or prevention of unwanted side-effects (155–157). In addition, a

proper comparison of all the outcomes is not possible because

multiple LIPUS techniques and strategies (e.g., timing, frequency,

energy) were applied (158). At that point, larger and higher-quality

randomized-controlled trials with larger sample sizes, standardized

methodology, and optimal treatment and control groups will be

required to validate the efficacy of LIPUS on OTM (159–161).

PBM with LLLT is another non-invasive method for speeding

OTM. PBM has been found to improve bone remodeling, alter

inflammatory responses, stimulate cellular activity, and regulate

gene expression. All of these mechanisms combined may result in

faster and more efficient tooth movement (162). The primary target

of LLLT is mitochondria. Since osteoclasts are multinucleated cells

with highly active mitochondria, LLLT is quite effective in them.

Essentially, low-level laser light is adsorbed by cytochrome oxidase

C, the terminal enzyme of the respiratory chain, and chromophores

are excited, which activate signaling pathways and biologically

active secondary mediators with varying effects on OTM. These

factors include reactive oxygen species (ROS), ATP, and NO (163,

164). Ultimately, these molecules promote bone remodeling by

enhancing total cellular activity, resulting in tissue regeneration and

accelerating OTM. It is thought that LLLT boosts the quantity and

activity of osteoclasts and osteoblasts in treated areas (165).

Furthermore, laser irradiation stimulates the release of pro-

inflammatory molecules (e.g., IL-1b, IL-6, TNFa) in the

periodontium, and more osteoblasts express greater levels of

RANKL, resulting in the simulation of osteoclastogenesis via the

conventional RANKL/RANK/OPG system (164, 166, 167). This

effect is sustained by increased levels of fibroblast growth factor 2

(bFGF) as a result of LLLT (168, 169). BFGF enhances synthesis of

extracellular matrix proteins such as Fibronectin and Collagen I

(170), allowing for faster tooth movement by maintaining the PDL

matrix (171). However, the effectiveness of PBM with LLLT on

OTM is still uncertain since there is a substantial paucity of high-

quality clinical trials and a comprehensive assessment of the many

outcomes of the research is impossible due to lack of

standardization and completely heterogeneous set-ups (172–174).

Finally, vibration produces alternate stimuli that might improve

the pace of OTM through increased bone remodeling (175).

Osteocytes sense vibration forces and respond by upregulating

NF-kB signaling leading to higher levels of RANKL and TGFb1,

which triggers TGFb signaling (176, 177). Therefore, it is thought

that vibration activates the NF-κB-TGF-β1-RANKL axis, leading

to increased osteoclastogenesis and faster OTM (178). This holds

especially true under continuous static force (179). RANKL may

potentially be activated by increased prostaglandin E2 secretion by

stress-sensing PDL cells as well (180). Although there are

numerous studies in the literature that focus on increasing OTM

rate by vibration, the results are often equivocal. This makes it

difficult to accurately assess the influence of vibration on OTM

speed and there is not a standardized protocol available so far.

Collectively, all of these non-invasive adjuvant approaches aimed

at accelerating orthodontic tooth movement may be promising, but

they are currently quite diverse, and inconsistent clinically

meaningful outcomes have been demonstrated with a low level of

evidence (156, 157, 173, 174). Short-duration stimuli are unlikely
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to initiate or alter tooth movement. The BRRS is highly responsive

to long-duration, very small forces, such as tongue or cheek forces,

but not to short-duration stimuli, such as masticatory forces. It is

critical to consider not just the speed of tooth movement but also

to search for biochemical changes in BRRS when using vibration,

light or ultrasound. Study results are only meaningful if side

effects such as bone dehiscences of the alveolar wall or root

resorption are considered in addition to tooth movement velocity.

When dentoalveolar compensation for discrepancies or complex

therapies are planned, it is imperative to consider modulating the

BRRS to reduce adverse effects, such as bone dehiscences. A less

invasive and more efficient method of decreasing adverse effects is

to pharmacologically modulate the BRRS by locally administering

sclerostin-inhibiting antibodies and periodontal PTHrP. This

approach, when combined with bone grafting, holds promise in

minimizing the invasiveness and complexity of other therapeutical

strategies while improving normal adaptability and alveolar

limitations, especially in cases with naturally thin periodontal tissues.

The novel biochemical theory of modulating BRRS via tooth

movement offers new clinical options for treating osteoporosis,

including the use of sclerostin-inhibiting antibodies and intermittent

periodontal PTHrP to promote bone apposition (Figure 8). Anti-

sclerostin antibodies or miR-19a/b antagonists given locally in

conjunction with PTHrP are intriguing future possibilities for

lowering the risk of bone dehiscence during OTM in individuals with

poor alveolar bone thickness, which is frequently observed in adults.
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