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Emerging oral Treponema
membrane proteins
disorder neutrophil
phosphoinositide signaling via
phosphatidylinositol-4-
phosphate 5-kinase
Natalie K. Anselmi, Stephen T. Vanyo and Michelle B. Visser*

Department of Oral Biology, The State University of New York at Buffalo, Buffalo, NY, United States
Background: Periodontitis (PD) is a group of inflammatory pathologies
characterized by destruction of the tooth-supporting tissues. During PD,
dysbiosis of the oral biofilm disrupts the host immune response and supports
growth of pathogenic bacteria including the spirochetes Treponema denticola
(Td), T. maltophilum (Tm), and T. lecithinolyticum (Tl). The outer membrane
protein of Td, Msp, perturbs the function of neutrophils by modulating
phosphoinositide (PIP) signaling. While Tm and Tl have similar outer
membrane proteins, MspA and MspTL respectively, little is known of how
these proteins affect neutrophil function.
Methods: This study examines putative mechanisms by which T. maltophilum
MspA and T. lecithinolyticum MspTL inhibit neutrophil chemotaxis. Murine bone
marrow neutrophils were treated with recombinant MspA or MspTL protein.
Protein phosphorylation was assessed via immunoblot, phosphate release by
malachite green assay, and PTEN and SHIP phosphatase activity through
immunoprecipitation, enzymatic assays, and chemical inhibition. PIP quantification
was assessed by immunofluorescence microscopy and Mass ELISAs, while small
GTPase activity was measured with G-Protein Activation Assays. Neutrophil F-actin
localization was determined through immunofluorescence.
Results: MspA and MspTL increase phosphate release in neutrophils, but unlike
Msp, they do not affect PTEN or SHIP activity, despite modulating cellular levels
of multiple PIP species [PI(3,4)P2, PI(4,5)P2, and PIP3]. Overall, MspA and MspTL
differentially affected the metabolism of individual PIP species, but both
increased PI(4,5)P2 levels in a PIP5K-dependent manner. Downstream effects
of disrupted PIP signaling included inhibition of Akt and Rac1 activation and
increased cortical F-actin localization.
Conclusions: Understanding distinct mechanistic relationships between novel
Msp proteins and neutrophils provides important insight into how these
understudied bacteria promote periodontitis progression.
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1 Introduction

Periodontal disease represents a spectrum of chronic

inflammatory pathologies affecting more than 40% of adults 30

years and older and 70% of adults 65 years and older in the

United States. Periodontal disease ranges from gingivitis, which is

characterized by reversible inflammation confined to the gum

tissue, to a range of categories of periodontitis (PD). PD is

characterized by progressive destruction of the periodontium,

manifested by irreversible loss of tooth-supporting soft tissue and

underlying alveolar bone, and is the leading cause of tooth loss

worldwide (1, 2). PD is initiated by disrupted homeostasis of the

complex oral microbiota and the immune system, driven by a

transition to an inflammogenic community (3–5).

Oral spirochetes proliferate to high abundance in the dysbiotic

subgingival biofilm during PD and preferentially colonize the

deepest part of diseased periodontal pockets (6–9), in close

association with immune cells at the tissue interface, including

neutrophils (10, 11). Treponema denticola is the most well-

characterized oral spirochete and classically colocalizes with

Porphyromonas gingivalis and Tannerella forsythia (classically

referred to as the “red complex”) during severe PD (12, 13).

There are ten named oral Treponema species, including

T. maltophilum and T. lecithinolyticum which are considered

important emerging “core periodontitis” pathogens (10, 11, 14,

15), yet are comparatively understudied. Numerous studies have

demonstrated the abundance and prevalence of these species in

deep periodontal pockets during different forms of periodontitis

(11, 14, 16–18) and infected root canals associated with apical

periodontitis or secondary failure (19–21). T. maltophilum and

T. lecithinolyticum have been reported to be more prevalent in

treatment-resistant endodontic lesions (22) and less prevalent in

periodontitis “resistant” individuals (>65 years of age, 20 or more

teeth, no periodontitis history) (11). Despite their prevalence,

little remains known regarding the pathogenic potential of these

Treponema species and mechanistically how they interact with

immune cells. The study of oral spirochetes remains limited due

to their unique fastidious nutritional requirements, complex

growth media required for in vitro culture (23) and limited tools

available for genetic manipulation (24, 25). Currently, limited

T. maltophilum and T. lecithinolyticum isolates and complete

genomic information are readily available. While development of

tools for genetic mutagenesis and complementation studies in

T. denticola continue to advance (25–28), none are currently

available for T. maltophilum or T. lecithinolyticum.

The major outer sheath protein (Msp) of T. denticola is a

highly expressed and immunogenic virulence factor, eliciting

strong antibody responses in human subjects (29, 30). Msp

forms a trimeric pore complex with dual adhesin and porin

functions in the outer membrane of T. denticola and secreted

outer membrane vesicles (30–33). T. denticola has a broad

pathogenic capacity toward host cells (reviewed in references (34,

35). Msp stimulates the expression of host proteases such as

matrix metalloproteinases, promoting tissue destruction and bone

reabsorption (35), has hemagglutination and hemolytic activity

towards erythrocytes (36, 37), and disrupts calcium-ion-mediated
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cell signaling and actin uncapping in fibroblasts (38, 39) and

chemotaxis in neutrophils (40, 41). Furthermore, T. denticola

lacking Msp increases neutrophil migration in vitro (40),

confirming the importance of this protein in intact treponemes

to impair neutrophil function.

Msp-like surface proteins have been identified in

T. maltophilum (MspA) and T. lecithinolyticum (MspTL) (42,

43). T. maltophilum and T. lecithinolyticum are more closely

phylogenetically related to each other than either is to

T. denticola. Correspondingly, MspA and MspTL are most

similar to each other and distinct from Msp (14, 16, 17, 44).

Early research showed that MspTL is a major membrane-

associated component of the T. lecithinolyticum outer membrane

(43) and that MspA in T. maltophilum forms a heat-modifiable,

detergent and trypsin-stable high molecular-mass membrane-

associated protein complex (42), similar to Msp in T. denticola

(32, 45). We recently demonstrated computationally that MspA

and MspTL are predicted to form large β-barrel monomers

composed of 20 all-next-neighbor antiparallel β strands, likely to

adopt a homotrimer formation, and experimentally validated

amphiphilic integral membrane-association, oligomerization and

surface accessibility for both native protein complexes (46).

Limited functional analysis of MspA or MspTL biological activity

towards host cells has been performed. We have recently shown

in vitro that purified recombinant MspA or MspTL monomer

proteins can impair murine neutrophil chemotaxis and that

surface expression of MspA or MspTL in an E. coli surrogate

system delays chemotaxis in a murine air pouch model of

inflammation (46). MspTL and MspA can also induce the release

of pro-inflammatory interleukins such as IL-1, IL6, and IL-8

from human monocytes and fibroblasts (47) and expression of

ICAM-I (44), while MspTL has been found to increase human

monocyte adhesion to microvascular endothelial cells (47).

Neutrophils are a major innate immune cell in the oral cavity

crucial for maintaining gingival health. They comprise the

majority of innate immune cells recruited to the gingival tissue

and crevice and are positively correlated with PD severity

(48–50). Furthermore, a lack of neutrophil infiltration into the

oral cavity, congenital defects in neutrophil development, or

defects of neutrophil function lead to an increased severity of PD

(51–54). Neutrophils are dynamic cells that perform diverse

biological functions including directed migration, extravasation

into tissue sites, and antimicrobial actions. Effective neutrophil

functionality is tightly regulated by complex phosphoinositide-

associated signaling pathways (55–57).

Phosphoinositides (PIPs) are a class of signaling lipids, whose

inositol head group can be phosphorylated by lipid kinases on

the third, fourth, or fifth position to elicit different signaling

functions (Supplementary Figure 1A) (55, 58). Among these

enzymes is phosphoinositide 3-kinase (PI3K), which generates

the second messenger phosphatidylinositol(3,4,5)trisphosphate

(PIP3) by phosphorylating the D3 position of the inositol ring of

phosphatidylinositol(4,5)bisphosphate [PI(4,5)P2], an integral

component of the inner leaflet of the plasma membrane (PM).

PIP3 recruits and activates numerous effectors at the PM to

regulate neutrophil function. Appropriate temporal and spatial
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localization of PIP3 at the leading edge is an integral step to direct

neutrophil chemotaxis (59, 60). In opposition to PI3K are

phosphatases that hydrolyze PIP3: phosphatase and tensin

homolog (PTEN) and SH2 domain-containing inositol 5′-
phosphatase (SHIP). PTEN dephosphorylates PIP3 to PI(4,5)P2
while the hematopoietic and osteolineage-restricted SHIP1 and

ubiquitously expressed SHIP2 dephosphorylate PIP3 to form

phosphatidylinositol(3,4)bisphosphate [PI(3,4)P2], a lipid second

messenger that shares some effectors with PIP3 (Supplementary

Figure 1B) (61, 62). Downstream effectors of PIP3 include Akt

and Rac1, which play complex interconnected roles in regulating

neutrophil behaviors including chemotaxis (63, 64).

Mechanistically, Msp disrupts the balance of phosphoinositide

signaling by activating PTEN and inhibiting PI3K activity leading

to inhibition of downstream Rac1 and Akt signaling to impair

neutrophil function (33, 40, 41, 65–67).

T. maltophilum MspA and T. lecithinolyticum MspTL have

recently been shown to modulate neutrophil function (46), but

knowledge of their molecular processes remains limited. Here we

focus on examining how these virulence factors modulate the

production of PIP species and the activity of associated signaling

pathways. Awareness of the novel mechanisms these

understudied bacteria manipulate to impact neutrophil function

is crucial for ongoing therapeutic development for PD to

improve oral health.
2 Materials and methods

2.1 Expression and purification of
recombinant MspA and MspTL

T. maltophilum ATCC51939 mspA codon-optimized sequence

(lacking the 19 amino acid signal peptide sequence) for E. coli

expression was prepared by GeneScript, enzyme digested and

cloned in frame with the N-terminal His-tag at the NdeI/HindIII

enzyme sites of pET30a to form protein expression construct

pET30a-Msp. T. lecithinolyticum ATCC 700332 mspTL (lacking

the 19 amino acid signal peptide sequence) in pQE30 was used for

recombinant MspTL isolation (44). E. coli BL21 Star (DE3)

(ThermoFisher) containing pET30a-MspA or E. coli M15

containing pQE30-MspTL were grown from an overnight culture

to an OD600 of ∼0.6 in 500 ml LB medium containing appropriate

antibiotics (E. coli BL21-pET30 constructs were grown with

100 μg/ml ampicillin. E. coli M15 contains a pREP4 plasmid that

confers kanamycin resistance, and so E.coli M15-pQE30 constructs

were grown with 100 μg/ml ampicillin and 25 μg/ml kanamycin.)

in a 2 L flask at 37°C with shaking (200 RPM). Isopropyl-β-d-

thiogalactopyranoside (IPTG, final concentration 1 mM) was

added, and the culture was incubated for 4 h at 37°C with shaking

to induce protein expression. Bacteria were harvested by

centrifugation (2,000 × g for 40 min at 4°C).

Recombinant His-tagged Msp lacking the signal peptide from

T. denticola 35405 was isolated as previously described (40).

Recombinant His-tagged MspA and MspTL proteins were

purified by gravity flow. Cell pellets were suspended in binding/
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washing (B/W) buffer (20 mM NaH2PO4; 500 mM NaCl; 20 mM

imidazole, pH 7.4) containing Protease Inhibitor Cocktail (1%

v/v; Sigma) and 0.5 μg/ml of Pierce TM Universal Nuclease for

Cell Lysis (Thermo Fisher Scientific), and lysed using an

EmulsiFlex®-C3 high-pressure homogenizer (1,000–1,500 psi at

4°C, three 30 s pulses). Soluble and insoluble fractions were

separated by centrifugation (15,500 × g for 30 min at 4°C) and

the insoluble fraction was solubilized in 10 ml of urea binding

buffer (8 M Urea, 300 mM NaCl, 50 mM NaH2PO4, 10 mM

imidazole, 1 mM THP; pH 8.0) for 60 min at room temperature

and then centrifuged (10,000 × g for 30 min at 4°C) to remove

cellular debris. Poly-Prep Chromatography Columns (Bio-Rad)

were loaded with 2 ml of His-Bind Resin (Millipore) to yield a

1 ml resin bed volume. The resin bed was washed with 3 column

volumes of ultrapure diH2O, charged with 5 column volumes of

nickel buffer (100 mM NiSO4 in diH2O), and equilibrated with

urea binding buffer before the supernatant was added. After

allowing the supernatant to flow through, the resin was washed

with 10 column volumes of urea binding buffer and the

recombinant proteins were eluted with 3 ml of urea elution

buffer (8 M urea, 500 mM NaCl, 250 mM imidazole, 20 mM

NaH2PO4; pH 8.0). Eluate was dialyzed sequentially against

Buffer A (4 M urea, 20 mM ethanolamine; pH 11.7), 1:1 Buffer

A, and Buffer B (2 M urea, 20 mM ethanolamine, 2 mM cystine;

pH 11.7), Buffer C (20 mM Tris Base, 2 mM cysteine, 0.2 mM

cystine; pH 10.7), and finally into PBS (pH 7.4). All buffers were

made in dH2O and dialysis steps were performed at 4°C for 8 h.

Protein concentrations were determined by BCA assay (Pierce)

and integrity and purity were assessed by SDS-PAGE. Proteins

were stored in PBS at −80°C.
2.2 Murine neutrophil isolation

Neutrophils were isolated from the bone marrow of mice using a

Percoll density gradient (68). Briefly, C57BL/6J wild-type mice (male

and female, 6 weeks old) were purchased from Jackson Laboratory

(Bar Harbor, ME). Following exposure to CO2 and cervical

dislocation, femurs and tibias were removed, and cells were

isolated from bone marrow by fractionation into discontinuous

Percoll (Sigma) gradients (80%, 65%, 55%). Mature neutrophils

were isolated from the 80%–65% interface and red blood cells

were lysed with RBC Lysis Buffer (BioLegend). Cells were

manually counted using a hemacytometer and then used in assays.

The University at Buffalo Institutional Animal Care and Use

Committee approved all procedures.
2.3 Neutrophil coincubation treatment

N-formyl-methionine-leucine-phenylalanine (fMLP) is a

bacterial peptide product known to stimulate neutrophils and

was used as an activation stimulus throughout this study.

Neutrophils (typically 1 × 106 cells per condition unless noted)

were incubated with either 100 nM rMsp, rMspA, or rMspTL

alone for 30 min at room temperature or recombinant proteins
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followed by a 1 min exposure to 1 μM fMLP, as indicated, in

HBSS++. Neutrophils exposed to HBSS++ were used as negative

controls while positive controls consisted of cells stimulated with

fMLP alone. Previous studies from our group support the use of

these protein concentrations and incubation times, as these

variables are within the range documented to produce observable

effects on host cells (40, 67, 69).
2.4 Assessment of protein phosphorylation
by immunoblotting

Neutrophils were treated with recombinant protein and fMLP as

described above, lysed with 30 µl 4X SDS sample buffer, and boiled

for 10 min. For immunoblot analysis, equal volumes of total protein

lysates were separated on 10% SDS-PAGE gels and then transferred

to nitrocellulose. Membranes were blocked in 5% milk/TBS/0.1%

Tween-20. Primary antibodies were incubated overnight at 4°C in

5% milk/TBS, followed by a one-hour incubation of (HRP)-

conjugated secondary antibody in TBS at room temperature. All

antibody dilutions are listed in Table 1. HRP was inactivated by a

30 min incubation in 0.2% sodium azide in TBST at room

temperature for reblotting. All blots were developed with

Protoglow ECL (National Diagnostics), and densitometry analysis

was performed using Fiji software (70). To quantify Akt

phosphorylation, the membrane was probed with the phospho-Akt

antibody and then reprobed with a 5% milk/TBS mixture

including both B-actin and Akt antibodies. Per condition, phospo-

Akt levels were normalized against Akt, with B-actin included as a

loading control. To quantify PTEN phosphorylation, membranes

were probed with phospho-PTEN or PTEN antibodies and

reprobed with B-actin. Phospho-PTEN and PTEN were

normalized against B-actin prior to comparison.
2.5 Phosphate release assay in whole cells

Cellular phosphate release was measured using a Malachite

Green assay as described (39). 1 × 105 neutrophils per condition

were suspended in phosphate-free HBSS without calcium or
TABLE 1 Antibodies used in this study.

Type Antibody Name, Source
Primary Phospho-Akt (Thr308), Rabbit

Primary Akt, Rabbit

Primary β-actin (8H10D10), Mouse

Primary Phospho-PTEN (Ser380), Rabbit

Primary anti-PTEN (1386G), Rabbit

Secondary Anti-rabbit IgG, HRP-linked

Secondary Anti-mouse IgG, HRP-linked

Primary Purified Anti-PtdIns(3,4)P2 IgG, Mouse

Primary Purified Anti-PtdIns(4,5)P2 IgM, Mouse

Primary Purified Anti-PtdIns(3,4,5)P3 IgM, Mouse

Secondary anti-Mouse IgM (Heavy chain) Cross-Adsorbed Secondary Antibody, Ale

Stain Acti-stain 555 Phalloidin

Stain DAPI
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magnesium (1.26 mM CaCl2·2H2O, 0.69 mM MgSO4·7H2O,

5.37 mM KCl, 136.89 mM NaCl, 5.55 mM glucose, 4.17 mM

NaHCO3; pH 7) and were partially permeabilized for 30 s with

0.2% n-octyl-beta-D-glucopyranoside (OG) in PHEM buffer

(60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2;

pH 6) with HaltTM Protease Inhibitor Cocktail (Thermo

Scientific). After 30 s, OG was diluted with phosphate-free

HBSS (dilution factor 2), cells were centrifuged at ≥10,000 × g

for 1 min, and the pellet was resuspended in phosphate-free

HBSS (equal to starting volume). Cells were divided into

microcentrifuge tubes and treated with MspA or Msp TL

proteins. Free phosphate release was measured using a

Malachite Green Assay Kit (#K-1500, Echelon Biosciences)

according to manufacturer instructions. In short, 25 μl of

phosphate standards or lysate were pipetted into the wells of a

96-well microplate in duplicate and incubated with 100 μl of

Malachite Green Solution for 15 min at room temperature.

Absorbance was read at 620 nm on a 96-well plate reader

(Molecular Devices FlexStation3).
2.6 SHIP1 and PTEN immunoprecipitation
and activity assays

SHIP1 and PTEN activity were determined using

immunoprecipitation assays as described (33, 67). Neutrophils

(5 × 106 per condition) were treated with recombinant MspA or

MspTL and fMLP as described, lysed with 500 μl lysis buffer

(25 mM Tris pH 8.0, 150 mM NaCl, 1% Triton, 1 mM EDTA,

5% Glycerol), and immunoprecipitated using an anti-PTEN

antibody (Cell Signaling, D4.3) or anti-SHIP1 antibody (Cell

Signaling, D1163) overnight at 4°C, followed by binding to

protein A agarose beads for 1 h (Sigma). Beads with

immunoprecipitated protein were washed three times with TBS

with 10 mM dithiothreitol (DTT), followed by incubation with

3,000 pmol of soluble PtdInsP3 (diC8-PIP3, #P3908, Echelon

Biosciences) substrate for 1 h at 37°C. Samples were used in a

malachite green assay to measure phosphate release as described

above. Absorbance was converted into pmol phosphate using a

phosphate standard curve.
Dilution Source
1:2,000 #9275, Cell Signaling Technology

1:2,000 #9272, Cell Signaling Technology

1:4,000 #3700, Cell Signaling Technology

1:2,000 #9551, Cell Signaling Technology

1:2,000 #9559, Cell Signaling Technology

1:10,000 #7074, Cell Signaling Technology

1:10,000 #7076, Cell Signaling Technology

5 ug/ml #Z-P035, Echelon Biosciences

10 ug/ml #Z-P045, Echelon Biosciences

20 ug/ml #Z-P345, Echelon Biosciences

xa Alexa FluorTM 488, Goat 1:500 #A-21042 ThermoFisher Scientific

1:50 #PHDH1, Cytoskeleton

1:10,000 # EN62248, ThermoFisher Scientific
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2.7 PTEN and SHIP chemical inhibition
assays

Neutrophils were isolated using phosphate-free HBSS−/− and

prepared as described in “Phosphate release assay in whole cells”.

Immediately before treatment with rMspA or rMspTL, cells were

treated for 30 min at 37°C with or without PTEN inhibitor

[2 μM SF1670 (Medchem Express)], SHIP1 inhibitor [25 μM 3α-

Aminocholestane (3AC) (Millipore Sigma)], or SHIP2 inhibitor

[10 μM AS1949490 (Echelon Biosciences)]. Phosphate release was

then measured via Malachite Green Assay as described above.
2.8 Immunofluorescence

Neutrophils were isolated and treated with 100 nM of

recombinant protein (2 × 106 PMNs per condition in 200 μl

HBSS). 100 μl of cells were moved to sterile coverslips

(2 coverslips with 1 × 106 PMNs each per condition) and left for

30 min at room temperature to allow for attachment. The

supernatant was removed, and cells on coverslips were incubated

with 200 μl of 1 uM fMLP at room temperature for 5 min; then

fixed with 300 μl 4% paraformaldehyde for 20 min. Coverslips

were washed three times with 400 μl TBS, and cells permeabilized

with 300 μl 0.5% Saponin (Thermo Scientific Chemicals) for

15 min at room temperature. Coverslips were washed thrice with

TBS and then blocked with 400 μl of 10% Normal Goat Serum

(NGS) in TBS either overnight at 4°C or 30 min at 37°C. Cells

were then stained with an individual anti-PIP antibody diluted in

10% NGS at concentrations indicated in Table 1 for 60 min at

37°C. Following incubation, coverslips were washed for 5 min with

300 ul TBS-NGS 1%, 3 times, and then stained with secondary

antibodies and stains, as listed in Table 1, in 10% NGS in TBS in

the dark for 45 min at room temperature. Coverslips were washed

thrice for 5 min with 300 ul TBS-NGS 1%, then mounted with

DAKO mounting media to a microscope slide. Slides were stored

in the dark at 4°C until imaging. Cells were imaged using an

Andor Dragonfly spinning disk confocal microscope, with five

images taken per coverslip. The mean gray value (average pixel

intensity in a given area, in this case a cell) was calculated for

each whole cell to determine the florescence of each cell. This

analysis was performed using Fiji macros; a cell was defined as an

object with an area of at least 10 pixles2 and a roundness of at

least 0.3 (71). Figures were prepared with the QuickFigures ImageJ

plugin (72).
2.9 Quantification of Pi(4,5)P2 from
neutrophils and PIP5K inhibition study

Neutrophils (5 × 106 cells per condition) were exposed to

recombinant 100 nM rMspA or MspTL for 30 min. In some

experiments, neutrophils were pre-treated with 30 μM ISA-2011B

(#50-202-9220, ThermoFisher Scientific) for 1 h at 37°C to inhibit

PIP5K activity, prior to treatment with rMspA or rMspTL.

Phosphoinositides were isolated using the NeoBeads PIP
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Purification System (#P-B999, Echelon Biosciences), following the

manufacturer’s instructions. 20 mg beads were reconstituted in

150 μl dH2O, and 1 mg of beads (7.5 μl slurry) was added to each

condition. Extractions were performed in disposable borosilicate

glass culture tubes. PI(4,5)P2 was quantified using the PI(4,5)P2
Mass enzyme-linked immunosorbent assay (ELISA) Kit (#K4500,

Echelon Biosciences) according to the manufacturer’s instructions.

All samples and standards were run in duplicate. Plates were read

at 450 nm on a 96-well plate reader (Molecular Devices

FlexStation3). PI(4,5)P2 (diC16) was used to construct standard

curves using non-linear regression analysis with GraphPad Prism

software, and data was analyzed with a sigmoidal dose-response

with variable slope curve analysis (four-parameter, 4PL curve fit).
2.10 Small GTPase-protein activation assays

The activity of small GTPases (Rac1, RhoA, Cdc42) in response

to treatment with recombinant Msp, MspA, and MspTL were

measured with commercially available G-LISA assays following the

manufacturer’s instructions (Rac1 #BK126, RhoA #BK121, Cdc42

#BK127, Cytoskeleton Inc.). 5 × 106 neutrophils per condition were

treated with recombinant protein prior to fMLP exposure for

1 min. Cells were lysed in 140 μl of the provided lysis buffer

following the manufacturer’s instructions. 100 μl of lysate was

snap-frozen in liquid nitrogen and stored at −80°C until further

use, and 40 μl of lysate was used immediately to measure protein

concentrations as described in the assay protocol. Cell lysates

containing equal amounts of protein were used between

conditions of all assays. Assay endpoints were measured using a

96-well plate reader (Molecular Devices FlexStation3).
2.11 Statistical analysis

Comparisons between two groups were performed by paired or

unpaired t-tests, as appropriate. Following normality tests (Shapiro–

Wilk, significance 0.05), comparisons between more than two groups

were performed by ANOVA with post-hoc Tukey HSD or Dunn’s

multicomparison tests, as appropriate. For immunofluorescence

data, outliers were identified by the ROUT method, Q = 0.5%. All

statistical analyses were performed using GraphPad Prism software

(GraphPad, San Diego, CA). Results are based on at least 3

independent experiments, as indicated by the n-value in each

figure legend, and are shown as individual points on graphs.

Statistical significance was defined as a p value of <0.05. Error bars

represent the standard errors of the means (SEM).
3 Results

3.1 MspA and MspTL disorder
phosphoinositide production in neutrophils

Intracellular phosphoinositide levels are tightly regulated by lipid

kinases and phosphatases. T. denticola Msp has been shown to
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disrupt this balance by increasing activity of the phosphatase PTEN,

which dephosphorylates PIP3 to form PI(4,5)P2, and inhibiting

activity of PI3-Kinase, which phosphorylates PI(4,5)P2 to form

PIP3 (67). Thus, we first assessed total phosphatase activity in

partially permeabilized neutrophils using a malachite green assay

and found that both MspA and MspTL significantly increased free

phosphate release in neutrophils (Figure 1A). Knowing that Msp

impacts PTEN regulation by altering phosphorylation (33, 67), we

examined PTEN phosphorylation at Serine 380 by

immunoblotting. Surprisingly, unlike Msp, neither MspA nor

MspTL significantly affected PTEN phosphorylation at S380

(Figure 1B). Using specific PTEN (Figure 1C) and SHIP1

(Figure 1D) immunoprecipitation assays, PTEN and SHIP1 were

immunoprecipitated from MspA- and MspTL-treated neutrophils,

and the amount of PIP3 converted to PIP2 was measured using a

malachite green phosphatase assay. However, there was no

significant difference in PIP2 production by either PTEN or

SHIP1. To verify this result, partially permeabilized neutrophils

were pretreated with specific chemical inhibitors for PTEN
FIGURE 1

MspA and MspTL increase phosphatase activity, but not via PTEN or SHIP ac
100 nM of recombinant MspA or MspTL for 30 min, then stimulated with
measured in neutrophil whole cell lysates by malachite green assay. (B) PTE
of activation. Neutrophils untreated or stimulated with fMLP served as n
loading control. Right shows the mean ± SEM of 6 independent experim
immunoprecipitated from neutrophil lysate and then used in malachite gr
treated with (E) 2 μM SF1670 (PTEN inhibitor), (F) 25 μM 3AC (SHIP1 inhibi
treated with 100 nM of recombinant MspA or MspTL for 30 min. Total pho
assay. Graphs show mean ± SEM of at least 3 independent experimen
***p < 0.001, ****p < 0.0001 by ANOVA, (A) F5, 12 = 8.969; (B–D) n.s.; (E) F5,
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(SF1670; Figure 1E), SHIP1 (3AC, Figure 1F), or SHIP2 (AS490,

Figure 1G) before exposure to Msp proteins and phosphate release

was again measured via malachite green assay. Inhibition of either

of these three phosphatases did not prevent MspA or MspTL from

increasing free phosphate levels. Overall, this data implies that

MspA- or MspTL-mediated increase in free phosphate is not due

to modulation of PTEN or SHIP activity.

Next, we examined the effects of MspA and MspTL on

individual phosphoinositide levels in neutrophils. Initially, we used

immunofluorescence analysis with antibodies against specific PIP

species as a relative quantitative measure. MspTL exposure

significantly decreased PI(3,4)P2 fluorescence in comparison to

both untreated cells and MspA-treated cells (Figures 2A,B),

though both MspA and MspTL increased PI(4,5)P2 (Figures 2C,D)

and PIP3 fluorescence (Figures 2E,F). In response to fMLP

stimulation, MspTL pre-treatment enhanced PI(3,4)P2 production

(Figures 2A,B), yet inhibited PI(4,5)P2 production (Figures 2C,D).

In contrast, both MspA and MspTL pre-treatment inhibited PIP3
production (Figures 2E,F) downstream of fMLP stimulation.
tivity. (A–D) Mouse bone marrow neutrophils were isolated, treated with
1 µM fMLP for 1 min prior to assays. (A) Total phosphatase activity was
N phosphorylation (Ser380) was assessed by immunoblot as a measure
egative and positive (+fMLP) controls while β-actin was included as a
ents, left shows a representative blot. (C) PTEN and (D) SHIP1 were
een assays. (E–G) Mouse bone marrow neutrophils were isolated and
tor), or (G) 10 μM AS1949490 (SHIP2 inhibitor) for 30 min at 37C, then
sphatase activity was measured in whole cell lysate by malachite green
ts, with dots representing biological replicates. *p < 0.05, **p < 0.01,

12 = 14.08, (F) F5, 12 = 13.39, (G) F5, 12 = 25.90.
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3.2 MspA and MspTL increase PI(4,5)P2 via
PIP5K

Considering that MspA and MspTL treatment increased PI

(4,5)P2 intensity by microscopy (Figure 2), PI(4,5)P2 is found at

a higher density than other phosphoinositide species in the PM

(55), and that it is affected by T. denticola Msp (67), we wanted

to more accurately quantify PI(4,5)P2 levels. Using PIP
FIGURE 2

MspA and MspTL proteins alter phosphoinositide levels. Murine bone marro
30 min or exposed to proteins then stimulated with 1 μM fMLP for 1 min.
phosphoinositide isoforms (green). Representative images showing antib
average mean gray value (MGV) of 3 independent experiments next to re
lines indicate quartiles and dashed lines indicate medians. **p < 0.01, ***
(C) H(5) = 161.1.
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purification NeoBeads together with a PI(4,5)P2 Mass ELISA, we

noted a significant increase in PI(4,5)P2 levels in neutrophils

treated with MspA (7.6 fold) or MspTL (4.8 fold) compared to

untreated neutrophils (Figure 3) (55). As our data suggests that

MspA and MspTL do not increase PTEN activity (Figure 1), we

assessed additional pathways of PI(4,5)P2 metabolism. PIP5K can

synthesize PI(4,5)P2 through PI(4)P phosphorylation. Thus, we

examined PI(4,5)P2 production in the presence or absence of the
w neutrophils were isolated, exposed to 100 nM of rMspA or rMspTL for
Cells were fixed to coverslips and stained for DAPI (blue) or individual
ody staining for (A) PI(3,4)P2 (B) PI(4,5)P2 or (C) PIP3. Graphs show
presentative images. MGV was calculated for each whole cell. Dotted
p < 0.001, ****p < 0.0001 by ANOVA, (A) H(5) = 86.58, (B) H(5) = 76.79,
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PIP5K chemical inhibitor ISA-2011B (73). There are three isoforms

of PIP5K in mammals: PIP5Kα, PIP5Kβ, and PIP5Kγ. Mouse (74)

and human (75) PIP5K isozymes were cloned by independent

laboratories in parallel resulting in differing nomenclature:

human PIP5Kα and PIP5Kβ, respectively, correspond to mouse

PIP5Kβ and PIP5Kα. As such, ISA-2011B inhibits PIP5Kα in

humans and PIP5Kβ in mice. Pretreatment with ISA-2011B

completely prevented MspA and MspTL from increasing PI(4,5)

P2 levels (Figure 3), suggesting the MspA and MspTL-mediated

increase in neutrophil PI(4,5)P2 is PIP5K dependent.
3.3 MspA and MspTL inhibit neutrophil
intracellular signaling downstream of PIP3

Appropriate recruitment of PIP3 binding effectors at the

plasma membrane pathway regulates numerous neutrophil

functions, including chemotactic directionality (76, 77).

Downstream of PI3K activation, Akt is allosterically activated by

the binding of PIP3 to its PH domain leading to phosphorylation

(78). Akt phosphorylation is considered an indirect measure of

PIP3 generation, thus Threonine 308 phosphorylation was

assessed by immunoblotting. While fMLP stimulation increased

Akt phosphorylation as expected, neither MspA nor MspTL

exposure alone induced significant Akt phosphorylation.

However, in line with our immunofluorescence data (Figures 2E,

F) both MspA and MspTL significantly prevented fMLP-induced
FIGURE 3

Inhibiting PIP5K prevents MspA and MspTL from increasing PI(4,5)P2
levels. Murine bone marrow neutrophils were treated with or without
30 μM of the PIP5K inhibitor ISA-2011B for 1 h at 37C followed by
exposure to 100 nM of rMspA or rMspTL for 30 min. PIPs were
isolated using NeoBeads PIP purification system and quantified
with PI(4,5)P2 Mass ELISA. Graph shows mean ± SEM of 3
independent experiments, each point represents a biological
replicate. *p < 0.05, ***p < 0.001 by ANOVA, F5, 12 = 13.62.
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Akt phosphorylation, with MspTL having a greater inhibitory

effect than MspA (Figure 4).

The small Rho family of GTPases are molecular switches

controlling essential cellular functions and processes including

migration and actin remodeling (79). Rac1 is crucial for

lamellipodia formation, requiring PIP3 for activation (80), and is

selectively inhibited by Msp (66). Small G-protein Activation

Assays (G-LISAs) were used to measure the activity of the Rho

family GTPases Rac1, RhoA, and Cdc42. Both MspA and MspTL

significantly prevented Rac1 activation in response to fMLP, to

an even greater extent than Msp (Figure 5A). MspTL did not

significantly prevent Cdc42 (Figure 5B) or RhoA (Figure 5C)

activation. There was a minor yet non-significant trend of MspA

to impair Cdc42 activation downstream of fMLP stimulation

(Figure 5B) while RhoA was not affected (Figure 5C).
3.4 MspA and MspTL modify actin
localization in neutrophils

Appropriate PIP recruitment and cell signaling drive the

dynamic actin rearrangements that underlie neutrophil

functionality (81, 82). F-actin polymerization and localization

were assessed by immunofluorescent microscopy of phalloidin in

MspA and MspTL-treated neutrophils. Exposure to either MspA

or MspTL alone or pretreatment of fMLP-stimulated neutrophils

with MspA or MspTL significantly enhanced the intensity of

F-actin as measured by immunofluorescence (Figure 6A). Plot

profile analysis reveals that actin is localized predominately at the

cell periphery (Figure 6B), indicating a thickening of the actin

cell cortex. PI(4,5)P2 regulates actin filament rearrangement by

sequestering free G-actin monomers, promoting F-actin

assembly, and binding numerous actin regulatory proteins (83).

Since our data indicates MspA and MspTL increase PI(4,5)P2
levels (Figure 3) in a PIP5K-dependent manner, we next assessed

F-actin phalloidin staining following exposure to the PIP5K

inhibitor ISA-2011b. In these experiments, MspA or MspTL

alone increased F-actin intensity and cortical distribution yet

pre-treatment with ISA-2011b prevented MspA or MspTL-

mediated increase in F-actin levels (Figures 6C,D).
4 Discussion

Periodontitis is driven by complex interactions between

bacteria and periodontal tissues, including immune cells, where

bacterial surface proteins directly interact with host cells.

Numerous Treponema species are prevalent in the subgingival

microbial community during severe periodontitis and remain

present both in individuals with persistent aggressive disease and

at non-responsive treatment sites (84, 85). The impact of

T. denticola and its virulence factor Msp on multiple host cell

types has been well-documented (29, 33, 38, 39, 41, 66, 86–89).

Despite their persistence during periodontitis, T. maltophilum

and T. lecithinolyticum virulence factors remain poorly

understood. Previous research has found that T. maltophilum
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FIGURE 4

MspA and MspTL inhibit Akt phosphorylation. Murine bone marrow neutrophils were treated with 100 nM purified recombinant MspA or MspTL for
30 min at RT then stimulated with 1 μm fMLP for 1 min. Akt phosphorylation at Thr308 was assessed by immunoblot as a measure of activation.
Neutrophils untreated or stimulated with fMLP served as negative and positive (+fMLP) controls, with β-actin included as an additional loading
control. (A) Densitometry graph of Akt phosphorylation at T308 with a (B) representative immunoblot. **p < 0.01, ****p < 0.0001 by one-way
ANOVA, F5, 38 = 71.53.
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MspA and T. lecithinolyticumMspTL proteins induce the release of

pro-inflammatory cytokines from monocytes and fibroblasts (44,

47), while MspTL also increases ICAM1 expression and

monocyte adhesion to microvascular endothelial cells (47). We

have recently shown that MspA and MspTL inhibit neutrophil

chemotaxis (46). In this study, we characterize the molecular

effects of the Treponema outer membrane proteins MspA and

MspTL on neutrophil PIP-associated intracellular signaling.

Appropriate neutrophil responses are required to maintain

periodontal health and are in part driven by complex regulatory

signaling pathways regulated by phosphoinositide metabolism

(55, 90–92). Our previous work, demonstrating that Msp

disorders activity of the PI3K/PTEN signaling axis and

downstream mediators to impair chemotaxis, led us to target this

pathway (33, 40, 67). Interestingly, our results herein indicate

that despite increasing cellular phosphate release neither MspA

nor MspTL appear to modulate activity of the phosphoinositide

phosphatases PTEN or SHIP. Our imaging analysis revealed that

both MspA and MspTL modulate the intensity of distinct PIP

species at the plasma membrane, including PI(4,5)P2, supported
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by our quantitative measurements. However, there are limitations

in the interpretation of our current quantification data. While the

visualization of transfected PIP-binding domains as molecular

biosensor probes for cellular lipid localization are often used,

they are not without weaknesses. Antibody-mediated PIP staining

remains a valid measure for estimation of subcellular localization

and relative quantification particularly when well-characterized

antibodies are used with appropriate fixation methods to retain

plasma membrane and lipid integrity (93, 94). Quantification of

cellular PIPs by techniques such as mass spectrometry has

advanced, yet remains technically specialized, and there are

limitations in comprehensively measuring all variants and

detecting small changes in low abundance species (95, 96). Thus,

biochemical approaches such as enrichment of total PIPs from

neutrophils using neomycin beads [NeoBeads (97)] together with

a specific PIP detector protein in a competitive ELISA-based

format (as utilized here), provide robust data. Overall, our

microscopic observations together with quantitative biochemical

analysis give confidence that PI(4,5)P2 production is increased by

these Treponema proteins. However, further study is needed to
frontiersin.org
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FIGURE 5

MspA and MspTL inhibit Rac1 activity. Total activity of (A) Rac1 (B) Cdc42 and (C) RhoA were measured in neutrophils treated with or without 100 nm
recombination Msp proteins for 30 min. and with or without 1 um fMLP for 1 min by G-LISA. All graphs show mean ± SEM of 3 independent
experiments, with each point representing a biological replicate. **p < 0.01, ****p < 0.0001 by ANOVA, (A) F4, 10 = 12,791, (B, C) n.s.

Anselmi et al. 10.3389/froh.2025.1568983
more accurately quantify and define temporal and spatial dynamics

of PIPs including PI(3,4)P2 and PIP3 following MspA and

MspTL exposure.

PI(4,5)P2 is the most abundant plasma membrane

phosphatidylinositol and a crucial intracellular signaling

molecule. It serves as a precursor for phospholipase C (PLC)–

generated and PI3K–generated messengers, directly regulates the

activity of many integral membrane ion channels and

transporters, acts as an anchor point for other proteins at the

membrane, and contributes to membrane and cytoskeleton

remodeling (55). While PI(4,5)P2 can be produced from PIP3
through PTEN activation, PI(4,5)P2 is predominately synthesized

by PI4P 5-kinases (PIP5K) from phosphatidylinositol

4-phosphate (PI4P) (98) or in lesser amounts by PI5P 4-kinases

(PIP4K) from phosphatidylinositol 5-phosphate (PI5P) (99).

There are three isoforms of PIP5K in mammals: PIP5Kα,

PIP5Kβ, and PIP5Kγ, each with many splice variants (98).

Conflicting PIP5K nomenclature exists, where mouse PIP5Kβ is

equivalent to human PIP5Kα and vice versa, and as this study

used murine neutrophils, we use the isoform nomenclature for

the mouse protein (74, 75, 100). PIPI5K isoforms demonstrate

unique subcellular localization in different cell and tissue types,

mediating temporal pools of PIP2 to orchestrate distinct cellular

functions. For example, mouse PIP5Kα (human PIP5Kβ) has

been observed at nuclear vesicles (101), mouse PIP5Kβ (human

PIP5Kα) localizes primarily to the plasma membrane (102), and

PIP5Kγ can localize to intracellular membrane compartments,

focal adhesion complexes, and intracellular connections (103).

Our experiments using the chemical PIPK5K inhibitor ISA-

2011B (which inhibits mouse PIP5Kβ) (73) to prevent MspA and

MspTL-mediated PI(4,5)P2 production indicates that the PIP5Kβ
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isoform is required for the activity of these proteins in

neutrophils. Additional research is needed to further delineate

how MspA and MspTL affect individual PIP5K isoforms, if they

directly manipulate PI(4,5)P2-associated protein activity or

transcription, or if the observed effects are solely due to altered

phosphoinositide production or other changes at the plasma

membrane. While T. denticola Msp does not affect the

transcription of PIP phosphate kinases we have examined to date

(33), our work herein indicates that MspA and MspTL differ

from Msp in their upstream effect on cellular pathways, therefore

we cannot exclude effects on transcription. Differences between

Msp-like protein functionality could occur, as we have noted

differences in their protein topological features (46).

Phosphoinositide-associated signaling regulates the dynamic

actin cytoskeletal remodeling that is required for neutrophil

functions including chemotaxis. Bacterial pathogens can disrupt

phosphoinositide signaling and actin dynamics at the host’s

plasma membrane to promote cell infection and modulate

function (104–108). T. denticola Msp modulates actin remodeling

dynamics in a PIP2-dependent manner (33, 67), and we extend

these findings by demonstrating that MspA and MspTL increase

the overall intensity of cortical F-actin in neutrophils.

Furthermore, our chemical inhibition studies reveal that MspA

and MspTL-mediated F-actin changes are PIP5K-dependent. In

neutrophil-like HL60 cells, human PIP5Kα (mouse PIP5Kβ) and

γ accumulate at the leading edge (109) while human PIP5Kβ

(mouse PIP5Kα) localizes to the uropod and interacts with actin-

membrane linking ERMs (ezrin, moesin, radixin) proteins, which

in turn inhibit RhoGDI and lead to RhoA activation (110–112).

PIP5Kγ also localizes to the uropod in mouse neutrophils where

its kinase activity is necessary for chemotaxis (113) and the
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FIGURE 6

MspA and MspTL increase cortical actin in neutrophils via PIP5K. Murine bone marrow neutrophils were isolated, (A,B) treated with 100 nM of MspA or
MspTL for 30 min, then stimulated with 1 μM fMLP for 1 min at RT or (C,D) Treated with 30 μM ISA-2011B for 1 h at 37C followed by 100 nM MspA or
MspTL. Cells were fixed to coverslips and stained for f-actin. Shows (A,C) mean gray values (MGV) of (A) 6 or (C) 3 independent experiments, dotted
lines indicate quartiles and dashed lines indicate medians. MGV was calculated for each cell. (B,D) show representative single cell images (top) and
their corresponding profile plot (bottom). ****p < 0.0001 by ANOVA, (A) H(5) = 470.5, (C) H(5) = 615.1.
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PIP5KIγ90 variant is polarized by interaction with neutrophil

integrins (114). Both PIP5Kα (human PIP5Kβ) and γ isoforms

are recruited to the neutrophil uropod (trailing end) during

polarization to contribute to cell retraction yet have distinct

functions within this process (110, 113). While much focus is on

impairment of the leading-edge formation (“frontness”) required

for neutrophil polarization as a prerequisite to chemotaxis;

including following exposure to Msp through disruption of PIP3
accumulation and Rac1 activation (40, 66, 67), improper

molecular recruitment and signaling at the uropod (“backness”)

through disrupting PIP5K interactions could impair migration
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and neutrophil function. Local synthesis of PI(4,5)P2 by the

PIP5KIγ90 isoform supports S. aureus invasion of human cells

(115) and this same PI5K isoform is involved in integrin-induced

neutrophil polarization and migration in vivo (114). To our

knowledge, no reports define a role for bacterial-mediated

manipulation of PIP5Kβ signaling, so this may represent a novel

molecular process by these proteins.

Effective signaling and regulatory pathways downstream of

receptor engagement through PIP-binding effectors are crucial

for cellular actin-mediated functions. Rho family small

GTPases are master regulators of the actin cytoskeleton and
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neutrophil function with PIP3 mediating their recruitment and

function at the plasma membrane (79). Like T denticola Msp,

MspA and MspTL prevent Rac1 activation while allowing

activation of RhoA and Cdc42 downstream of fMLP

stimulation, showing the neutrophils can still detect the

chemoattractant. This suggests Msp-like proteins from

different Treponema species selectively modify distinct

regulators of Rac1 and/or localization at the plasma

membrane, yet how this happens molecularly remains

unsolved. Polarized localization of Rac1 requires membrane

translocation dependent on specific plasma membrane

phospholipid nanocluster spatial localization and charge-

mediated electrostatic interactions preceding nucleotide

exchange (116, 117). Activation of small GTPases requires

nucleotide exchange factors (GEF), of which Rac1-specific

GEFs have been identified.

In this work, we show via phalloidin immunostaining that

MspA and MspTL increase the overall intensity of neutrophil

F-actin at the PM dependent on PIP5K activity. Many

proteins responsible for actin cytoskeleton remodeling at the

cell cortex are regulated by PI(4,5)P2-binding effector

molecules (118). Msp modifies actin filament formation and

uncapping through release of gelsolin and CapZ protein in

neutrophils (67).

While we have not defined specific mechanisms for actin

reorganization in this work, future studies will elucidate MspA/

MspTL-mediated actin-associated pathways regulated by the

PIP5K-PI (4,5)P2 axis in neutrophils. For example, in addition to

filament uncapping proteins, actin branching networks such as

the WASP/ARP2/3 complex important for actin remodeling at

the leading edge could be impacted (119). Actin-binding proteins

such as ezrin are required for cortical actin cytoskeleton and

plasma membrane cross-linked organization (120). In

neutrophils, ERM proteins are regulated by PIP5K and RhoA

interaction at the uropod to control cell retraction and

interaction with the substratum (110), thus disruptions to these

signaling networks could cause changes in physiological cortical

actin remodeling.

A question remaining is what the source(s) of the observed

increased free phosphate from neutrophils is. The malachite

green assay we utilized is based on the principle of formation of

a complex in the presence of malachite green, molybdate, and

free orthophosphate (121). This assay is commonly used to

measure phospholipid phosphatase activity (122) and we

presumed our results would demonstrate PTEN/SHP activity

releasing free inorganic phosphate during PI (4,5)P2 production.

However, in principle the free phosphate detected could

represent activity of other cellular lipid phosphatases, protein

phosphatases, enzymes or nucleoside triphosphatases. Protein

phosphorylation is one of the most common cellular post-

translational modifications regulating cellular processes (123). It

is possible that MspA/MspTL could affect the phosphorylation

state of numerous signaling pathways to impact neutrophil

behavior and this is an area to examine. In terms of PIP5K,

Msp proteins may modify phosphorylation events to change

kinase activity or protein interactions. For example,
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phosphorylation of PIP5Kβ at Ser214 reduces its activity (124)

while PIP5KIγ phosphorylation regulates its polarization and

interaction with FAK proteins (125). PIP5K can also

autophosphorylate its Ser/Thr residues, inhibiting its own

activity in vitro (126). We hope to, in our future studies,

identify the unknown source behind the observed increases in

free phosphate and eludicate the effects of MspA and MspTL

on PIP5K isoforms.

We initially hypothesized that MspA and MspTL disrupt

phosphoinositide signaling through modulation of PTEN activity

to dysregulate downstream neutrophil function. However, we

show that MspA and MspTL increase phosphate release in

neutrophils, but that unlike Msp, this is not a result of PTEN (or

SHIP) activity. Instead, while MspA and MspTL differently

modulate phosphoinositide species, both increase PI (4,5)P2 in a

PIP5K-dependent manner, inhibit Akt phosphorylation, decrease

Rac1 activity, and modify cortical actin distribution. Awareness

of the mechanisms by which these understudied bacteria

manipulate neutrophil signaling and function are crucial for the

development of therapies to halt the progress of periodontal

disease and improve oral health outcomes.
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