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Introduction: Periodontitis is a significant health challenge caused by a complex

interaction between bacterial infection, host immune response, and

environmental factors, leading to tooth loss, bone loss, and potential

associations with major systemic diseases and conditions. While the

determinants of periodontitis have been extensively investigated in other

populations, such studies are lacking in South Africa, which represents a high-

risk population. Therefore, this study was conducted to characterize the

subgingival bacterial biodiversity in the periodontal pockets of patients with

periodontitis in a Western Cape population.

Materials & methods: Pooled subgingival plaque samples were collected from

the deepest pocket/crevices of five periodontitis cases and five controls using

sterile paper points. Illumina MiSeq paired-end sequencing and QIIME2

software were employed for sequence filtration and analysis. Several alpha and

beta-diversity metrics assessed biodiversity within-sample and population

structure between different microbiota datasets, respectively. Statistical

significance for alpha diversity was tested using the Kruskal–Wallis H test

(p < 0.05), and beta diversity differences were evaluated using PERMANOVA.

Data visualization, including beta diversity plots, was conducted with the

Phyloseq package in R.

Results: Beta-diversity measures revealed significant differences between

periodontitis cases and controls (p-value = 0.04), whereas alpha-diversity

was higher in cases, though without statistical significance (p-value≥ 0.05).

Cases group showed high relative abundance of Fusobacterium (16%),

Porphyromonas (10%), and Treponema (9%), while the periodontally healthy

controls were dominated by Streptococcus (20%), Fusobacterium (15%), and

Veillonella (10%), with g_Streptococcus showing a significant difference

(p-value = 0.008). Differential abundance analysis revealed distinct bacterial

genera enriched in cases (Bulleidia, Peptoanaerobacter, Phocaeiola, W5053)

and controls (Abiotrophia, Haemophilus, Lautropia, Rothia, Streptococcus).

Sample-specific variations included higher levels of Porphyromonas (15%) in

grade B and Fusobacterium (20%) in grade C.
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Conclusion: This exploratory study highlights distinct bacterial communities

associated with periodontitis in a South African population. The findings

emphasize the need for larger, population-based cohorts to validate these

results and lay a foundation for future research into region-specific microbial

profiles and their implications for personalized treatment strategies.

KEYWORDS

periodontitis, periodontal health, bacterial profile, 16S rRNA, Fusobacterium, diversity

measures, South Africa

1 Introduction

According to the WHO’s Global Oral Health Status Report

(2022), 19% of the global population aged 15 years and older is

affected by severe periodontitis, with the highest prevalence in

Africa (23%) (1). Periodontitis is a multifactorial disease

triggered by dysbiosis in dental biofilm that promotes

inflammation with both protective and destructive effects on

periodontal tissues (2). This dysbiosis negatively impacts oral and

general health, reducing the quality of life (3) and contributing

to a global healthcare burden and social inequality (4).

Advances in culture-independent molecular techniques have

revealed distinct bacterial communities in periodontal health and

disease (5). Despite limitations such as short sequencing reads,

limited species-level resolution for certain bacterial genera (6), lack

of standardization in selecting hypervariable regions for

sequencing (7), and an inability to provide functional insights (8),

16S rRNA sequencing remains the gold standard for bacterial

profiling (9). These techniques highlight the diagnostic and

prognostic potential of microbiome biodiversity in periodontitis,

where changes in microbial composition signal early disease, and

biodiversity loss is linked to disease progression (10). Restoring

microbial diversity could be a key therapeutic goal in periodontitis,

promoting a balanced oral microbiome essential for achieving and

maintaining periodontal stability (11).

While the current classification system for periodontitis

incorporates pathophysiological and host immune factors that

justified the consolidation of periodontitis into a unified category

(12), it does not include microbial criteria to differentiate

between stages and grades. This limitation arises primarily from

insufficient evidence-based data on microbiological diagnostics in

periodontitis (13).

Emerging evidence suggests that the subgingival microbial

composition in periodontitis patients varies significantly based on

population, demographic factors, and environmental conditions

(14, 15). These findings highlight the potential relevance of

microbial profiling in enhancing and refining periodontal

classification systems.

However, much of our understanding of periodontitis

microbiota is derived from studies conducted in non-African

populations (16). Recent insights highlight the need for

population-specific investigations. For instance, Aggregatibacter

actinomycetemcomitans, strongly linked to Grade C Molar-

Incisor periodontitis, appears to behighly prevalent among

Africans, compared to other ethnic groups" (17–20).

Therefore, investigating periodontitis determinants in high-

risk, diverse populations, such as South Africans (SAs), is

imperative for developing a successful precision dentistry health

system. Recent work established the microbial profile of the SA

population who smoke (21). However, no study has been

conducted to establish the baseline bacterial profile of SAs with

periodontitis compared to those with a healthy periodontium.

Given these considerations, the primary objective of this study

was to characterize the subgingival bacterial communities within

periodontal pockets of periodontitis patients from the Western

Cape, SA, and to assess whether microbial composition differs

across the various grades of periodontitis. This pilot study aims

to lay the foundation for future, more comprehensive research by

evaluating both the feasibility and potential benefits of the

proposed study within a diverse population.

2 Material and methods

2.1 Study population

Ethical approval was obtained from the Biomedical Research

Ethics Committee (BMREC) of the University of the Western

Cape (UWC), reference number BM20/10/9. Twenty-three

consecutive South African participants, aged 18 years or older

and with at least 10 teeth, were recruited from the Oral Medicine

and Periodontology Department at Tygerberg Oral Health Centre

between August 2021 and October 2022. Participants were

excluded if they had any systemic disease, were current smokers,

pregnant or lactating, edentulous, had used antiseptics or anti-

inflammatory drugs for more than one week, antibiotics,

antimicrobials, undergone any periodontal management in the

past three months. Therefore, a final sample size of 23 patients

was included in this study.

All potential participants underwent Basic Periodontal

Examination (BPE) to assess their periodontal status. Eligible

participants then received a comprehensive periodontal

examination for detailed clinical data collection. Personal and

demographic information, including age, gender, and self-

reported ethnicity, were also collected.

Panoramic radiographs were taken, and a calibrated

periodontist with high intra-reliability (kappa > 0.81) conducted

clinical examinations, documenting periodontal parameters such

as full mouth plaque score (FMPS), full mouth bleeding score
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(FMBS), probable pocket depth (PPD), and clinical attachment

level (CAL). Participants were categorized into periodontitis cases

and periodontally healthy controls based on the case definitions

outlined in the 2018 classification scheme of periodontal diseases

(13, 22). Following this, a complete diagnosis of periodontitis

cases was established using the multidimensional staging and

grading systems, in which disease severity was categorized into

four stages (I–IV), ranging from mild clinical attachment loss,

Stage I, to severe periodontitis with extensive bone and tooth

loss, Stage IV. Staging was determined based on CAL,

radiographic bone loss, disease complexity, and its extent and

distribution; localized or generalized. Progression was further

graded as A (slow progression), B (moderate progression), or C

(rapid progression). Grading was based on CAL and bone loss in

relation to age, case phenotype reflected through FMPS, and the

presence of grade modifiers such as diabetes mellitus (DM) and

smoking (13, 22).

2.2 Subgingival sampling

After the removal of the supra-gingival biofilm, the teeth

targeted for sampling were isolated with cotton rolls and dried.

Sub-gingival dental biofilm samples were acquired from the

meso-buccal surface of teeth with the deepest pathological pocket

(or cervices in the healthy group) of each quadrant by gently

introducing a sterile paper point #35 (23–30).

If a deeper pathological pocket (or cervices in the healthy

group) was identified on another surface, it was used for

sample collection. Paper points were immediately transferred

from the participant’s mouth and pooled into a sterile 2 ml

Eppendorf tube containing 500 μl of phosphate-buffered saline

(PBS), then immediately placed on ice. As per the

recommendation of the best storage temperature for microbiome

material, samples were frozen at −80°C at IMBM until DNA

extraction was conducted.

2.3 DNA extraction and sequencing

DNA extraction from the dental biofilm samples was

performed using the PureLinkTM Microbiome DNA Purification

Kit (#A29790; Thermo Fisher Scientific, Waltham, Massachusetts,

USA), following the manufacturer’s recommendations

under sterilized conditions. The extracted DNA quality and

concentration were evaluated using the NanoDrop® ND 1,000

Spectrophotometer and the Qubit® 2.0 fluorometer (Invitrogen,

Thermo Fisher Scientific, Waltham, Massachusetts, USA),

respectively. Samples with DNA quality metrics meeting the

Illumina 16S metagenomics workflow requirements for optimal

outcomes (≥20 μl of 10 ng/μl, A260/280: 1.8–2.0, A260/230:

1.5–2.2) were selected for downstream analysis. While the

majority of the samples met the criteria, only the top ten with

the highest quality and quantity were included in downstream

analysis due to funding limitations.

For PCR amplification of the hypervariable V3-V4 regions of

the16S ribosomal RNA gene (16S rRNA), the following primer

sequences were used:

• Forward primer (341F primer + Illumina overhang adapter

underlined): TCGTCGGCAGCGTCAGATGTGTATAAGAG

ACAGCCTACGGGNGGCWGCA

• Reverse primer (805R primer + Illumina overhang adapter

underlined): GTCTCGTGGGCTCGGAGATGTGTATAAGAG

ACAGGACTACHVGGGTATCTAATCC

Following this, the Nextera XT v2 Indexes were used for amplicon

barcoding, which were then multiplexed, spiked with 10% of a 6

pM PhiX, and sequenced using the MiSeq Reagent Kit v2 (500

cycles) on the Illumina MiSeq platform (#15044223, Illumina,

San Diego, CA, USA) at the Centre for Proteomic and

Genomic Research.

2.4 Data analysis

Raw sequencing reads were quality filtered and trimmed,

retaining only a Q-score > 20 and overlapping regions were

allowed up to two of the ambiguous bases. Analysis of raw

sequence data was mainly performed using Quantitative Insights

into Microbial Ecology 2 (QIIME2) 2022.2 (https://qiime2.org/,

RRID:SCR_021258), with DADA2 plugin to ccorrect sequencing

errors and cluster the sequences into amplicon sequence variants

(ASVs). Each ASV was aligned and classified at the genus level

using the Greengenes database, V.2024.09 (https://qiime2.org/,

RRID:SCR_002830).

Differential abundance testing was conducted by the Wald test

with Benjamin-Hochberg adjustment for false discovery (31) using

an adjusted p-value < 0.05, as implemented in the DESeq2-package

in R. Features appearing in <10% of the samples and a relative

abundance of <5% were filtered out.

Further statistical analysis and plot generation were conducted

using R package, V4.2 (http://www.r-project.org/, RRID:

SCR_001905).

Alpha-diversity was assessed using various metrics, including

Observed richness, Chao1, Abundance Coverage Estimator

(ACE), Simpson and Shannon indices, to estimate richness,

abundance, and diversity within the sample (32). The Kruskal–

Wallis H test was applied to all alpha-diversity metrics to

determine statistical significance, with a threshold set at

p-value < 0.05.

Beta-diversity was evaluated using the Bray-Curtis, Jaccard,

Weighted UniFrac, and Unweighted UniFrac distance metrics on

the rarefied datasets to assess differences in microbial community

structure between comparison groups. The Phyloseq package in

R was used to visualize these distances through principal

coordinate analysis (PCoA) plots. Distance-based permutation

multivariate analysis of variance (PERMANOVA) was conducted

using Adonis 2 from the vegan R package (33). This was

followed by a test for homogeneity.
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3 Results

3.1 Demographics and clinical parameters

The demographics and clinical parameters are detailed in Table 1.

The majority of the participants in the study were females, with only

one male in the control group. Within the control group, three

participants self-identified as SA Coloured (SAC), while the case

group had an equal distribution of Caucasian and African

participants, with only one participant from the SAC ethnic group.

Among the periodontitis cases examined, Stage IV was the most

prevalent, observed in three out of five cases, while Stage III

accounted for the remaining two. For grading, the cases were

classified as either Grade B or C, with Grade C indicating the

highest severity, also found in three out of five cases. Additionally,

all periodontitis cases exhibited a generalized distribution, as

detailed in Table 1. P-values for the participant’s quantitative and

qualitative variables were not included as this was a preliminary

descriptive study with limited sample size.

The observed distribution of the continuous variables between

cases and controls is tabulated in Table 2. Based on the full-mouth

clinical examination, periodontitis cases exhibited higher FMBS,

FMPS, PPD, and CAL values, and fewer present teeth, when

compared to the periodontally healthy controls. The differences

between the median estimates all seem minimal. The control

subjects seemed to be about 8 years younger on average but with

larger variation between them (SD≈ 21.49).

3.2 Sequence data

A total of 3.2 million V3–V4 16S rDNA paired-end reads were

generated from the 10 pooled samples. After filtering, 2.7 million

reads were left. The average length of the filtered reads was

599 bp. A total of 1,482 features were resolved, with a total

frequency of 680,617 after quality filtering.

3.3 Subgingival bacterial communities

3.3.1 Bacterial compositions
The top 10 genera with the highest relative abundance in the

periodontitis cases group were Fusobacterium (16%),

Porphyromonas (10%), Treponema (9%), Prevotella (8%),

Prevotella_7 (5%), Tannerella (5%), Filifactor (4%), F0058 (4%),

Streptococcus (3%), and Veillonella (2%) (Figure 1A). In contrast,

the control group was dominated by Streptococcus, accounting

for 20% of all bacteria at the genus level. This was followed by

Fusobacterium (15%), Veillonella (10%), Prevotella (7%),

Porphyromonas (3%), Treponema (3%), Prevotella_7 (3%),

Tannerella (2%), Filifactor (2%), and F0058 (2%) (Figure 1A).

A pairwise differential abundance analysis at the genus level

showed that four genera, Bulleidia, Peptoanaerobacter,

Phocaeiola, and W5053, were enriched in the cases group

samples, while five genera, Abiotrophia, Haemophilus, Lautropia,

TABLE 1 Participants demographic and periodontal parameters.

Participants Age

years

Sex Race Present

teeth

FMPS

%

FMBS

%

PPD

mm

CAL

mm

Diagnosis Grade

Controls

1 59 M SAC 21 12 0 2.4 3.1 Periodontal Health -

2 20 F Asian/

Indian

28 14 2 2.4 2.4 Periodontal Health -

3 20 F SAC 32 10 5 2.4 3.1 Periodontal Health -

4 65 F Caucasian 22 0 11 3.0 3.1 Periodontal Health -

5 32 F SAC 29 7 10 2.6 2.5 Periodontal Health -

Cases

1 40 F SAC 25 31 26 4.2 4.5 Generalized Periodontitis stage

IV grade C

C

2 41 F Caucasian 25 62 47 4.2 4.2 Generalized Periodontitis stage

IV grade B

B

3 54 F African 21 68 33 3.6 3.7 Generalized Periodontitis stage

IV grade C

C

4 36 F African 25 29 86 3.5 3.6 Generalized Periodontitis stage

III grade B

B

5 65 F Caucasian 25 17 15 3.4 4.5 Generalized Periodontitis stage

III grade C

C

M, male; F, female; FMPS, full mouth plaque score; FMBS, full mouth bleeding index; PPD, probable plaque depth; CAL, clinical attachment loss; mm, millimetre.

TABLE 2 The distribution of the continuous variables between
periodontitis cases and controls.

Variable Cases (Median, 25th–

75th Percentile)

Control (Median,

25th–75th Percentile)
Age (years) 41.0 (38.0–59.5) 33.0 (21.5–62.0)

Teeth

Present

25.0 (25.0–25.0) 28.0 (22.0–29.0)

FMPS (%) 31.0 (29.0–62.0) 10.0 (7.0–12.0)

FMBS (%) 33.0 (26.0–47.0) 5.0 (2.0–10.0)

PPD (mm) 3.6 (3.4–4.2) 2.4 (2.4–2.6)

CAL (mm) 4.2 (3.7–4.5) 3.0 (5.5–3.0)

FMPS, full mouth plaque score; FMBS, full mouth bleeding index; PPD, probable plaque

depth; CAL, clinical attachment loss; mm, millimetre.
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FIGURE 1

(A) Mean relative abundance of the top 10 genera generated from periodontitis cases vs. control samples, (B) Volcano plot depicting differentially

abundant taxa as determined by DESeq2 in cases vs. controls at genus level. Significantly more discriminatory taxa appear above the threshold

(red dotted line, FDR = 1). The relative abundance of taxa is indicated by circle size.

Kabbashi et al. 10.3389/froh.2025.1568393

Frontiers in Oral Health 05 frontiersin.org

https://doi.org/10.3389/froh.2025.1568393
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Rothia, and Streptococcus, were enriched in the controls

(Figure 1B).

A statistically significant difference was only noted for the

g_Streptococcus when comparing the top 10 genera between

periodontitis cases and periodontally healthy controls at genus

level (p-value = 0.008) (Supplementary Figure S1).

Among periodontitis samples, Fusobacterium was the most

abundant genus (20%) in grade C, while Porphyromonas (15%)

and Treponema (13%) were more dominant in grade B. In grade

B, sample 2 showed a relatively equal abundance of all detected

genera, with slightly higher levels of Treponema and

Fusobacterium. Sample 4 was unique in having a distinctively

higher abundance of Porphyromonas among all samples. All

grade C samples were dominated by Fusobacterium. However,

sample 3 had higher abundance of Tannerella and F0058,

followed by Lentimicrobium. Samples 1 and 5 had high levels of

Prevotella and Treponema, with sample 5 particularly rich in

Porphyromonas and depleted in Lentimicrobium (Figure 2A).

A total of five taxa were found to be significantly differentially

abundant (Figure 2B). Of the five, Desulfoplanes and Candidatus

Saccharimonas were enriched in grade B cases, while

Shuttleworthia, Bulleidia, and Scardovia were enriched in the

grade C cases. No other statistically significant differences were

identified among all genera between both grades

(p-value≥ 0.059) (Supplementary Figure S2).

3.3.2 Bacterial diversity

Despite observing higher median alpha-diversity in the

periodontitis samples compared to the controls (Supplementary

Figure S3), there was no statistically significant difference (all

p-values > 0.05) in the alpha-diversity metrics used. Borderline

significant p-values for Shannon and ACE suggest potential

subtle differences (Dunn test, Table 3). Values of multiple alpha

diversity and richness indices conducted for cases and controls

group samples are presented in Supplementary Table S4.

The phylogeny-based Weighted-Unifrac distance matrix

explained the highest amount of variance (69.7%) compared to

Bray Curtis, Unweighted Unifrac, and Jaccard measures, which

explained 39.6%, 40.4%, and 31.8% of the variance, respectively.

The PCoA plot based on Weighted-Unifrac distance matrix

showed that all cases samples clustered together, while the

controls samples appeared more dispersed (Figure 3).

PERMANOVA tests revealed significant differences in the

average community composition between cases and controls

(p-value = 0.04) but with a non-significant homogeneity

condition test result (p-value = 0.16) (Table 4).

4 Discussion

In this study, the subgingival microbiota in patients with

periodontitis within a SA cohort, was characterised. The analysis

demonstrated that, although the progression of periodontitis did

not exhibit notable variations in bacterial diversity as assessed by

alpha-diversity metrics, significant differences in community

structure were identified using multiple beta-diversity indices.

The Weighted UniFrac distance analysis confirmed distinct

clustering within the periodontitis group, whereas the control

group exhibited greater dispersion, suggesting higher

heterogeneity in microbiota composition and structure among

healthy individuals.

These findings are consistent with those of Shi et al. (34), who

utilized the Unweighted UniFrac distance metric to evaluate

microbial variation in 25 periodontally healthy Chinese

individuals, and Lenartová et al. (35), who employed the Bray-

Curtis index to investigate microbial composition in 151 Czech

participants across different clinical statuses and age groups. Both

studies identified individualized subgingival plaque structures and

attributed the dissimilarity observed in healthy biofilms to the

presence of shallow gingival sulci, permitting environmental

factors to influence microbial composition.

The “microbial succession” model dictates that several perio-

pathogens initially invade the healthy microbiota, developing a

diverse community of both health and disease-associated

microbiota. As disease progresses, the transitional microbial

community is then replaced by predominantly disease-associated

organisms, resulting in the development of a more homogenous

microbiota (10).

Findings from this study are consistent with studies conducted

in Chilean, English, Chinese, and French populations (14, 36–38).

They also partially align with the results of Nibali et al. (39), who

reported significant differences in alpha and beta diversity across

ethnic groups in England. However, our findings contrast with

Schulz et al.’s (40), who observed no significant diversity

differences in patients with aggressive periodontitis of Caucasian

descent from Central Germany.

Several taxa exhibited comparable abundances between cases

and controls, making it challenging to categorize them into

distinct health status groups across studies (14, 35, 41). This

challenge may stem from the potential limitations in accurately

assigning health status at the microbial level, as such

classifications are often based on clinical criteria. This issue was

evident in the present investigation, where the relative

abundances of certain genera showed minimal variation between

cases with periodontitis and controls, including Fusobacterium

(16% vs. 15%), Prevotella (8% vs. 7%), Prevotella_7 (5% vs. 3%),

Tannerella (5% vs. 2%), F0058 (4% vs. 2%), and Filifactor (4%

vs. 2%). In contrast, notable differences were observed in

Veillonella (2% vs. 10%), Streptococcus (3% vs. 20%),

Porphyromonas (10% vs. 3%), and Treponema (9% vs. 3%), with

Streptococcus being significantly more abundant in controls

(p = 0.008).

This investigation found Fusobacterium, Porphyromonas,

Treponema, Prevotella, Provetella_7, Tannerella, Filifactor, and

F0058 genera to be closely associated with periodontitis, while

Streptococcus and Veillonella, typically linked to healthy

periodontium, showed decreased abundance.

These findings align with previous research and reaffirm the

typical taxa associated with periodontitis, as demonstrated by

decades of studies across diverse populations (37, 42–45).

Notably, Fusobacterium emerged as the most dominant genus in

this study, surpassing Porphyromonas, which remained highly
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FIGURE 2

(A) Mean relative abundance of the top 10 genera generated from grade B vs. C samples. (B) Volcano plot depicting differentially abundance taxa as

determined by DESeq2 in grade B vs. C at genus level. Significantly more discriminatory taxa appear above the threshold (red dotted line, FDR = 1).

Relative abundance of taxa is indicated by circle size.
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abundant. Similar results were reported in Chilean and American

populations using 454-pyrosequencing (14, 42), and in a Chinese

cohort where Fusobacterium was detected in all chronic

periodontitis (CP) patients and in over 86% of healthy controls

using real-time PCR (46). In contrast, Kumar et al. (47) found

Fusobacterium to be rare in healthy controls and nearly absent in

individuals with shallow or deep pockets. Although

Fusobacterium is generally elevated in periodontitis patients who

smoke (21), the participants in this study were non-smokers.

FIGURE 3

Pcoa plot of: (A) weighted unifarc distance, (B) bray curtiz dissimilarity distances, (C) unweighted unifrac distances, and (D) jaccard distances, across

all samples.

TABLE 3 P-values for alpha-diversity indices in periodontitis cases
and controls.

Alpha_metric Kruskal-p-value Dunn-p-value
Observed 0.1172 0.0586

Simpson 0.6015 0.3008

Chao1 0.1172 0.0586

Shannon 0.0758 0.030

ACE 0.0758 0.0379

ACE, abundance coverage estimator.
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One plausible explanation for this study finding is that, although

Porphyromonas gingivalis is widely recognized as the key pathogen for

periodontitis development, it is significantly less invasive to host cells

than Fusobacterium species, as noted by De Andrade et al. (48).

Fusobacterium demonstrates a stronger adhesion capacity to human

gingival cells relative to P. gingivalis, thereby facilitating superior

colonization (49). Furthermore, Zhang et al. (50) showed that co-

infection with Fusobacterium nucleatum enhances the invasive

potential of P. gingivalis in oral epithelial cells. This “promoter”

capability of F. nucleatum underscores its critical role in mixed

infections. Additionally, the high prevalence of Fusobacterium has

been linked to various diseases, including colorectal and gastric

cancers, across different populations (51–53). Consequently, the

abundance of Fusobacterium in the SA population with

periodontitis may suggest a population-specific predisposition.

In this study, Filifactor ranked among the top 10 genera in both

periodontitis cases and controls. Filifactor alocis displays virulence

traits that facilitate its persistence in periodontal pockets, thereby

contributing to disease progression (54). The abundance of

Filifactor varies across populations with CP, with prevalence rates

of 30% in Swedish population (55), 66.7% in German population

(56), and 83% in deep pockets and 36% in shallow pockets

among Koreans (57).

The F0058 genus, constituting 4% of cases and 2% of controls,

was previously reported as abundant in Down syndrome patients

with periodontitis (58), and in the salivary microbiome of

Papillon–Lefèvre syndrome patients with neutrophil impairment

(59). Its role in periodontitis warrants further investigation.

In the healthy group, Streptococcus and Veillonella were the

predominant genera, consistent with findings from previous studies

(35, 60–62). Streptococcus, a primary colonizer on clean tooth

surfaces, plays a key role in promoting microbial adhesion (63),

while Veillonella, considered a biomarker of health, consumes lactic

acid produced by Streptococcus mutans and is associated with

successful periodontal therapy (64). P. Zhou et al. (65) proposed

that Veillonella functions as an “accessory pathogen”, facilitating the

growth of pathogenic species within dysbiotic biofilms.

Fusobacterium was detected in 16% of healthy controls. While

commonly present in a healthy periodontium, studies by Han (49)

and Șurlin et al. (53) have also implicated Fusobacterium in the

transition from gingivitis to periodontitis and its progression to

more severe stages. Fusobacterium serves as a bridge between

gram-positive symbionts and gram-negative pathogens in

dysbiosis (66). Additionally, it has been shown to inhibit

neutrophil proteases, thereby controlling tissue damage and

providing defense against P. gingivalis (67).

Prevotella was found in comparable abundance (8% vs. 7%),

consistent with prior studies (37, 42–45).Notably, sample 4 from

the healthy controls exhibited a unique microbial profile,

predominantly composed of Veillonella and Streptococcus, with

periodontal pathogens such as Treponema, Tannerella, Filifactor,

and F0058 either absent or present in insufficient abundance. This

atypical composition may be attributed to factors such as diet or

the patient’s advanced age, both of which can reduce microbial

diversity (68). Further studies with larger sample sizes are needed.

Peptoanaerobacter showed higher differential abundance in the

periodontitis group, highlighting its recently recognized role in

exacerbating inflammation and its prevalence in periodontitis

biofilms (69). Less common genera, including Phocaeiola (gut-

associated), W5053 (Firmicutes phylum), and Bulleidia (fecal

origin), were also observed. While these genera have occasionally

been detected in subgingival plaque of periodontitis patients (63–65,

70–72), their roles remain uncertain. However, these findings

support the principle of multiple organisms contributing to biofilm-

related disease, as previously described (73).

The control group showed a high differential abundance of

genera linked to periodontal health including Streptococcus,

Rothia, and Abiotrophia (35, 47, 74). Haemophilus, associated with

Streptococcus in healthy periodontium (61, 75), and Lautropia,

more common in younger individuals (35), were also observed.

To assess the risk of periodontitis progression based on

microbial composition, bacterial abundance was compared

between grade B and grade C cases. In moderate-risk grade

B cases, Porphyromonas (15%) and Treponema (13%) were the

dominant genera, consistent with their roles as keystone

pathogens of the red complex, which induce dysbiosis and

exhibit synergistic virulence in subgingival plaque (76, 77). In

contrast, in grade C, associated with rapid disease progression,

the abundance of the previously mentioned genera decreased

(7% for each), while Fusobacterium (20%) and Prevotella (9%)

became more dominant. The abundance of Prevotella was

similar in both grades, as species such as P. intermedia and

P. nigrescens from the orange complex are strongly linked to

periodontitis (35, 44, 78) and are found in high abundance in

both moderate and severe stages of periodontitis (79).

This study found that as periodontitis progresses from grade

B to C, Fusobacterium abundance significantly increases. Unlike

P. gingivalis, Fusobacterium potentiates inflammation by

stimulating IL-8 and other virulence factors (49), explaining its

persistence. However, the findings of this study contrast with

those of a monozygotic twin study, where Fusobacterium was

dominant in the grade B twin, while Treponema and

Fretibacterium were more abundant in the grade C twin (80).

The differences in severity between the twins, as well as the

discrepancy with the present study’s findings, may be attributed

to the small sample size and non-shared environmental factors,

TABLE 4 PERMANOVA and PERMANOVA homogeneity tests for beta
diversity conducted between cases and control groups.

Permonova test

Df Sums of Sqs Mean Sqs F.Model R2 Pr.F.
1 0.53 0.53 1.60 0.17 0.04*

8 2.64 0.33 NA 0.83 NA

9 3.17 NA NA 1.00 NA

Homogeneity test

Df Sum.Sq Mean.Sq F.value Pr.F.
1 0.01 0.01 2.44 0.16

8 0.02 0.00 NA NA

Df, dgree of freedom; SumsOfSqs, sum of squares; MeanSqs, mean sum of square; F.Model,

F-statistic model; R2, coefficient of determination; Pr.F., P-value of F statistic.

*Statistical significance.
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such as long-term smoking in the grade C twin and corticosteroid

use in the grade B twin (80).Additionally, a study in Brazil found

higher P. gingivalis prevalence in grade C, suggesting ethnic and

geographic variability (81).

Scardovia was differentially abundant in grade C patients, aligning

with an animal study (82), though a pilot study found Scardovia

wiggsiae, more common in periodontal health (83). This

discrepancy may result from differences in sequencing techniques

used (84). Candidatus saccharimonas typically present in low

abundance, was differentially abundant in grade B samples, with

elevated levels linked to severe periodontitis (37, 61, 85), though its

role remains unclear (86). Shuttleworthia and Bulleidia, enriched in

grade C, are associated with periodontitis progression (34, 87).

This pilot study had several limitations, primarily due to financial

and resources constraints, which restricted the sample size to ten

participants. These participants were selected based solely on the

highest DNA purity and quantity measures, regardless of

demographic matching. This introduced statistical limitations (e.g.,:

the absence of p-values for quantitative and qualitative variables),

and prevented comparisons based on gender or ethnicity. While

previous research (88) was unable to identify sex-specific oral

bacteria using 16S rRNA, the small sample size limits generalization.

Age may impact oral microbial composition by reducing bacterial

diversity (89). Future studies should use age-matched participants, a

larger sample, and explore bacterial profiles across ethnic groups in

SA to enhance generalizability and clinical reference. Finally, the

recent development of periodontitis staging and grading systems

limited the ability to draw definitive comparisons and conclusions.

However, this study has strengths in supporting the polymicrobial

synergy and dysbiosis model by identifying shared bacteria like

Fusobacterium between both groups, as well as underappreciated

bacteria such as F0058 and Peptoanaerobacter, which mediate

inflammation. Additionally, the study cohort, consisting of SA with

diverse ethnic admixtures, may further influence microbial

composition due to genetic and environmental factors (14),

highlighting population-specific patterns. By analyzing bacterial

abundance across periodontitis grades (B and C), the study provides

insights into the microbiota’s role in disease progression.

5 Conclusion

This pilot study highlights the complexity of the oral

microbiome in periodontitis, providing preliminary data that may

inform future analyses extending beyond 16S sequencing. These

analyses could further explore the role of Fusobacterium and the

overall composition of the microbiota, with particular focus on

population-specific patterns.
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