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The tumor coagulome as a
potential biological determinant
of postsurgical recurrence of oral
squamous cell carcinoma
Zuzana Saidak1,2 and Antoine Galmiche1,2*
1UR7516 CHIMERE, Université de Picardie Jules Verne, Amiens, France, 2Service de Biochimie, Centre
de Biologie Humaine (CBH), CHU Amiens Picardie, Amiens, France
Objectives: The tumor coagulome is an intrinsic characteristic of human tumors
and a key determinant of cancer-associated thrombosis (CAT). Oral Squamous
Cell Carcinoma (OSCC) establish a local procoagulant state that contributes to
a broad range of vascular complications, and potentially also to tumor
progression. Recent clinical studies suggest that biomarkers of coagulation
might be of interest for predicting postsurgical recurrence of OSCC, but it
remains unclear whether specific properties of the coagulome of OSCC are
conducive to postsurgical recurrence. We examined this possibility using
transcriptomic analyses of OSCC.
Materials and methods: Using bulk RNA-seq data from TCGA and other sources,
we explored the link between the coagulome (n= 85 genes) and disease-free
survival (DFS) of OSCC with machine-learning. Tumor microenvironment
analyses and single-cell RNA-seq analyses were used to address the potential
mechanisms that link coagulation and tumor recurrence. We also compared
the coagulome of matched primary/recurrent OSCC.
Results: We identified seven coagulation-related genes, either positively (F3, F2,
F8 and PROC) or negatively (VWF, SERPING1, BDKRB2) linked to postsurgical
recurrence in OSCC at low/intermediate risk, and we validated the model in
an independent cohort. We examined their relationship with the tumor
microenvironment, suggesting tumor infiltration by T cells as an element of
mechanistic explanation. Increased expression of procoagulant genes, such as
F3, was noted in recurrent compared to matched primary OSCC.
Conclusion: Our observations suggest that active coagulation shapes the
oncological outcome of surgery. Analyzing the tumor procoagulant status
might help predict postsurgical recurrence of OSCC.

KEYWORDS

oral squamous cell carcinoma, postsurgical recurrence, coagulome, tumor
microenvironment, transcriptomics

1 Introduction

Surgical resection, often combined with adjuvant therapy, is the cornerstone of the

treatment of locally-advanced Oral Squamous Cell Carcinoma (OSCC) (1, 2). Despite

the progress of the last decade, local tumor recurrence remains frequent and constitutes

a major challenge. A better understanding of the biological characteristics of tumors

that underlie recurrence remains an unmet need. This especially applies to the tumors

considered to be at low/intermediate risk, i.e., those without strong positive predictors

of tumor recurrence, such as extracapsular spread or positive surgical margins following
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resection (1, 2). A better understanding of the biological

mechanisms that account for tumor recurrence would help

improve medical practice by identifying new biomarkers (3, 4).

Tumor cells express key regulators of the coagulation and

fibrinolysis cascades. The tumor coagulome encompasses the

multiple genes and proteins that collectively regulate the local

equilibrium between coagulation and fibrinolysis, and it

represents an intrinsic characteristic of tumor biology (5, 6). The

expression of Tissue Factor (TF, encoded by F3) has attracted

considerable attention as an essential determinant of cancer-

associated thrombosis (CAT) (7, 8). CAT is known to be a

significant source of mortality and morbidity in cancer patients,

accounting for venous thromboembolic events (VTE) and several

serious complications, such as pulmonary embolism (9). Through

recent pan-cancer studies, OSCC were found to be the tumor

type with the highest expression of F3, yet with great individual

heterogeneity (10, 11). In the surgical context, a systemic

activation of the coagulation cascade occurs as a consequence of

surgical bleeding, blood stasis induced by vessel clamping, and

endothelial injury/inflammatory response initiated by surgical

trauma. This systemic activation of coagulation might enhance

the local procoagulant response. Prospective studies reveal that in

the absence of thromboprophylaxis, up to13% of patients

undergoing surgery for head and neck cancers experience VTE

and its potentially life-threatening complications (12).

The consequences of the activation of the coagulation cascade

extend beyond VTE. The formation of a fibrin polymer, recently

compared to a nest formed around cancer cells, could confer

specific biological properties to the tumor tissue (13).

Coagulation proteases, such as thrombin (F2) or factor X (F10)

also exert fibrin-independent effects, for example by directly

activating specific receptors present on the surface of cancer cells

and cells of the tumor microenvironment (TME), including

myeloid cells/immune cells (6, 14–16). In the context of

hematogenous dissemination of cancer, the formation of fibrin

might also contribute to the stabilization of multicellular

ecosystems (17). In the blood of breast cancer patients,

Circulating Tumor Cells (CTC) can either circulate as single cells

or as part of cellular clusters (18, 19). An activated coagulation

cascade may aid in the stabilization of such cellular aggregates,

giving CTC a greater chance of achieving successful

hematogenous dissemination (17). Overall, an active coagulation

on the surface of cancer cells could be a potential determinant of

the ability of these cells to resist and thrive despite the attack of

immune cells, and survive anticancer treatment (20, 21).

The possibility that the coagulation cascade could contribute to

postsurgical recurrence has recently been proposed in studies

examining blood biomarkers of coagulation in OSCC patients.

Caruntu et al. (22) and Liang et al. (23) reported a negative

prognostic value of elevated preoperative blood fibrinogen

concentrations and platelet counts in OSCC. Intratumoral

platelet microthrombi observed within OSCC were also recently

reported to correlate with lymph node metastasis and higher pre-

operative values of D-dimers and fibrinogen, in agreement with a

possible deleterious effect of the coagulation cascade in this

setting (24, 25). Interesting as these studies are, they are based
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patients. They are also subject to the obvious criticism that the

biomarkers analyzed reflect systemic inflammation and liver

function as much as the procoagulant state of the tumor. To the

best of our knowledge, no studies have yet examined whether the

tumor procoagulant status is linked to the outcome of surgical

resection and the risk of postsurgical recurrence of OSCC. The

aim of the present study was to directly examine this possibility.

Given the power of systems approaches in addressing clinical

questions related to oral tumors (3, 4), we examined the

coagulome of OSCC samples with an approach combining

transcriptomic data and machine learning algorithms.
2 Materials and methods

2.1 Patient data and tumor coagulome
analysis

Basic clinical, pathological and mRNA expression data (RNA

SeqV2 data normalised using RNA-Seq by Expectation

Maximization: RSEM) were retrieved for n = 321 OSCC patients

from the TCGA-HNSC cohort through cBioportal (http://

cbioportal.org) in November 2024. Clinical data on Disease Free

Survival (DFS), Overall Survival (OS) and histological factors of

local recurrence were retrieved through cBioportal. We selected

OSCC with a low/intermediate risk of recurrence, as described

previously (26), by excluding OSCC with nodal Extracapsular

Spread (ECS) or positive surgical margins (SM) (n = 103

retained, 72 of which had data on DFS). The GSE65858 cohort

was used for independent validation (27), with gene expression

analyzed by microarray (HT12 v4 Expression BeadChips,

Illumina), and DFS data available for 61 primary OSCC with low

intermediate risk. In each case, we retrieved gene expression data

corresponding to the “Coagulation and Complement” gene set

(hsa04610) in the Kyoto Encyclopedia of Genes and Genomes

(KEGG). From a total of n = 88 genes, gene expression data were

available for 85 genes in TCGA. Gene expression was normalized

to z scores in further analyses, to allow inter-cohort comparisons.

A separate cohort with 11 matched primary and recurrent OSCC

(GSE173855) with RNA-seq data (Illumina HiSeq 2000) was also

analyzed (28). The basic clinical information and tumor staging

data for the three cohorts with bulk transcriptomics that we

analyzed in this study are presented in Supplementary Table S1.
2.2 Model construction based on machine
learning

Six different machine-learning algorithms were used to identify

the coagulation genes most linked to tumor recurrence (DFS):

XGBoost (eXtreme Gradient Boosting), CoxPH (Cox

Proportional Hazard), LASSO (Least absolute shrinkage and

selection operator), Random Forest (RF), Support Vector

Machine (SVM) and LightGBM (Light Gradient Boosting

Machine), using TCGA data. In each case the training/testing
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process was repeated 100x, with a 70:30 split. The top 20 most

important features were identified in each case, retaining the

consensus features. The R and Python codes for each model are

provided in the Supplementary Materials section. The features

that were retained for model construction were used in a CoxPH

regression model, giving a coagulation score that is the sum of

the product of each feature (gene z score) with its corresponding

coefficient (coagulation score = Σβi * xi + intercept), where xi and

βi are the retained features and corresponding coefficients.
2.3 Single-cell RNA analyses of OSCC

Single-cell RNA-seq data from 5,902 cells were obtained from

GSE103322. Pre-processing and quality control of the scRNA-seq

data are described in detail in Puram et al. (29). The data

include 2,215 malignant cells obtained from 18 HPV negative

OSCC, and 3,687 other cell types. Expression is given as TPM

(transcripts per million) values.
2.4 Tumor microenvironment analyses,
gene set enrichment analysis (GSEA)

The CIBERSORTx algorithm (https://cibersortx.stanford.edu)

was used to quantify the levels of 22 cell subsets using the

validated leukocyte gene signature matrix LM22 (30, 31). MCP

Counter algorithm measures the abundance of eight immune and

two stromal cell populations from transcriptomic data (32). Gene

Set Enrichment Analysis (GSEA) was performed with the Java

GSEA desktop application (https://www.gsea-msigdb.org/gsea/

index.jsp) (33), using Hallmarks gene sets to compute the

enrichment of specific gene sets.
2.5 Statistics

The association of each coagulome gene to tumor recurrence

was studied by calculating the hazard ratios (HR) and 95%

Confidence intervals (CI) for DFS for each gene (Cox

proportional hazards regression). Kaplan–Meier analyses and the

log-rank test were used to compare the DFS and OS in OSCC

tumors with high/low coagulation score, divided by the median.

Analyses were done with R version 3.4.2 using the packages

“randomForestSRC”, “survival”, “survminer”, “ggplot2”, “gplots”

(https://www.r-project.org) and Python (Anaconda/spider 5.4.3,

https://www.anaconda.com/), using libraries “Pandas”, “NumPy”,

“scikit-learn”, “lifelines”, “Matplotlib”, “lightgbm” and “xgboost”.

Correlation analyses were carried out using R Pearson correlation.
3 Results

In order to address the possible link between the coagulome of

OSCC and postsurgical tumor recurrence, we turned our attention

to OSCC with low/intermediate risk of tumor recurrence from
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TCGA, n = 103, 72 of which had data on DFS. For each tumor,

we used the z score values for the 85 genes of the KEGG gene set

“Coagulation and complement” (hsa04610). For each gene, we

calculated a Hazard Ratio (HR) with a 95% Confidence Interval

(CI95) in predicting the DFS with Cox proportional hazards

regression (Figure 1). This initial analysis did not identify any

coagulation genes whose expression would efficiently predict

tumor recurrence on its own, even though a few of the genes were

close to statistical significance. Interestingly, some key regulators of

CAT, such as the genes F3 (HR = 1.53), F2 (HR = 1.23) and F8

(HR = 1.31) were highly ranked in this analysis. A significant

negative association with postsurgical recurrence was found with

the genes VWF (HR = 0.64, p = 0.0238), MASP1 (HR = 0.60,

p = 0.0214) and BDKRB2 (HR = 0.58, p = 0.0139).

In order to examine the possibility that a combination of genes

would better predict tumor recurrence, we applied six machine-

learning algorithms: Least Absolute Shrinkage and Selection

Operator (LASSO), Random Forest (RF), Support Vector

Machine (SVM), XGBoost, CoxPH, and LightGBM. For each of

these algorithms, we ranked the coagulation genes according to

their importance in predicting tumor recurrence (Figure 2A).

Interestingly, seven coagulation genes were consistently identified

in the top 20 most important recurrence-predicting genes, i.e., in

at least four out of six machine-learning feature selection models.

The corresponding seven genes (F3, F2, F8, PROC, VWF,

SERPING1 and BDKRB2) were retained in order to build a

model that we tested for its ability to predict postsurgical

recurrence (Figure 2B). The coagulation score values were

normally distributed (Supplementary Figure S1). Interestingly, we

noticed that positive coefficients applied to the key procoagulant

genes F3, F2, F8 and PROC, opening the possibility that the

model may reflect a procoagulant tumor status (Figure 2B).

A Kaplan–Meier analysis of DFS indicated that this gene

expression signature predicted tumor recurrence in OSCC from

TCGA. DFS was significantly lower in OSCC tumors with a high

score, compared to tumors with a low score (divided by median),

p = 0.00014 (Figure 2C). Consistently, we found that it also

predicted an earlier mortality in this population [overall survival

(OS), p = 0.012] (Supplementary Figure S2). In order to provide

an independent validation, we turned our attention to a separate

cohort. In the study of Wichmann et al. (27), bulk tumor

transcriptomic and survival data were available for 61 low/

intermediate risk OSCC. In this cohort, high values of the

coagulation gene expression signature were significantly related to

reduced DFS, p = 0.037 with log-rank test (Figure 2D). We

concluded that our coagulation gene expression signature holds

potential to identify OSCC at risk of postsurgical recurrence.

We explored the regulation of the seven genes that comprise

our signature. Genomic analyses in TCGA-OSCC indicated that

copy number alterations and somatic mutations were infrequent

for these genes in OSCC (Supplementary Figure S3A). We also

examined the levels of DNA methylation in TCGA-OSCC.

A strong negative correlation between gene expression and DNA

methylation was found for the gene F3 (Pearson r =−0.60),
suggesting the possible contribution of epigenetics in gene

expression regulation (Supplementary Figure S3B). We next
frontiersin.org
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FIGURE 1

Hazard ratios (HR) and 95% confidence intervals (CI) for disease-free survival (DFS) for 85 coagulation-related genes in TCGA-OSCC patients with low/
intermediate risk of recurrence. Cox proportional hazards regression was used. Hazard ratios are shown on a log2 scale. The error bars represent the
limits of the 95% CI for the hazard ratio. Genes are ordered from the highest to the lowest HR. Values above 1 correspond to genes associated with an
increased risk of recurrence, and values below 1 are indicative of a protective effect.
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FIGURE 2

Construction of a coagulation-related gene expression model to predict post-surgical recurrence of OSCC. (A) Comparison of six machine-learning
models for DFS prediction using 85 coagulation-related genes [XGBoost, Cox Proportional Hazards, Lasso, Support Vector Machine (SVM), Random
Forest (RF), and LightGBM]. For each model, the top 20 most influential features are displayed, ordered by descending importance. (B) Features that
were identified as important in at least four of the six models were retained for the model to obtain a coagulation score (n= 7 genes). (C) Kaplan–Meier
analyses of DFS in TCGA-OSCC patients with low/intermediate risk of recurrence, stratified according to their coagulation score (by median). High
score in red, low score in blue. (D) Validation of model performance in DFS prediction in an independent cohort (GSE65858, n= 61 OSCC). Note
that data on F2 were not available in GSE65858. Log-rank test was used for statistical comparisons in each case.
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explored the contribution of the different cell types that are present

in OSCC, using single-cell RNA-seq data (scRNA-seq) from the

study by Puram et al. (29) (Supplementary Figure S3C). This

analysis suggested the contribution of multiple cell types to the

gene expression signature. Cancer cells were found to express key

procoagulant genes, such as F3, F2 and PROC. In addition,

endothelial cells expressed high levels of F8, VWF and

BRDKRB2, fibroblasts expressed SERPING1, and T cells and

tumor macrophages expressed F2 and PROC, respectively. To

further analyze the pathological significance of the coagulation

signature, we turned our attention to the TME of OSCC. We

stratified the tumors according to the coagulation score, based on

quartiles (Q1–Q4). We performed an analysis of the cellular

composition of the TME with two different algorithms:

CIBERSORTx (30, 31) and MCP counter (32). Digital cytometry

with CIBERSORTx indicated that the absolute infiltration levels

of the combined immune cell component was lower in tumors

with a high coagulation score, with an almost 2-fold difference

between Q1 and Q4 (Figure 3A). CD8T cells and CD4 memory

activated T cells were the most significantly differentially

represented cell types (Kruskal–Wallis, p = 0.0053 and p = 0.0070,

respectively). This conclusion was independently supported with

MCP counter (Supplementary Figure S4). We also performed a

GSEA using Hallmarks gene sets, and observed that OSCC with
Frontiers in Oral Health 05
low values of the coagulation score were enriched in the

Hallmark “Interferon_Gamma_Response”, with a normalized

enrichment score (NES) of 1.98 and p = 0.026 (Figure 4B). The

gene CD274, encoding the immune checkpoint ligand PD-L1

(Programmed Death-Ligand 1) ranked highly in the

corresponding leading edge analysis. We confirmed the lower

expression of PD-L1 and PD1 expression in OSCC with high

values of the coagulation score (Supplementary Figure S5).

Given the availability of bulk transcriptomic data for n = 11

matched primary/recurrent OSCC samples form a separate study

(28), we next directly compared the coagulome of primary vs.

post-surgical recurrence of OSCC. A direct comparison of the

expression identified the genes SERPINE1 and F3 as the highest

up-regulated coagulation genes in recurrent samples compared to

matched primary OSCC (Figure 4). The corresponding genes

were upregulated in 73% (p = 0.0036) and 64% (p = 0.0108) of

matched recurrent compared to corresponding primary samples,

respectively (paired Wilcoxon signed-rank test).
4 Discussion

Despite current optimal preoperative tumor staging and the

availability of multimodal treatments, postsurgical recurrence
frontiersin.org
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FIGURE 3

(A) CIBERSORTx analysis of infiltration levels of 22 different immune cell subtypes in TCGA-OSCC tumors ranked according to their coagulation score,
organized into quartiles Q1–Q4, with Q1 with the lowest score and Q4 with the highest score. The results are shown as relative fractions (left, Chi2 = 1)
or absolute scores (right, **p < 0.01 using Kruskal–Wallis). (B) Gene Set Enrichment Analysis (GSEA) on TCGA-OSCC tumors according to the score
(low vs. high, by median). NES = normalized enrichment score.
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remains a major problem in OSCC. A better understanding of the

biological mechanisms involved in recurrence could help identify

biomarkers and assist physicians in their assessment of

postoperative risk (3, 4). In the present study, we examine for the

first time the link between the coagulome of OSCC and the risk

of postsurgical recurrence and propose a gene expression

signature with a prognostic value in two independent cohorts.

An overview of the genes identified as positively linked to OSCC

recurrence is interesting, since it includes F3, F2, F8 and PROC,

which respectively encode Tissue Factor, Prothrombin, Factor

VIII and Protein C, i.e., four positive regulators of the

coagulation cascade with an established role in CAT (7).

Importantly, the gene F3 had the highest weight in the model,

opening the interesting possibility that these genes might overall

reflect a local procoagulant state of OSCC. We found that OSCC

with the highest values of the coagulation signature had

significantly reduced infiltration levels of immune cells, especially

T cells, an important immune cell population present in OSCC.

Consistently, we observed a reduced Interferon-gamma signature

and lower levels of mRNA encoding the immune checkpoints

PD-L1/PD1. A direct comparison of matched primary and

recurrent tumor samples separately identified some of the

procoagulant genes from the signature, such as F3, as being

significantly upregulated upon recurrence. Overall, our study

highlights for the first time a possible link between the tumor

coagulome and postsurgical recurrence of OSCC.

Our study has a number of limitations, such as the lack of

protein analyses. Whether the variations in gene expression that

we analyzed here convert to comparable variations in protein

expression/tumor procoagulant activity remains to be shown.
Frontiers in Oral Health 06
Another limitation pertains to the lack of clinical data and

information regarding treatments administered to OSCC patients

in the cohorts analyzed here. While perioperative

thromboprophylaxis can be proposed to cancer patients after

surgery, multiple anticoagulants and protocols are available and

the corresponding information is not available in TCGA (34, 35).

At this stage, we cannot rule out the possibility of a confounding

effect. A third important limitation is inherent to the correlative

nature of our study. It is at this stage not possible to conclude

from our observations that the coagulation cascade directly

promotes OSCC recurrence, rather than just correlates with it.

Nevertheless, a strong biological rationale for such a possibility

can be found in the literature. In vitro studies show for example

how factor XIa can transduce mitogenic and pro-invasive signals

in OSCC cells via specific protease-activated receptors (36). In a

non-exclusive manner, the local activation of the coagulation

cascade may act on cells of the TME, including immune cells.

The coagulation cascade indeed exerts complex modulatory

effects on anti-cancer immunity, and it has been suggested that it

could contribute to tumor evasion from T cell responses (15, 16).

The observation that OSCC with high values of our coagulation

signature had “immune-cold” characteristics suggests that

immune evasion might be a mechanism linking active

coagulation to postsurgical recurrence of OSCC.

The perioperative period, i.e., the short period of time—usually

counted in days—around tumor resection, has been compared to a

Russian roulette owing to its biological complexity and the difficult

prediction of its oncological outcome (37, 38). The coagulation

cascade is well-known to be active during the perioperative

period, but it has until now mostly been studied as a source of
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FIGURE 4

Comparison of the coagulome of matching primary vs. recurrent OSCC. (A) The 85 genes of the coagulome are sorted in descending order of fold-
change in recurrent vs. primary tumor samples. (B) Direct comparison of the expression of F3, F8, SERPING1 and VWF in matched primary/recurrent
samples. p values obtained with paired Wilcoxon signed-rank test. The % of tumors with up- or down-regulation of each gene in tumor recurrence
are indicated.
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postsurgical thromboembolic accidents (33, 34). Our study suggests

the possibility that coagulation could also shape the oncological

outcome of OSCC surgery. OSCC represent the tumor type with

the highest expression of the procoagulant gene F3, albeit the

coagulome of individual tumors appears to be extremely

heterogeneous (10, 11). We argue that specific procoagulant

properties of OSCC might synergize with the systemic activation

of coagulation induced by the surgical procedure itself to

enhance the local activation of coagulation. Given our findings,

we propose that further experimental studies are required to

directly address the contribution of the tumor coagulome to

postsurgical recurrence and examine the possibility of

personalizing OSCC surgical care based on the tumor coagulome.

In the future it would be interesting to conduct prospective

studies with a thorough follow-up of OSCC patients, including

longitudinal protein analyses and biomarkers that reflect the

cancer-procoagulant status. The HYPERCAN study

(HYPERcoagulation and CANcer, NCT0262281), recruiting

breast cancer patients, represents an interesting model for such

studies (39). Novel approaches and strategies for a non-invasive

exploration of the tumor procoagulant status might also help to

validate the link between the tumor coagulome and post-surgical
Frontiers in Oral Health 07
recurrence. The analysis of tumor microvesicles found in the

saliva of OSCC patients may for example reflect the procoagulant

status of OSCC (40). Systems analyses of tumor images, i.e.,

radiomics, might also emerge as a suitable strategy for the

analysis of the procoagulant status of individual human tumors,

as recently suggested for gliomas (41).
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