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Introduction: Periodontitis is a chronic inflammatory disease characterized by

the progressive destruction of the tooth’s supporting tissues, driven by

complex interactions between periodontopathogenic bacteria, environmental

factors, and the host immune response. MicroRNAs (miRNAs) have emerged

as key modulators of inflammatory pathways and are increasingly recognized

for their role in the pathogenesis of periodontitis. Their deregulation in this

disease suggests potential therapeutic applications targeting miRNA

expression. Natural compounds such as isodrimeninol, derived from Drimys

winteri (Dw), may offer novel approaches to modulate miRNA activity due to

their antiinflammatory properties. However, no studies have previously linked

this sesquiterpene to miRNA regulation in periodontitis. This study investigates

the in vitro effects of isodrimeninol on six miRNAs (miR-17-3p, miR-21-3p,

miR-21-5p, miR-146a-5p, miR-155-5p, and miR-223-3p) associated with

periodontitis using two cellular models.

Methods: Saos-2 cells (osteoblast-like cells) and periodontal ligament-derived

mesenchymal stromal cells (hPDL-MSCs). Both cell types were stimulated with

lipopolysaccharide (LPS) to induce inflammation and treated with

isodrimeninol and resveratrol for comparison.

Results: Isodrimeninol reduced Interleukin-1beta (IL-1β) and Interleukin-6 (IL-6)

gene expression and caused differential expression patterns of the miRNAs

examined, upregulating miR-146a-5p and miR-223-3p, while downregulating

miR-17-3p, miR-21-3p, miR-21-5p, and miR-155-5p (p < 0.05).

Conclusion: These findings indicate a connection between miRNAs,

periodontitis, and the regulation of inflammation by isodrimeninol, providing

potential opportunities for the treatment. However, further validation is

needed to confirm these results.
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1 Introduction

Periodontitis is the most common chronic inflammatory

disease in humans. It is a major public health issue causing

tooth loss, disability, masticatory dysfunction, poor nutritional

status, reduced quality of life, and serious economic problems

(1). According to a 2015 disease burden study, periodontitis is

the sixth most prevalent disease worldwide (2), and this

prevalence rate has shown an increasing trend in recent years

(3). Periodontitis is a multifactorial disease caused by complex

interactions between specific bacterial pathogens, destructive

host immune responses, and environmental factors (4, 5) that

lead to chronic inflammation of the periodontal tissues (6). It

has been concluded that the inflammatory response of the host

against bacteria and their virulence factors, especially

lipopolysaccharide (LPS) (7), is the basis for understanding the

pathogenesis of periodontitis since the body’s destructive

response is related to an elevated expression of inflammatory

cytokines in the tissue.

MicroRNAs (miRNAs) are small, non-coding, single-

stranded RNA molecules ranging from 18 to 22 nucleotides in

length. They regulate gene expression at the post-

transcriptional level by either inhibiting the translation or

promoting the degradation of their target mRNAs (8). Several

miRNAs are potentially linked to inflammatory processes in

periodontitis and warrant detailed exploration. For instance,

miR-146a and miR-21 have been implicated in regulating

inflammation by modulating cytokine production and NF-κB

signaling pathways, which are pivotal in periodontal disease

progression (9, 10). Their dysregulation by oral bacterial

plaque components contributes to periodontitis pathogenesis,

affecting both innate and adaptive immune responses (11, 12).

Significant miRNA level changes are observed in diseased vs.

healthy tissues, offering diagnostic and prognostic potential for

periodontal disease (13–15). For instance, miR-155 and miR-

223 are overexpressed in neutrophils from periodontally

diseased tissues, modulating cell adhesion and chemokine

mRNA stability, thereby influencing neutrophil migration and

function (16). Additionally, miR-21, which is elevated in

patients with periodontitis, exhibits anti-inflammatory

properties by inhibiting the production of pro-inflammatory

cytokines in macrophages stimulated by Porphyromonas

gingivalis lipopolysaccharides. Its deficiency is associated with

increased gingival inflammation and alveolar bone loss in

murine models (9). Despite promising therapeutic prospects,

further research is needed to elucidate miRNA-mediated

inflammation regulation in periodontitis.

Current treatments often view periodontal diseases as

opportunistic infections influenced by host inflammatory

responses. However, conventional therapies face challenges like

antimicrobial resistance (17). In this regard, there is evidence

that nutraceuticals and medicinal compounds isolated from

plants are beneficial to health by preventing and treating diseases

(18, 19). In this study, we focused our attention on

isodrimeninol, a sesquiterpene with a drimane skeleton isolated

from bark extracts of Drimys winteri or Canelo, a tree native to

south-central Chile and Argentina considered sacred by the

Mapuche people (20). Isodrimeninol has been shown to have an

anti-inflammatory effect on atherosclerosis (21, 22). Although

not directly linked to periodontitis, its potential anti-

inflammatory effects suggest it could modulate periodontal

disease processes. We compared its anti-inflammatory effect with

resveratrol, a phytoalexin compound found in plants that has

been shown to reduce inflammation in human gingival tissue,

promoting the proliferation and osteogenic differentiation

capacity of human gingival mesenchymal stromal cells,

improving their immunomodulation, and demonstrating a

positive effect in the treatment of periodontitis by inhibiting the

infiltration of inflammatory cells in human inflamed gingival

tissues (23). Thus, Dw and isodrimeninol could serve as natural

therapeutic alternatives for the treatment of periodontitis by

regulating the expression of inflammatory molecules and

microRNAs that are dysregulated in this disease.

As a research team, we pose the following question: How does

isodrimeninol modulate microRNA expression and inflammatory

processes in periodontitis, and what are the implications for

developing novel therapeutic strategies? The primary objective of

this study is to evaluate the in vitro effects of isodrimeninol on

the expression of specific microRNAs associated with

periodontitis, utilizing Saos-2 and human periodontal ligament

mesenchymal stromal cells (hPDL-MSCs) as cellular models.

Saos-2 cells, an osteoblastic cell line renowned for its high

biomineralization capacity and ability to deposit a

mineralization-competent extracellular matrix, serve as an ideal

model for studying osteoblastic differentiation (24). Additionally,

hPDL-MSCs were selected due to their pivotal role in

periodontal tissue regeneration, including their capacity to

differentiate into osteoblasts and contribute to bone healing (25).

The justification for this investigation stems from the paucity of

studies examining the anti-inflammatory effects of isodrimeninol

in the context of periodontitis, despite its potential as a natural

therapeutic agent. Notably, this study offers a novel perspective

by exploring microRNA expression as a potential mechanism

through which isodrimeninol exerts its effects, thereby providing

new insights into its potential roles in disease-associated

processes and the development of targeted therapies.

2 Materials and methods

2.1 Selection of pro-inflammatory cytokines
and miRNAs associated with periodontitis

Based on an updated search of the Scopus, PubMed, and

Medline databases, six miRNAs were identified as deregulated in

periodontitis. These miRNAs are related to inflammatory genes

such as TNF-α, Il-6, and IL-1β. They are involved in the

regulation of the nuclear factor-κB (NF-κB), nuclear factor

erythroid 2 (Nrf2), and mitogen-activated protein kinase

(MAPK) signaling pathways. They are presented in Table 1.
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2.2 Pro-inflammatory cytokine expression
in saos-2 cells and periodontal ligament-
derived mesenchymal stromal cells

2.2.1 Cell culture
The Saos-2 cell line and hPDL-MSCs were used as

periodontitis study models, which were kindly donated by Dr.

Constanza Martínez from the Universidad de Los Andes,

Santiago, Chile, who previously characterized periodontal

ligament-derived mesenchymal stromal cells by flow cytometry

and differentiation potential (28). Saos-2 cells correspond to a

primary human osteosarcoma cell line used as osteoblasts (29),

and hPDL-MSCs was obtained by periodontal ligament explants

from the middle third root of third molars of a 27-year-old man.

Both cell types were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) and a mix of antibiotics (100 U/ml penicillin, 100 µg/ml

streptomycin) and antifungals (0.25 µg/ml amphotericin B).

HPDL-MSCs were used in passages 2–5. Both cell cultures were

maintained at 37°C in a humidified atmosphere containing 5%

CO2. The culture medium was replaced twice a week, and

trypsinization was performed when the cells reached 70%–80%

confluent cultures.

2.2.2 Effect of treatment with different doses of
Drimys winteri isodrimeninol and resveratrol on

the expression of pro-inflammatory cytokines and
miRNAs in saos-2 cells and hPDL-MSCs

Inflammatory modeling for both Saos-2 cells and hPDL-MSCs

was performed as follows: Both cell types were inflamed with 1 µg/

ml LPS for 24 h and subsequently incubated at isodrimeninol

concentrations (6.25 and 12.5 µg/ml) and resveratrol

concentrations (5.71 and 11.41 µg/ml) for 24 h. In addition, LPS-

stimulated control cells not exposed to the treatments and LPS-

stimulated cells administered only to the treatment vehicle were

also used. Isodrimeninol and resveratrol were dissolved in

DMSO. These treatments were carried out to evaluate gene

expression of the IL-6, IL-1β, and TNF-α genes.

2.3 Molecular analysis

2.3.1 Total RNA extraction

Saos-2 cells and hPDL-MSCs were seeded in 24-well plates at a

concentration of 1 × 105 cells/well. Subsequently, they were treated

with the above-mentioned conditions (50 ng and 1 μg/ml of LPS

for 24 h). The gene expression of the inflammatory cytokines IL-

6, TNF-α, and IL-1β was assessed to test the inflammatory

process. The culture medium was removed after producing a cell

suspension containing 1 × 105 cells/ml with the previously

described treatments. Following the manufacturer’s instructions,

the RNA was isolated using a Trizol reagent (Invitrogen, USA).

Concentration was determined by spectrophotometry in an

Infinite® M200 PRO NanoQuant Tecan microplate reader

(Thermo Fisher Scientific, USA), and purity was determined by

measuring absorbance at 260/280 nm, with ratios close to 2

being considered optimal.

2.3.2 MicroRNA extraction
Saos-2 cells and hPDL-MSCs were seeded in 24-well plates at a

concentration of 1 × 105 cells/ml. Subsequently, they were treated

with 1ug/ml LPS for 24 h, and the inflamed cells were

subsequently treated with different concentrations of

isodrimeninol (6.25, 12.5, 25, 50 μg/ml) and resveratrol (5.71 and

11.41 µg/ml) as positive control and kept in culture for 24 h. The

mirVanaTM commercial kit (Invitrogen, Life Technologies) was

used according to the manufacturer’s specifications, using the

protocol for total RNA extraction. Total RNA enriched with

small RNAs was quantified on a Nanoquant microplate reader

(Thermo Fisher Scientific, USA). Once the miRNAs were

extracted, they were stored at −20°C until analysis.

2.3.3 Synthesis of cDNA from total RNA

The cDNA was synthesized from 1 µg of extracted total RNA.

According to the manufacturer’s instructions, the reverse

transcription reaction was carried out using the High-Capacity

RNA-to-cDNATM kit (Applied Biosystems, Foster City, CA,

USA). The synthesized cDNA was stored at −20°C until use.

2.3.4 Synthesis of cDNA from extracted miRNAs
From 2 ng of extracted enriched RNA, cDNA synthesis was

performed by RT-qPCR, using the TaqManTM MicroRNA

Reverse Transcription Kit (Applied Biosystems, Foster City, CA,

USA). After obtaining the synthesized cDNA, it was stored at

−20°C until analysis.

2.3.5 Analysis of pro-inflammatory cytokine

expression by qRT-PCR
To evaluate the degree of inflammation of Saos-2 cells and

hPDL-MSCs stimulated with LPS and subsequently of Saos-2

cells and hPDL-MSCs treated with different doses of resveratrol

and isodrimeninol after being stimulated with LPS, differential

expression of the TNF-α, IL1-β, and IL-6 genes was determined

by q-PCR using Fast® SYBR Green Master Mix (Applied

Biosystems). The cDNA obtained in cDNA synthesis from total

RNA and primer sequences from Table 2 were used. RPL27 was

used as an endogenous reference gene for the study genes.

Primers were used at a 200 nM concentration according to

previous standardizations (22). The reactions were subjected to

the following thermocycling scheme in the StepOne Real-Time

PCR System (Applied Biosystems, USA): initial activation at 95°C

for 20 s, followed by 40 cycles made up of denaturation cycles at

TABLE 1 MiRNAs deregulated in periodontitis.

Selected miRNA Expression Reference

hsa-miR-21-3p Increased (9)

hsa-miR-21-5p Increased (9)

hsa-miR-146a-5p Increased (26)

hsa-miR-155-5p Decreased (14)

hsa-miR-223-3p Increased (16)

hsa-miR-17-3p Increased (27)
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95°C for 3 s and an annealing/extension step at 60°C for 30 s. Data

analysis was performed using the comparative Ct method,

obtaining the cycle threshold (Ct) value and subsequent

comparison of the Ct between the amount of gene transcript of

the samples and the normalizing gene (2-ΔΔCt method). Negative

controls were used, and technical and biological triplicates

were performed.

2.3.6 Analysis of miRNA expression by real-time
PCR

The TaqMan® miRNA assay system (Life Technologies, CA,

USA) was used to quantify miRNA expression in Saos-2 cells

and hPDL-MSCs. The real-time PCR reaction was performed

under the following conditions: 10 μl of TaqMan Fast Advanced

Master Mix, 1 μl of TaqMan Advanced miRNA Assay (Thermo

Fisher Scientific) to quantify expression of hsa-miR-17-3p, hsa-

miR-21-3p, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-223-3p,

and hsa-miR-146a-5p (Assay ID.: 477932_mir, 477973_mir,

477975_mir, 483064_mir, 477983_mir and 478399_mir,

respectively), 5 μl of diluted cDNA (1:10) and 4 μl of sterile

distilled water for a final volume of 20 μl. The relative expression

analysis was performed using the comparative ΔΔCt method. As

reported in the literature, the hsa-miR-191-5p was used as an

endogenous control to normalize the samples (31). The

thermocycling protocol consisted of two initial cycles at 50°C for

2 min and 95°C for 10 min. Then, 40 cycles were run at 95°C for

15 s and 60°C for 1 min. The assays were performed in technical

and biological triplicate. All assays were performed on a StepOne

System (Applied Biosystems, USA) using the StepOne

v. 2.2 software.

2.4 Statistical analysis

A one-way ANOVA and Dunnett’s multiple comparison post-

test were used to examine the effect of LPS treatment and,

subsequently, LPS-treated cells at different doses of resveratrol

and isodrimeninol. Prior to conducting parametric tests, the

normality of the data distribution was assessed using the

Shapiro–Wilk test for smaller sample sizes (<50). This test

verified whether the data conformed to a Gaussian distribution

by analyzing deviations from normality based on p-values, with

significance set at p < 0.05. The gene expression data obtained

were processed with Excel and then analyzed with the GraphPad

Prism version 5.0 statistical program (GraphPad Software Inc.,

San Diego, CA, USA). All statistical tests of the hypotheses were

two-tailed. The significance level was p < 0.05

3 Results

3.1 Effect of isodrimeninol from Drimys
winteri and resveratrol on the viability of
Saos-2 cells and hPDL-MSCs

Cell viability of isodrimeninol and resveratrol was assessed by

MTS assays in Saos-2 cells (Figure 1) and hPDL-MSCs

stimulated with 1 µg/ml LPS for 24 h. After exposing both cell

cultures to concentrations of 0 (vehicle and control), 6.25, 12.5,

25, and 50 µg/ml of isodrimeninol, cell viability was found to be

in the acceptable range (>90%) at the concentrations evaluated in

Saos-2 cells (Supplementary Figure 1a) and hPDL-MSCs

(Supplementary Figure 1b). However, when stimulated with 1 µg/ml

of LPS, the concentrations of 25 µg/ml (p < 0. 05) and 50 µg/ml

(p < 0.001) were toxic to Saos-2 cells (Figure 2a) and hPDL-MSCs

(Figure 2b) in 24 h. Regarding the comparison of resveratrol

toxicity on Saos-2 cells and hPDL-MSCs, the concentrations used

of 0 (vehicle and control), 5.71, 11.41 and 22.82 µg/ml did not

affect cell viability in Saos-2 cells (Supplementary Figure 1c) and

hPDL-MSCs (Supplementary Figure 1d); however, when stimulated

with 1 µg/ml of LPS for 24 h, the 22.82 µg/ml concentration was

toxic for both cell models, thus considerably decreasing cell viability

(p < 0. 001 for Saos-2 cells and hPDL-MSCs (Figure 2c,d,

respectively). In this work, concentrations of 6.25 and 12.5 µg/ml of

isodrimeninol and 5.71 and 11.41 µg/ml of resveratrol were selected

in the subsequent experiments, ensuring a viability close to 100%.

3.2 Effect of isodrimeninol from Drimys
winteri and resveratrol on the expression of
pro-inflammatory cytokines in Saos-2 cells
and hPDL-MSCs

The effect of Dw isodrimeninol and resveratrol as a positive

control on gene expression of pro-inflammatory cytokines such

as IL-6, TNF-α, and IL-1β in Saos-2 cells and hPDL-MSCs

stimulated with 1 µg/ml of LPS for 24 h was evaluated by qRT-

PCR (Figure 3). The results showed that isodrimeninol (12.5 µg/

ml) significantly decreased IL-6 expression (p < 0.0001) in Saos-2

cells compared to the control (cells stimulated with 1ug/ml LPS)

(Figure 3c) and hPDL-MSCs (Figure 3d), and the same occurred

with IL-1β expression in SAOS-2 cells (p < 0.0001) (Figure 3e).

In hPDL-MSCs (Figure 3f), both concentrations (6.25 and

12.5 µg/ml) of isodrimeninol significantly decreased IL-1β

expression (p < 0.0001). However, TNF-α showed no significant

difference in its expression when treated with isodrimeninol

TABLE 2 Primer sequences used for the qRT-PCR analysis.

Gene Accession number Sequence forward Sequence reverse Reference

TNF-α NM_000594.4 GGCAGGTTCTGTCCCTTTCA GTCGCGGATCATGCTTTCTG (21)

IL1-β NM_000576.3 TGAAGCTGATGGCCCTAAACA GTGGTGGTCGGAGATTCGTA (21)

IL-6 NM_000600.5 GAGAGTAGTGAGGAACAAGCCA GGTCAGGGGTGGTTATTGCAT (21)

RPL27 NM_000988.5 TCCGGACGCAAAGCTGTCATC GGTCAATTCCAGCCACCAGAGCAT (30)

TNF-α, tumoral necrosis factor α; IL1-β, interleukin 1β; IL-6, interleukin 6; RPL27, ribosomal protein L27.
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(6.25 and 12.5 µg/ml) compared to the control (cells stimulated

with 1 µg/ml LPS) in both cell cultures (Figures 3a,b). Regarding

the resveratrol treatment, it significantly decreased IL-6, TNF-α,

and IL-1β expression at the 11.41 µg/ml concentration in Saos-2

cells (Figures 3a,c,e) and hPDL-MSCs (Figures 3b,d,f) stimulated

with LPS compared to the control. In addition, resveratrol

treatment at the 5.71 µg/ml concentration significantly decreased

IL-6 expression in hPDL-MSCs (Figure 3d) and IL-1β in both

cell cultures (Figures 3e,f).

3.3 Expression of miRNAs in Saos-2 cells
and hPDL-MSCs

Expression of hsa-miR-17-3p, hsa-miR-21-3p, hsa-miR-

21-5p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-

223-3p was evaluated in Saos-2 cells and hPDL-MSCs

unstimulated and stimulated with LPS (1 µg/ml) for 24 h

(Figures 4a-l). Hsa-miR-146a-5p and hsa-miR-223-3p showed

a significant increase in their expression in hPDL-MSCs

stimulated with 1 µg/ml LPS compared to the control

(Figures 4b,j). The microRNAs hsa-miR-21-3p, hsa-miR-

21-5p, and hsa-miR-155-5p significantly increased their

expression in LPS-stimulated Saos-2 cells (Figures 4c,e,k)

and hPDL-MSCs (Figures 4d,f,l) compared to the control

cells. In addition, hsa-miR-17-3p showed a significant

increase in its expression in LPS-stimulated Saos-2 cells

(Figure 4g) compared to the control cells.

3.4 Effect of isodrimeninol from Drimys
winteri and resveratrol on miRNA
expression in Saos-2 cells and hPDL-MSCs

Figure 5 show the expression levels of hsa-miR-146a-5p, hsa-

miR-21-3p, hsa-miR-21-5p, hsa-miR-17-3p, hsa-miR-223-3p,

and hsa-miR-155-5p in Saos-2 cells and hPDL-MSCs

stimulated with LPS (1 µg/ml) and treated with concentrations

of 0 (control and vehicle), 6.25, and 12.5 μg/ml isodrimeninol

for 24 h and with concentrations of 0 (control and vehicle),

5.71 and 11.41 µg/ml of resveratrol. Hsa-miR-146a-5p showed

no significant difference in expression when treated with

FIGURE 1

Effect of isodrimeninol from Drimys winteri and resveratrol on SAOS-2 cell and hPDL-MSCs viability. Cell viability was developed by MTS assay. Effect

of Dw isodrimeninol on the viability of SAOS-2 cells (a) and hPDL-MSCs (b). Effect of resveratrol on the viability of SAOS-2 cells (c) and hPDL-MSCs (d).

Data are expressed as mean ± standard deviation (n= 9). Statistical analysis was performed using ANOVA and Dunnett’s multiple comparison post-test.

CT, control, untreated cells, VH, DMSO vehicle; Iso, isodrimeninol; Resv, resveratrol; LPS, lipopolysaccharide.
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isodrimeninol (6.25 and 12.5 μg/ml) in LPS-stimulated Saos-2

cells (Figure 5a) and hPDL-MSCs (Figure 5b). In contrast,

resveratrol (11.41 µg/ml) positively regulated the expression of

this miRNA in both cell cultures. Furthermore, resveratrol, in

both cell cultures, at one or both of the tested concentrations,

led to a significant increase in the expression of hsa-miR-

223-3p (Figures 5g,h), hsa-miR-17-3p (Figures 5i,j), and hsa-

miR-155-5p (Figures 5k,l), and conversely led to a decrease in

the expression of hsa-miR-21-3p (Figures 5c,d) and hsa-miR-

21-5p (Figures 5e,f). Isodrimeninol (12.5 µg/ml) negatively

regulated the expression of hsa-miR-21-3p, hsa-miR-21-5p and

hsa-miR-155-5p in Saos-2 cells (Figures 5c,e,k) and hsa-miR-

21-3p (Figure 5d) and hsa-miR-155-5p (Figure 5l) in LPS-

stimulated hPDL-MSCs compared to untreated LPS-stimulated

cells. In contradiction to previous results, isodrimeninol (12.5

µg/ml) significantly increased hsa-miR-223-3p expression in

Saos-2 cells (Figure 5g) and hPDL-MSCs (Figure 5h) and

positively regulated hsa-miR-17-3p expression in LPS-

stimulated Saos-2 cells (Figure 5i).

4 Discussion

MiRNAs play a pivotal role in the inflammatory processes

underlying periodontitis by modulating gene expression and

immune responses (12). Understanding how miRNAs control the

immune system is vital for developing early detection and

treatment methods for inflammatory conditions like

periodontitis. Specific miRNAs, such as hsa-miR-17, miR-155,

and miR-146a, show alte4red expression in periodontal disease

(32), coinciding with our results. One of the initial events of the

inflammatory response to microbial challenge in the gingival

sulcus is neutrophil migration to inflammation sites, which is

regulated by the expression of selectin E and intercellular

adhesion molecule-1 (ICAM-1), targets of miR-17-3p,

respectively. It has been observed that specific antagonists of

miR-17-3p increase neutrophil adhesion to endothelial cells,

whereas mimics of this miRNA elicit the opposite response

(11, 33). Additionally, a recent study demonstrated that LPS

causes positive regulation of miR-17-3p in mice and human

FIGURE 2

Effect of isodrimeninol from Drimys winteri and resveratrol on LPS-stimulated SAOS-2 cell and hPDL-MSCs viability. Cell viability was developed by

MTS assay. Effect of isodrimeninol on the viability of SAOS-2 cells stimulated with LPS (1 µg/ml) for 24 h. (a) Effect of Dw isodrimeninol on the viability

of hPDL-MSCs stimulated with LPS (1 µg/ml) for 24 h. (b) Effect of resveratrol on the viability of SAOS-2 cells stimulated with LPS (1 µg/ml) for 24 h. (c)

Effect of resveratrol on the viability of hPDL-MSCs stimulated with LPS (1 µg/ml) for 24 h. (d) Data are expressed as mean ± standard deviation

(n= 9).Statistical analysis was applied by ANOVA test and Dunnett’s multiple comparison post-test (*p < 0.05, ***p < 0.001), CT, control, cells plus

LPS; VH, DMSO vehicle plus LPS; ISO, isodrimeninol; RESV, resveratrol; LPS, lipopolysaccharide.
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umbilical vein endothelial cells (HUVEC) and that overexpression

of miR-17-3p suppresses LPS-induced NF-κB activation (34). miR-

155 and miR-146a are also involved in the regulation of the NF-κB

signaling pathway; for example, miR-155, which is positively

regulated by TNF-α in HUVEC, suppresses the NF-κB signaling

pathway in atherosclerosis by targeting transcription factor p65

and decreasing monocyte adhesion to the endothelium (35). It

has also been reported that miR-155 negatively regulates

FIGURE 3

Effect of isodrimeninol from Drimys winteri and resveratrol on IL-6, TNF-α, and IL-1β gene expression in saos-2 cells (a,c,e) and hPDL-MSCs (b,d,f)

stimulated with 1 µg/ml LPS and treated with Dw isodrimeninol at concentrations of 6.25 and 12.5 µg/ml and resveratrol at concentrations of 5.71 and

11.41 µg/ml for 24 h. q-PCR was normalized against RPL-27. Bars represent the mean expression for each group ± standard deviation. Statistical

analysis was performed using ANOVA and Dunnett’s multiple comparisons post-test (*p < 0.05, **p < 0.001 y ***p < 0.0001). CT, control, LPS-

stimulated cells; VH, cells stimulated with LPS + 0.1% DMSO; TNF-α, tumor necrosis factor; IL-6, interleukin 6; IL-1β, interleukin 1 beta; ISO,

isodrimeninol; RESV, resveratrol.
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inflammatory cytokine production and slows the progression of

atherosclerosis because it controls the inflammatory response by

repressing the mitogen-activated protein kinase 10 (MAP3K10)

pathway (36). This stands in contrast to other researchers (37)

who found that miR-155 directly suppressed the expression of

B-cell lymphoma 6 (BCL6) protein, a transcription factor that

attenuates pro-inflammatory NF-κB signaling.

On the other hand, several researchers have shown in their

study an increased expression of miR-146a in patients with

generalized aggressive periodontitis compared to healthy subjects,

and overexpression of this miRNA was accompanied by reduced

levels of pro-inflammatory cytokines (38), coinciding with the

results yielded by another study into chronic periodontitis (26).

It has also been shown that after stimulation of THP-1 cells with

LPS and pro-inflammatory cytokines, miR-146a expression was

induced through an NF-κB-dependent pathway, resulting in the

negative regulation of adaptor proteins involved in inflammatory

responses such as TNF receptor-associated factor 6 (TRAF6) and

interleukin-1 receptor-associated kinase 1 (IRAK1); consequently,

miR-146a participates as a negative regulator of inflammation (39).

In the case of hsa-miR-21, previous studies have reported that

miR-21-3p is among the most important biomarkers in periodontal

disease, which is related to the MAPK tumor signaling pathway,

T lymphocyte receptors, adhesion molecules, and others (40).

Coinciding with our results, it has been shown that miR-21 has a

higher expression in macrophages stimulated with LPS and that

its deficit increased the production of pro-inflammatory

cytokines and promoted the activation of NF-κB and vice versa,

displaying its anti-inflammatory function (9). In addition, miR-

21 modulates the inflammatory response by differentially

regulating the expression of IL-1β and IL-10 (41–44), and they

also reported an increased expression of hsa-miR-21 in patients

with chronic periodontitis compared to healthy individuals. In

contrast, other authors found decreased expression of serum

miR-21-3p levels in periodontitis in their microarray analysis;

however, real-time PCR analysis indicated increased expression

of this miRNA (37). Furthermore, in another recent study, miR-

21-3p expression was also reduced, but in patients with peri-

implantitis compared to peri-implant mucositis sites (45).

Regarding miR-223-3p, other researchers found a reduced

expression of this miRNA in salivary exosomes in periodontitis

compared with healthy controls, which contradicts our results.

They further found that the pyrin 3 (NLRP3) domain of the

(NOD)-like receptor (NLR), which is a key mediator in the

production of IL-1 family cytokines in periodontitis, was targeted

by miR-223-3p because when they eliminated miR-223-3p

expression in THP-1-derived macrophages, the expression of

NLRP3 and the inflammatory mediators IL-1β and IL-6

increased (46, 47). Consistent with these results, it has been

reported that miR-223-3p expression was lower in saliva samples

from patients with periodontitis (48). However, other authors

agreeing with us showed that miR-223 expression was

significantly increased in inflamed gingival tissues and was

FIGURE 4

Relative expression of hsa-miR-146a-5p, hsa-miR-21-3p, hsa-miR-

21-5p, hsa-miR-17-3p, hsa-miR-223-3p, and hsa-miR-155-5p in

saos-2 cells (a,c,e,g,i,k) and hPDL-MSCs (b,d,f,h,j,l) stimulated with

1 µg/ml LPS for 24 h. miRNA expression was evaluated by q-PCR. To

normalize expression, hsa-miR-191-5p was used as an endogenous

control. The bars represent the mean expression for each

group± standard deviation. Statistical analysis was applied by ANOVA

test and Dunnett’s multiple comparisons post-test (*p <0.05). CT,

control, unstimulated cells with LPS; VH, 0.1% DMSO vehicle;

LPS, lipopolysaccharide.
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positively correlated with the clinical parameters of periodontitis (49).

Moreover, miR-223 has been reported to be significantly

overexpressed in both serum and gingival crevicular fluid of patients

with periodontitis (50). All these contradictory results may be due

to variability in study design and different sample and cell types.

Given the limitations and adverse effects observed in

traditional periodontitis treatment, such as bacterial resistance to

antimicrobial agents (51), it is essential to study natural

compounds that can hinder the development of

periodontopathogenic bacteria, alter the host inflammatory

response, suppress local periodontal inflammation, and

specifically lessen NF-κB activation. With this context in mind,

our study investigated the impact of isodrimeninol derived from

Dw on the expression of pro-inflammatory cytokines and

miRNAs that are deregulated in periodontitis, focusing on

inflammatory pathways in Saos-2 cells and hPDL-MSCs

FIGURE 5

(Continued)
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stimulated with LPS from P. gingivalis. For this, we used resveratrol

(3, 4′, 5-trihydroxystilbene), a native compound from the

polyphenolic group of stilbenes, as a positive control since it has

been shown to possess antibacterial, anti-adherence, and

antiprotease properties against P. gingivalis, decreasing this

pathogen-mediated activation of the NF-κB signaling pathway

(52). Regarding isodrimeninol, a compound we evaluated, it was

isolated from Dw (53). Dw has been reported as having

FIGURE 5

Effect of isodrimeninol from Drimys winteri and resveratrol on the gene expression of hsa-miR-146a-5p, hsa-miR-21-3p, hsa-miR-21-5p, hsa-miR-

223-3p, hsa-miR-17-3p, and hsa-miR-155-5p in saos-2 cells (a,c,e,g,i,k) and hPDL-MSCs (b,d,f,h,j,l) stimulated with 1 µg/ml LPS for 24 h. The gene

expression of miRNAs was assessed by q-PCR. To normalize expression, hsa-miR-191-5p was used as an endogenous control. The bars represent the

mean expression for each group ± standard deviation. Statistical analysis was applied by ANOVA test and Dunnett’s multiple comparisons post-test

(*p < 0.05, **p < 0.001). CT, control, LPS-stimulated cells; VH, cells stimulated with LPS + 0.1% DMSO; LPS, lipopolysaccharide; RESV, resveratrol;

ISO, isodrimeninol.
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antinociceptive (54), insecticidal (55), antifungal (56), and anti-

inflammatory (21) activity. Previous studies (21) have shown in

an in vitro atherosclerosis model that total Dw extract, as well as

drimenol, isodrimeninol, and polygodial at 10 μg/ml, inhibit the

adhesion of THP1 cells such as blood monocytes to TNF-α-

stimulated human umbilical vein endothelial cells (HUVEC) and

reduced TNF-α-induced overexpression in HUVEC of vascular

cell adhesion molecule-1 (VCAM-1), which is key in the

regulation of vascular inflammation, where monocyte adhesion

and their transmigration into the intima starts a cascade of

inflammatory reactions (57, 58). Dw and isodrimeninol have also

been reported to induce anti-atherosclerotic effects by inhibiting

foam cell formation in macrophage M1 and promoting anti-

inflammatory responses, as they improved the expression of anti-

inflammatory cytokine IL-10 and significantly reduced IL-1β

expression (22). Based on this evidence, we confirmed the anti-

inflammatory effect of isodrimeninol, suggesting that it could be

used as a complementary treatment in periodontal therapy,

although further research is needed to support our results.

However, resveratrol treatment exhibited a greater anti-

inflammatory capacity.

Isodrimeninol treatment of LPS-stimulated Saos-2 cells and

hPDL-MSCs had no significant effect on TNF-α expression

(Supplementary results), consistent with previous studies (22). In

the case of miRNAs, treatment with isodrimeninol at a

concentration of 12.5 µg/ml caused a significant decrease in

the expression of miR-21-3p in both cell cultures and of miR-

21-5p in Saos-2 cells. It should be noted that miR-21 has an

anti-inflammatory effect since its deficit increases the

production of pro-inflammatory cytokines and the activation

of NF-κB (9). This result contradicts the anti-inflammatory

effect of isodrimeninol, so further studies should be conducted

to verify and examine possible reasons for this effect, similar

to that caused by resveratrol, although we know that the

mechanisms of miRNA regulation are complex.

Contradictorily, at the 12.5 µg/ml concentration, isodrimeninol

showed a significant increase of miR-17-3p expression in Saos-

2 cells but caused a significant reduction of miR-155-5p in

both cell cultures while increasing miR-223-3p expression in

both Saos-2 cells and hPDL-MSCs. Since the overexpression of

this miRNA has been shown to inhibit the activation of this

inflammation signaling pathway (59), the increased expression

of miR-17-3p, further elicited by isodrimeninol treatment,

contributes to inhibiting NF-κB. This suggests that the anti-

inflammatory effect of isodrimeninol and resveratrol may be

mediated by negative regulation of the NF-κB pathway and by

negative regulation of the expression of miR-155. It also

indicates that miR-155 could be a useful agent in treating

inflammatory diseases since miR-155 is known for its pro-

inflammatory role in the LPS-stimulated immune response

(60). Regarding the expression of miR-223-3p, isodrimeninol

showed a significant increase in the expression of this miRNA

at the 12.5 µg/ml concentration in both cultures, considering

that the increased expression of miR-223-3p decreases the

expression of NLRP3, which is a key mediator in the

production of IL-1 family cytokines in periodontitis (46, 47).

According to those results and our own, we can suggest that

isodrimeninol exerts its anti-inflammatory effects by

modulating the NF-κB signaling pathway. NF-κB is a key

transcription factor that regulates the expression of pro-

inflammatory cytokines (9) and adhesion molecules (22). By

inhibiting the phosphorylation and degradation of IκBα, an

inhibitor of NF-κB, isodrimeninol likely prevents the nuclear

translocation and activation of NF-κB (22). This, in turn,

could suppress the production of inflammatory mediators such

as TNF-α and IL-1β, as observed in our study. Moreover, long

non-coding RNAs (lncRNAs) like MALAT1 have been found

to influence the miR-146a/NF-κB signaling pathway, thereby

impacting inflammatory responses (61). However, the exact

molecular target of isodrimeninol remains to be elucidated. It

is possible that this compound interacts with upstream

regulators of NF-κB, such as IKKβ or NIK. Further

mechanistic studies are warranted to fully understand how

isodrimeninol modulates inflammatory responses at the

molecular level, recognizing this as a limitation of this study.

Isodrimeninol and other drimane sesquiterpenoids derived

from Dw hold promise as natural scaffolds for the development

of anti-inflammatory drugs. However, the current findings are

based on in vitro studies, which have inherent limitations. In

vitro cell culture models, such as Saos-2 and hPDL-MSCs, lack

the complex three-dimensional architecture, cell-cell interactions,

vascularization, and biomechanical forces present in vivo, which

can significantly influence cell behavior and drug responses (62).

Moreover, these models struggle to capture long-term effects and

systemic interactions between different cell types and organs that

occur in the body. Therefore, further research utilizing in vivo

disease models and clinical trials is necessary to validate the

efficacy and safety of isodrimeninol for specific indications, such

as periodontal disease. Investigating the pharmacokinetics,

bioavailability, and potential toxicity of isodrimeninol will also be

crucial for clinical translation. Additionally, quantifying pro-

inflammatory cytokines at the protein level would be important,

particularly due to the diverse implications of post-translational

modifications that could enhance the preliminary results

obtained in this study. Furthermore, incorporating other types of

periodontal cells, such as epithelial cells, connective tissue cells

(fibroblasts), or monocytic/macrophagic cells, would provide a

more comprehensive and accurate evaluation. Alternatively, using

another cell line with characteristics similar to osteoblasts,

distinct from Saos-2, could also be beneficial.

5 Conclusions

The findings of this study underscore the potential of

isodrimeninol as a novel therapeutic agent for modulating

miRNA expression associated with periodontitis. These results

position isodrimeninol as a promising candidate for

complementary periodontal therapy, particularly in mitigating

inflammation-driven tissue destruction. However, further

research utilizing in vivo models is crucial to validate these

findings and evaluate their clinical applicability.
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