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Artificial intelligence and the
diagnosis of oral cavity cancer
and oral potentially malignant
disorders from clinical
photographs: a narrative review
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1Departmment of Oral and Maxillofacial Pathology, Radiology, and Medicine, New York University
College of Dentistry, New York, NY, United States, 2Department of Medicine, Section of Hematology/
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Oral cavity cancer is associated with high morbidity and mortality, particularly
with advanced stage diagnosis. Oral cavity cancer, typically squamous cell
carcinoma (OSCC), is often preceded by oral potentially malignant disorders
(OPMDs), which comprise eleven disorders with variable risks for malignant
transformation. While OPMDs are clinical diagnoses, conventional oral exam
followed by biopsy and histopathological analysis is the gold standard for
diagnosis of OSCC. There is vast heterogeneity in the clinical presentation of
OPMDs, with possible visual similarities to early-stage OSCC or even to various
benign oral mucosal abnormalities. The diagnostic challenge of OSCC/OPMDs
is compounded in the non-specialist or primary care setting. There has been
significant research interest in technology to assist in the diagnosis of OSCC/
OPMDs. Artificial intelligence (AI), which enables machine performance of
human tasks, has already shown promise in several domains of medical
diagnostics. Computer vision, the field of AI dedicated to the analysis of visual
data, has over the past decade been applied to clinical photographs for the
diagnosis of OSCC/OPMDs. Various methodological concerns and limitations
may be encountered in the literature on OSCC/OPMD image analysis. This
narrative review delineates the current landscape of AI clinical photograph
analysis in the diagnosis of OSCC/OPMDs and navigates the limitations,
methodological issues, and clinical workflow implications of this field, providing
context for future research considerations.
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1 Introduction

With a GLOBOCAN-estimated incidence of 389,485 cases and 188,230 mortalities in

2022, oral cavity and lip cancer remains a significant global source of cancer burden (1).

Greater than 90% of oral cavity cancers are squamous cell carcinomas (OSCC), and in

contrast to the relatively indolent natural history of cutaneous SCC, OSCCs are

typically aggressive. The 5-year survival rate of OSCC drops markedly with advanced

stage diagnosis, underscoring the need for continued research on both technological
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and institutional mechanisms of facilitating early diagnosis.

Clinical suspicion of OSCC necessitates prompt tissue biopsy and

histopathological examination to definitively confirm the

diagnosis. Advanced stage OSCC often has an ominous clinical

presentation, a clinical diagnosis with high correlation to the

definitive diagnosis. Early stage OSCC, however, is less overt in

its clinical presentation, with clinical features that overlap with

those of numerous oral mucosal disorders. As such, the “risk

stratification” or triage of patients presenting with abnormal

mucosal findings can be challenging, particularly in a non-expert

primary care setting.

The natural history of oral carcinogenesis varies from patient to

patient, and a majority of patients who develop OSCC have a

history of “premalignant” disease, variably manifesting with oral

mucosal abnormalities that carry an increased risk of OSCC

development known as oral potentially malignant disorders

(OPMDs) (2). OPMDs are “clinical” diagnoses rendered chairside

by the clinician and based upon history and clinical examination

findings that correlate to eleven different disorders (leukoplakia,

erythroplakia, proliferative verrucous leukoplakia, oral submucous

fibrosis, oral lichen planus, oral lichenoid lesions, oral graft-vs.

host disease, oral lupus erythematosus, actinic keratosis, palatal

lesions in reverse smokers, and dyskeratosis congenita). Oral

leukoplakia (OL), a commonly encountered OPMD, is a

diagnosis of exclusion made by ruling out benign diseases with

overlapping features. There are two subcategories of OL,

homogeneous and non-homogeneous leukoplakia. Homogeneous

leukoplakia is the more prevalent form and typically presents as

a homogeneous flat white plaque with well-delineated margins.

Non-homogeneous leukoplakia is less prevalent and can present

as a white plaque with variable surface topography (i.e., nodular

or verrucous), or a mixed or even speckled red and white plaque

(i.e., erythroleukoplakia). Non-homogeneous leukoplakia has a

higher propensity to become cancer. Similarly, the other OPMDs

have unique clinical features and categorization.

Taken collectively, the sheer number of permutations in clinical

presentation across the spectrum of OPMDs (and benign diseases

with overlapping features) augment the complexity of decision-

making both in a primary and in an expert clinical setting. In a

primary care setting, where OSCC and OPMDs have a low

prevalence (approximately 2%), clinicians, such as general

dentists, typically lack experience in the triage of patients

presenting with abnormal mucosal findings. Primary care

clinicians often use the term “suspicious”, a crude triage term

that typically triggers the important decision to refer a patient

for further diagnostic evaluation by an expert. General dentists

have been found to lack an analytical and consistent decision-

making strategy in the differentiation of malignant, premalignant,

and benign oral epithelial lesions based on clinical cues (3). This

can lead to both over- and under-diagnosis and inefficient

referral of patients. Various adjunctive tools, including light-

based detection systems and brush cytology, have been

systematically studied over the past few decades for their capacity

to improve triage accuracy of patients with mucosal

abnormalities “suspicious” for OPMDs/OSCC. Yet they too can

lead to both over- and under-diagnosis of patients (4, 5).
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Furthermore, some of these adjunctive tools are accompanied by

challenges such as costliness and limited availability that have

precluded their widespread incorporation into clinical practice.

In a secondary care setting, such as an oral medicine service,

patients referred with “suspicious” mucosal findings are re-

examined. Expert corroboration of the clinical diagnosis of

OSCC/OPMD will typically trigger tissue biopsy to establish a

definitive “gold standard” histopathological diagnosis that is the

current basis for management of this patient population (6).

Patients with definitive diagnosis of OSCC are typically referred

to tertiary oncology care centers for treatment. Patients with

OPMDs may receive variable histopathological diagnoses ranging

from OSCC to oral epithelial dysplasia (OED, with various

grades or severity) to non-dysplastic benign diagnoses. The risk

for cancer development of patients with non-malignant diagnoses

is highly variable and a number of predictive factors for cancer

development in patients with OL have been identified and

reviewed elsewhere (some examples include the clinical

phenotype of non-homogenous OL > homogenous OL, the

histological diagnosis of high > low grade OED, and the presence

of biomarkers such as aneuploidy of loss of heterozygosity (7),

and the composite of such predictors can carry different

implications for both cancer risk assessment and management

decisions. Irrespective of management decisions, all patients with

a history of OSCC and OPMDs require close monitoring.

In recent years, there has been a surge in research on using

artificial intelligence (AI) in the diagnosis and prognostication of

a massive range of medical and dental conditions, including

OSCC/OPMDs. AI encompasses myriad functionalities that

reproduce tasks previously attributed only to human cognition.

Computer vision, a field of AI dedicated to the interpretation

and understanding of visual data, has been increasingly applied

to medical diagnostics. Computer vision tasks such as object

detection, image segmentation, and image classification seek to

replicate or improve upon human image analysis. Various

research groups have duly examined the effectiveness of AI

systems in the diagnosis of OSCC/OPMDs based on clinical

photography as well as other imaging modalities.

Given the complexity of triaging patients with abnormal oral

mucosal disease, the application of AI to clinical photographs has

been proposed as an easily accessible and efficient diagnostic

adjunct for OSCC/OPMDs. The feasibility of such real-time

chairside triage from clinical photographs could engender a

consequential paradigm shift to both an earlier diagnosis of

patients with OSCC and the identification of patients with

OPMDs, particularly those at higher risk for cancer development.

This, in turn, could lead to a more efficient flow of patients from

primary care into expert care, thus reducing overall disease

burden (i.e., morbidity and mortality). Along with its expanding

capacities and promise in this domain, however, computer vision

presents its own unique challenges related to methodology and

clinical applicability.

The studies that have applied AI clinical photograph analysis to

OSCC/OPMDs diagnosis have had varying goals, ranging from a

binary classification of patients with abnormal mucosal findings

to facilitate referral of patients from a primary to expert care
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setting, to more complex multi-class discriminative tasks (i.e., the

ability to develop a prioritized differential diagnosis or to assign

cancer risk assessment categories). Several systematic reviews

have thus far delineated the scope of AI in the diagnosis of

OSCC and/or OPMDs based on clinical photographs. This

literature has space to benefit from a more comprehensive

scrutiny of the methodological and workflow implications and

the limitations of AI clinical photograph analysis. The purpose of

this narrative review is to appraise the status of AI clinical

photograph analysis in the diagnosis of OSCC/OPMDs and

elucidate its current methodological implications and clinical

applicability concerns and, in so doing, to steer future research

toward more streamlined and standardized applications of

computer vision in the chairside diagnosis of OSCC/OPMDs.

This review seeks the collaborative perspective of both data

engineers well-versed in the technical aspects of AI algorithms

and expert clinicians, such as Oral Medicine specialists, engaged

in the diagnosis and management of patients with oral mucosal

diseases. It will consist of an overview of the current terminology

and standards in AI image analysis, a description of salient

methodological findings from the extant studies on OSCC/

OPMDs photograph analysis, and a discussion about these

studies’ methodological and clinical applicability implications.
2 Section 1: overview of AI and image
analysis

Artificial intelligence (AI), which involves the generation of

human-like learning and tasks by machines, encompasses an

ever-broadening set of disciplines and branches. Computer vision

is the discipline of AI dedicated to the analysis and interpretation

of visual data such as images and videos and forms the

foundation of modern image analysis (8). This field has greatly

benefited from developments in both machine learning and deep

learning techniques.

Machine learning, a core discipline of AI, uses computational

algorithms to create models that make predictions and “learn”

from patterns within training data while improving their

performance without explicit programming (9). In the context of

image analysis, machine learning methods such as decision trees,

support vector machines, k-nearest neighbors, and simple neural

networks have been applied to tasks such as image classification

and object detection. However, conventional machine learning

approaches often require human expertise for feature

identification, extraction, and weighting in order to build a

predictive model; this “feature engineering” process may be

labor-intensive and less robust than desired in interpreting

complex visual data with large variations (8, 10).

In recent years, deep learning has replaced conventional

machine learning as the standard in image analysis (10). Deep

learning is a specialized branch of machine learning that utilizes

artificial neural networks with many (“deep”) layers that can

learn increasingly complex image features, from edges to shapes

to entire objects and scenes (9). Deep convolutional neural

networks (CNNs) have the capacity to automatically extract
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discriminative features from data and adjust their weights

through iterative backpropagation, refining the model’s predictive

performance without requiring manual feature extraction. With

each year, even more advanced model architectures continue to

emerge. For example, vision transformers treat images as

sequences of patches, allowing for global context understanding

and often outperforming CNNs on some tasks. Generative

adversarial networks can learn to generate highly realistic

synthetic images, enabling novel applications in synthetic image

data generation and augmentation.

The application of machine learning and deep learning in

image analysis can be categorized into supervised, unsupervised,

semi-supervised, or self-supervised approaches (9). In supervised

learning, the model is trained on labeled or annotated data and

used to predict already known outcomes. In medical image

analysis, a supervised model might be trained on a dataset where

each image is labeled with a known diagnosis. These labels are

the “ground-truth.” During training, the model learns to

associate image features with these labels through the following

process: for each given image, the model outputs a predicted

label (e.g., a diagnosis). This prediction is compared with that

image’s “ground-truth” label to gauge the level of error. The

model uses this feedback to adjust its internal parameters,

gradually improving its predictive performance. The effectiveness

of supervised learning relies heavily on the quality and quantity

of labeled data. However, generating “ground-truth” labels for an

image dataset often requires expert knowledge (e.g., from medical

professionals) and can be costly in terms of time, money, and

manual labor.

Unsupervised learning works with unlabeled data, aiming to

recognize patterns, cluster similar images, or identify anomalies.

In image analysis, unsupervised learning is often used for

dimensionality reduction, exploratory analysis of large datasets,

and as a precursor to developing more specialized models. Semi-

supervised learning bridges supervised and unsupervised

approaches by leveraging a subset of labeled data within a larger

pool of unlabeled data. This method is particularly useful when

labeled data is scarce or expensive to obtain. Self-supervised

learning leverages large amounts of unlabeled data to learn

meaningful representations of the data’s structure. This technique

has proven effective in developing “foundation models” for

medical imaging. For example, pathology image foundation

models have learned representations of general pathology visual

features that can be extracted and applied to specific datasets

(i.e., of a specific cancer). These pre-learned features serve as

powerful inputs for training new models on specific diagnostic

tasks, often resulting in improved performance using much

smaller labeled datasets compared to training from scratch.

In practice, supervised learning remains the most common

approach in medical image analysis due to its direct

applicability. However, semi-supervised and self-supervised

techniques are gaining popularity, especially in scenarios with

limited labeled data. Self-supervised learning, in particular,

typically requires substantial amounts of unlabeled data to be

effective, which can be an advantage in fields where unlabeled

data is abundant.
frontiersin.org

https://doi.org/10.3389/froh.2025.1569567
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Mirfendereski et al. 10.3389/froh.2025.1569567
The workflow for AI model development comprises various

steps (Table 1). Images used for AI analysis typically undergo

several processing procedures prior to their input to AI

models. Image quality control involves curation of datasets to

maintain quality, which can include elimination of images

affected by blurriness, noise, or artefacts. Image normalization

refers to the calibration of images by standardizing parameters

such as pixel intensity, color saturation, and size to uniform

scales. Dataset harmonization encompasses steps applied to

organize the dataset and prepare it for algorithmic input, such

as removal of duplicate images, elimination of sensitive

and irrelevant information, and unique and standardized

labeling. Data augmentation is a computational solution to

limited training data and refers to the generation of variants of

original training images based on techniques such as rotation,

flipping, cropping, scaling, translation, color transformations,

and noise injection. Data augmentation in theory enhances

a model’s invariance, or its resistance to artefactual variations

or perturbation of data, and it may also increase its

generalizability to outside data.

Different algorithms allow the completion of several important

image analysis tasks, including object detection, segmentation, and

classification (9). Object detection is the localization of a specific

object in an image via generation of a bounding box around the

object (also known as “annotation”). Segmentation is the pixel-

level delineation or demarcation of a specific object or objects in

an image. Semantic segmentation produces a single outline or

“mask” for all cases in a particular category (i.e., OL) present in

the image, while instance segmentation produces separate masks

for each case in the category. Classification is the assignment of

categories to images, and it can be either binary, which

discriminates between two classes, or multi-class, which

discriminates between three or more classes.

The development of a typical AI image analysis model

incorporates the phases of training, validation, and testing (11).
TABLE 1 Terminology of workflow steps and model components in AI image

Term
Image quality control Application of inclusion and exclusion criteria to images to

artefacts

Image normalization Adjustment of image parameters such as pixel intensity, co

Dataset harmonization Cleaning and preparing the dataset for the training process
labeling, and assigning unique identifiers

Data augmentation Generation of variants of original training images based on
transformations, and noise injection

Object detection Localization of an object within an image, typically by draw

Semantic segmentation Demarcation of all pixels associated with a particular class

Instance segmentation Demarcation of pixels associated with a particular class wit

Classification Assignment of categories to images at the binary level (2 ca

Training Process of teaching a model to recognize data patterns and

Transfer learning Pre-training of a model on a large, pre-established image d

Validation Refinement of model parameters based on performance on

Testing Verification of a trained model’s performance on unseen d

Internal validation Verification of a trained model’s performance on unseen d

External validation Verification of a trained model’s performance on unseen d

Explainability Methods seeking to provide insight into the decision-makin

Uncertainty quantification Methods seeking to quantify a model’s uncertainty level wi
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During training, the model iteratively processes the data, learning

to recognize patterns and make predictions by repeatedly

adjusting its internal parameters to minimize errors on labeled

examples. While models typically require large datasets to learn

complex patterns and generalize well, limited data availability is a

frequent challenge in the medical realm (9). To address this

issue, researchers often employ transfer learning, a technique that

involves pre-training a model on a larger non-study (often non-

medical) dataset, followed by fine-tuning with the smaller,

specialized medical study dataset.

In the domain of AI, validation refers to a phase in the training

process used to refine the model’s parameters based on its

prediction errors during training iterations, which differs from

the common interpretation in the medical field of validation as a

verification of performance (11). In AI, testing is the term used

for the verification of the model’s performance on unseen data.

However, in medical AI literature, the terms internal validation

and external validation have been used to describe the

verification of a model’s performance on unseen data derived

either internally, i.e., split from the original dataset, or externally,

i.e., obtained from a different time or location than the original

dataset (11). These terms align more closely with the AI concept

of testing, emphasizing the importance of assessing model

performance on independent datasets.

The purpose of internal and external validation is to assess the

generalizability of the model beyond the training data to the

population of interest. Overfitting occurs when a model is overly

adapted to the training data and performs poorly on unseen data

(12), while underfitting refers to a model that inadequately

processes relationships in training data and thus performs poorly

with both training and testing data. As with non-AI diagnostic

and predictive models, an external validation with an unbiased

dataset reflective of the population of interest constitutes the

superior means of verifying a model’s generalizability and clinical

applicability (11).
analysis.

Definition
maintain image quality, such as elimination of images affected by blurriness, noise, or

lor saturation, or image size to a uniform scale for comparability

by removing duplicate images, eliminating sensitive information, standardizing

techniques such as rotation, flipping, cropping, scaling, translation, color

ing a bounding box

with no distinction between individual objects encountered in that class

h distinction of each individual object encountered in that class

tegories) or multi-class level (3 or more categories)

make predictions from input data

ataset followed by fine-tuning with the study dataset

training data

ata

ata split from the original internal dataset

ata from a different temporal or geographic source

g processes of a model

th its decisions
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Evaluation of AI performance is possible through various

established metrics, which can differ based on the specific task

performed. The main metrics in classification tasks include the

following (9):

Accuracy: percentage of correct predictions (values range from

0% to 100%, with 1 representing optimum performance).

Sensitivity (recall): TP/(TP + FN) (values range from 0 to 1,

with 1 representing optimum performance).

Specificity: TN/(TN + FP) (values range from 0 to 1, with 1

representing optimum performance).

Precision: TP/TP + FP (values range from 0 to 1, with 1

representing optimum performance).

F1 score: (2 × recall × precision)/(recall + precision) (values

range from 0 to 1, with 1 representing optimum performance).

AUROC: area under the receiving operator characteristic curve

(ROC), which plots the true positive rate (sensitivity) vs. the false

positive rate (1—specificity) (values range from 0 to 1, with a

value of 0.5 representing performance no better than random

and a value of 1 representing optimum performance).

*TP = true positives, TN = true negatives, FP = false positives,

FN = false negatives.

Accuracy as a metric has a high risk of bias given its dependence

on the prevalence of a class in the population. For example, a model

presented with 98 images of OL and 2 images of normal mucosa may

accurately classify all the OL images and incorrectly classify all the

normal mucosa images and still have 98% accuracy. The F1 score is

known as the harmonic mean of sensitivity and precision and gives

equal weight to FN and FP predictions (9). The F1 score can thus

be advantageous in cases where classes are imbalanced, and as a

single metric, it may be preferred over either sensitivity or

specificity alone as prediction errors in one class might skew the

sensitivity or specificity. The main drawback of the F1 score is that

it does not consider TN predictions, but it is still applicable in

scenarios where the goal is to minimize FN and FP (13). The

AUROC can be useful in evaluating the discriminative performance

of a classification model at various thresholds (9). AUROC values

above 0.8 have typically been deemed to be clinically useful (14). It

is important to note that while studies often showcase results with

multiple performance metrics, the significance associated with a

metric may depend on the image analysis question being studied,

particularly as FN and FP predictions may not have the same

implications across all clinical scenarios.

Object detection and segmentation tasks are often evaluated

through a pre-defined threshold of intersection over union

(IoU) between the pixels of the ground truth bounding box or

mask and those of the model’s prediction (9). A graph of

sensitivity vs. specificity can be made, and the area under the

curve will produce the average precision, another metric used in

object detection and segmentation evaluation (15). The Dice

Similarity Coefficient (DSC) has also been applied to semantic

segmentation in particular (9, 15, 16). A spatial counterpart of

the F1 score, the DSC is defined as 2(A∩B)/(A + B), or 2 times

the intersection between the ground truth and the prediction

divided by the total number of pixels of the two.

Regardless of performance outcomes, a persistent concern

regarding the clinical application of AI models has been their
Frontiers in Oral Health 05
lack of interpretability. Historically, AI models have been called

“black boxes” due to the inability of humans to understand or

reproduce how the models ultimately derive their predictions.

Explainability refers to computational techniques aiming to

elucidate the decision-making process of AI models, such as

generating saliency maps that highlight the most important parts

of an image used for its predicted classification (17). Uncertainty

quantification, which refers to techniques aiming to estimate a

model’s level of confidence in its predictions, is another tactic to

quantify the reliability of AI models (18). For example, in

medical image segmentation tasks, probabilistic methods can

generate uncertainty maps highlighting areas where the model is

less confident in its delineation of anatomical structures or

lesions. Together, explainability and uncertainty quantification

techniques can offer insights into a model’s decision-making and

reliability, potentially increasing trust and acceptance of AI

predictions in the clinical setting. Transparency in research,

which can involve publicization of source code or data, can also

facilitate progress in AI image analysis. Figure 1 demonstrates a

possible workflow for AI image analysis of oral cavity

photographs that incorporates explainability techniques,

uncertainty quantification, and transparency practices.
3 Section 2: review of the literature on
AI clinical photograph-based diagnosis
of OSCC/OPMDs

A rigorous search of the literature was conducted through

PubMed for studies on AI and the diagnosis of OSCC and/or

OPMDs from clinical photographs published within the last 10

years. The keywords used, with appropriate Boolean operators,

were: “artificial intelligence,” “deep learning,” “machine learning,”

“diagnosis,” “detection,” “segmentation,” “classification,” “oral

cancer,” “oral squamous cell carcinoma,” “oral potentially

malignant disorders,” and “oral premalignant lesions.” Inclusion

was restricted to peer-reviewed primary research studies on AI-

based diagnosis of OSCC and/or OPMDs from clinical

photographs, with exclusion of non-primary research studies,

studies on imaging modalities other than clinical photographs,

and studies in which AI diagnosis was based on analysis of

clinical photographs and another imaging modality conjointly.

Titles and abstracts of resulting papers were reviewed for

relevance, followed by full-text review for inclusion and exclusion

criteria. This process was repeated for relevant papers mentioned

or cited within the studies meeting all inclusion and exclusion

criteria. A total of 37 primary studies were ultimately identified

and included in the review. Pertinent data from the studies

included in the review were extracted into a spreadsheet, and the

tabulated data is available in the Supplementary Table S1. For a

structured summary and analysis of specific study characteristics,

the review of the literature will be divided into the following

sections: data sourcing; data processing and augmentation;

ground truth establishment; image-analysis models and tasks;

model training, testing, and validation; performance;

explainability, uncertainty, and transparency.
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FIGURE 1

Possible applications and practices for AI models used for image analysis workflow of oral cavity clinical photographs. An oral cavity image can be fed
as input into an already trained model, such as a neural network, and the resulting output (depending on for what and how the model was trained)
could be for detection, segmentation, or classification of the lesion. There are also possible explainability, uncertainty quantification, and transparency
practices that can be a part of this workflow to provide more context to the output of the trained AI model.
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3.1 Data sourcing

Computer vision studies for the detection of OSCC/OPMDs have

used datasets of varying sizes, with the largest being the 6,903

photographs collected retrospectively by Hsu et al. (19). Many

studies have specified the modality used for image capture, with

smartphones and cameras being equally common. Figueroa et al.

and Song et al. employed a custom mobile intraoral screening

device for image collection that is also capable of integrating

autofluorescence images (20–23). Some studies have obtained

photos either wholly or in part from the Internet or from textbooks

or scientific papers with less precise sourcing (15, 24–27).

Several authors have proposed standardized image-taking

protocols to ensure consistency between datasets. Lin et al. (28)

used smartphones and a grid-based center-positioning protocol

for consistent lesion positioning and focal distance, suggesting

that this method would allow automatic focusing by their AI

model on discriminative disease regions without the need for the

extra step of manual object localization (i.e., bounding box

annotations by specialists). Kouketsu et al. (29) conducted one of

the more standardized photography protocols, collecting photos

taken by intraoral photography-trained oral surgeons via two

Canon cameras, with constant 1:3 magnification, manual focus,

maintenance of focus at a consistent distance from the subject,

and maintenance of the lens perpendicular to the oral lesion

of interest.

Given small sample sizes, the breadth and scope of OSCC/

OPMD cases in study datasets have varied significantly. To

better display the representativeness of their data, multiple

authors have provided a more detailed breakdown of OSCC

staging/grading, OPMD grouping (or presence/grade of OED),

lesion anatomic locations, and/or other demographic and

clinical metadata. Flügge et al. (30) included the breakdown of
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OSCC cases by stage, grade, and location. Fu et al. (31)

included the breakdown of OSCC cases by stage and location

and the breakdown of non-OSCC diseases by precise diagnosis.

In both Flügge et al. and Fu et al., the T1 and T2 OSCC cases

outnumbered the T3 and T4 OSCC cases. Kouketsu et al. (29)

included the breakdown of tongue OSCC by stage (only

including T1 and T2, as T3 and T4 were excluded) and the

breakdown of benign tongue lesions by precise diagnosis.

Tanriver et al. (15) included the breakdown of benign lesions

by disease category. The full spectrum of OPMDs has not been

investigated, with some disorders (i.e., oral lichenoid lesions,

chronic graft-vs.-host disease, and others) not being included in

any of the study datasets reviewed in this paper. Benign

“lookalike lesions” (i.e., those with similar visual characteristics

as OSCC/OPMD, such as traumatic ulcers and deep fungal

infections) have rarely been included in datasets.
3.2 Data processing and augmentation

Following collection of study images, certain pre-algorithmic

processing steps are performed, including image quality control,

image normalization, and dataset harmonization (Table 1). Hsu

et al. (19) delineated a scrupulous image quality control process,

specifying the exclusion of intraoperative photos, postoperative

photos, and photos including instrument-obscured parts or

affected by stains or blurriness. Their images were deidentified by

assignment of unique 6-digit padded number IDs. Normalization

techniques such as resizing, cropping, color normalization,

contrast enhancement, and noise reduction have been frequently

applied. Alanazi et al. (32) used Gabor filtering to reduce noise,

while Huang et al. (33) used a Noise Fading median filter to

reduce noise.
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In addition to their relatively small sizes, the datasets used for

OSCC and/or OPMD image analysis have also in many cases

suffered from imbalanced classes, reflecting the naturally differing

prevalences and hence the photographic repositories of OSCC,

OPMDs, and benign oral mucosal diseases in the populations

studied. Such class bias has been acknowledged as a source for

the propagation of errors in classification tasks (22). Various

approaches have been employed at both the data level and

algorithm level to address the overall lean datasets and the often-

imbalanced classes noted therein. Data augmentation to increase

dataset size has been applied in most studies. Notably, some

researchers have included noise injection into photos as an

augmentation technique to increase data variability and

reproduce real-world imaging circumstances. This is in contrast

to the pre-processing noise reduction techniques pursued by

others (32, 33). While some studies have included augmented

images in their test sets, others have refrained from testing

augmented images, acknowledging that it is not possible to know

if artefactual perturbation-specific characteristics could be

embedded in images and subsequently reflected by the AI

models in their decision-making outcomes. Several studies have

not explicitly reported the use of any data augmentation

techniques (16, 24, 29, 30, 32, 34–38).

To address imbalanced data, certain studies have applied

random oversampling of minority classes with or without

random undersampling of majority classes. With the goal of

obtaining relatively even numbers of images in each class,

random oversampling involves random selection of images to

duplicate (from minority classes) while random undersampling

refers to random selection of images to remove (from majority

classes). Zhang et al., whose dataset contained 87 cancer images

and 43 non-cancer images, used random oversampling to

duplicate 44 non-cancer images to obtain 87 images in both

classes (39). Lee et al. (40) introduced a novel data-level mosaic

augmentation method that involved the creation of new distinct

images containing a mosaic of representative areas from four

other images, with greater areas allotted to underrepresented

classes. Lee et al. noted improved performance with mosaic

augmentation compared to random oversampling. At the

algorithm level, Jubair et al. (34) applied weighted cross entropy

loss, which grants more weight to minority classes when

computing errors during training. Song et al. (22) variously

tested weighted cross entropy loss, focal loss to reduce the

influence of easily classified majority class images, and an

ensemble (i.e., combination) of these algorithm-level approaches

with random over- and undersampling techniques. Song et al.

noted that the ensemble of cross entropy loss (algorithm-level)

and over- and undersampling (data-level) led to improved overall

performance compared to either algorithm-level or data-level

techniques alone.
3.3 Ground truth establishment

Supervised learning has thus far been the standard for clinical

image analysis in OSCC/OPMDs, rendering the establishment of
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ground truth annotations a critical step in study design. Ground

truth annotations encompass all annotations made by human

experts, which are used to train models in supervised learning

and to gauge model performance. In classification tasks, ground

truth annotations refer to the class label assigned to an image.

Among studies on OSCC/OPMDs, this class label is typically

the “diagnosis” for the lesion(s) in an image. In object detection

and segmentation tasks, ground truth annotations comprise

the manual localization of the lesion(s) in addition to the

associated diagnoses.

Studies on OSCC/OPMDs have variously used

histopathological and/or clinical ground truth diagnoses. For

histopathological ground truth diagnoses, lesions would have

been biopsied, and a definitive histopathological diagnosis

rendered. For clinical ground truth diagnoses, lesions would have

been given a diagnosis by clinician experts based on visual

examination of the original lesion or an associated photograph.

As previously mentioned, histopathology is the gold standard for

diagnosis of OSCC and for diagnosis of dysplasia in OPMDs.

However, certain “lower-risk” OPMDs or benign lesions may not

undergo biopsy and histopathological examination, limiting the

ground truth to their clinical diagnoses.

Histopathology has been almost universally used for the

ground truth diagnosis of OSCC across image analysis studies.

A number of studies, however, used a small (n = 131) dataset of

OSCC and normal mucosal images publicly available on Kaggle,

an online data science platform, and this dataset is not

accompanied by any specification of histopathology for OSCC

cases (32, 33, 36, 39, 41, 42). As expected, the diagnosis of

OPMDs has been heterogeneous, with most studies using clinical

diagnoses and only select studies using histopathological

diagnoses for all or a subset of OPMDs. Many studies have

employed experienced specialists for clinical diagnosis

establishment, but few studies have explicitly mentioned the

clinical diagnostic criteria adopted. Lee et al. (40) and Talwar

et al. (37) specified diagnosis of OPMD based on the 2021 WHO

consensus report on OPMD nomenclature and classification (2).

Lin et al. (28) noted that histopathological diagnoses were

available for certain “high-risk OPMDs” (eg., suspicious for

dysplasia or OSCC) that happened to undergo biopsy during the

course of their evaluation. Camalan et al. (43) and Kouketsu

et al. (29) had histopathological ground truth diagnoses for all

OPMDs as they restricted their analysis of OPMDs to dysplastic

lesions (i.e., OL with various grades of OED). Ünsal et al. (16)

and Warin et al. (44), on the other hand, had histopathological

diagnoses for all OPMDs, which were not restricted to dysplastic

lesions. Dinesh et al. (45) specified that histopathological

diagnoses were available for all OSCC, OPMD, and normal

mucosa images in their study.

Ground truth localization annotations comprise different types,

and different types of localization annotations suit different tasks.

Bounding box and polygonal annotations are typically used for

object detection, while semantic and instance segmentation rely

on more precise pixel-level masks. Bounding box annotations

have sometimes been used in classification studies to supplement

image-level diagnosis labels, with the suggestion that bounding
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boxes can provide an additional level of attention to a classification

model by allowing it to focus on discriminative areas (20). Figueroa

et al. (20), Hsu et al. (19), Parola et al. (46), and Welikala et al. (27,

47) used bounding box annotations in addition to diagnosis labels

in their classification studies. Most object detection studies have

used bounding boxes, but Keser et al. (35), Kouketsou et al. (29),

and Dinesh et al. (45) used more precise polygonal annotations

in their object detection studies. Song et al. (23), Ünsal et al.

(16), and Vinayahalingam et al. (48) used pixel-level masks in

their segmentation tasks. Few studies have explicitly proposed

methods to address subjectivity in localization annotations.

Vinayahalingam et al. (48) specified a calibration process and

standardized annotation protocol for three clinicians performing

pixel-wise annotations. Ünsal et al. (16), who had pixel-wise

annotations performed by two specialists, calculated the intra-

class correlation coefficient (ICC) for both inter- and intra-

observer pixel-wise annotations and found them to be excellent.

Warin et al. (44, 49) had bounding boxes for each target area

drawn by three oral and maxillofacial surgeons, and the largest

area of intersection between the separate boxes was taken as the

ground truth. Welikala et al. (27, 47) proposed and employed a

unique method of combining multiple clinicians’ bounding boxes

into a single composite bounding box per lesion by first focusing

on grouping and combining similar bounding boxes based on an

IoU threshold and subsequently bringing bounding boxes

together based on a criterion of simple overlap.
3.4 Image-analysis models and tasks

Several AI branches, most notably deep learning, have featured

among studies aiming to diagnose OSCC/OPMDs from clinical

photographs. Studies have applied specific computer vision tasks

relevant to their research purposes, encompassing object

detection (15, 19, 29, 33, 35, 40, 44, 46, 47, 49, 50), semantic

segmentation (15, 16, 23), instance segmentation (15, 48), and

classification. While the majority of studies focusing on

classification have employed binary classification (20, 21, 25–27,

30–34, 36, 37, 39, 41–44, 47, 49, 51), multi-class classification has

been assessed as well, up to 5 classes (15, 19, 22, 24, 26–28, 38,

40, 46, 48, 50, 52, 53). Certain studies have distinguished

between OSCC and OPMDs, while others have merged OPMDs

and OSCC into a single class given their overarching aim of

separating lesions requiring referral or management from those

not requiring the same. Hsu et al. (19), Lin et al. (28), and

Welikala et al. (27) have all distinguished between higher-risk

and lower-risk OPMDs in their multi-class classification

experiments. However, there has been no standardization of risk

stratification pursued among these studies, despite risk

stratification for OPMDs being based on epidemiological data on

risks for malignant transformation. For example, Hsu et al. (19)

included oral submucous fibrosis in their middle or “yellow”

referral urgency class together with oral lichen planus, and

separate from either normal mucosa (low or “green” referral

urgency) or non-homogeneous OL (high or “red” referral

urgency), while Welikala et al. (27) categorized oral submucous
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fibrosis together with cancer in their highest referral class, the

“cancer/high-risk OPMD” class. Vinayahalingam et al. (48) and

Xie et al. (53) discriminated between two types of OPMD in

their multi-class classification studies, specifically OL and oral

lichen planus. However, no study to date has provided any more

detailed discrimination among the eleven distinct groups of

OPMDs beyond a dichotomous level.

Deep CNNs have featured as the most prevalent model in

classification studies. Marzouk et al. (36) used a deep CNN for

feature extraction followed by an auto-encoder for classification.

An ensemble of deep CNNs has been used with improved

performance in some classification studies (25, 46, 51). In addition

to deep CNNs, swin transformers (21, 30, 37, 42, 48) and vision

transformers (21, 37) have been applied to classification. Faster

R-CNN (27, 44, 49), single shot multibox detector (29), and You

Only Look Once (YOLO) (15, 19, 29, 49) have been used in

object detection studies, while U-Net (15, 16) and Faster R-CNN

(27, 44, 49) have been used in segmentation studies.
3.5 Model training, testing, and validation

Training a new model is an iterative process that requires a large

amount of data and computational power. To overcome the issue of

small datasets, transfer learning has been extensively used for model

development, with adoption of AI models pre-trained on large

datasets of images unrelated to the oral diseases of interest, in

order to streamline the optimization of model parameters.

Rabinovici-Cohen et al. (25) experimented with pre-training on

medical data, specifically a skin lesion dataset, rather than

standard non-medical transfer learning datasets, but found no

improvement in their model’s classification tasks with this approach.

Validation and testing have been approached differently in the

literature. As previously described, validation is used during

training to fine-tune the parameters of a model based on its

performance, while testing (also termed internal or external

validation depending on the test data’s source) is the verification

of a model’s performance after all training and fine-tuning are

finalized. A decrease in performance on the test data is expected,

but the goal of testing is to gauge a model’s ability to generalize

to unseen data.

K-fold cross-validation is a type of internal validation

technique used in some studies, in which the original dataset is

split into k (number) equal, non-overlapping subsets. The model

is then trained and tested k times, with each subset serving as

the test set once while the remaining subsets form the training

set. Importantly, the model is retrained from scratch in each

iteration, using a different combination of subsets for training.

Other studies split their data into separate training/validation

sets and a “held-out” test set (i.e., a set that is not used during

the training process and only used to verify performance at the

end). This approach also qualifies as internal validation.

Various studies have acknowledged that the relatively small

photographic datasets used, often from a single institution or

clinical department, may not reflect the full diversity of real-

world clinical data. Multi-institutional images have been used in
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some studies (20–23, 27, 31, 43, 47). However, only 2 studies have

actually pursued external validation to verify generalizability. Fu

et al. (31), whose original dataset comprised photographs from

11 hospitals, tested their deep CNN classification model on a

“clinical validation” set comprising 1,941 photographs from one

hospital and an “external validation” set comprising 420

photographs from six dental and oral and maxillofacial surgery

journals. Talwar et al. (37), who performed training and initial

validation on a dataset drawn from community-based outreach

programs of one institution, performed external validation using

a dataset from a separate institution.
3.6 Performance

Studies published on OPMD and OSCC detection,

segmentation, and classification have demonstrated overall

favorable performance. Studies have variously described parameter

optimization processes for enhancement of performance and in

some cases tested various models against one another. A deeper

analysis of the performance outcomes of these studies is beyond

the scope of this paper, and interested readers are encouraged to

refer to meta-analyses published on diagnostic performance of AI

image analysis in OSCC/OPMD (54–56).

Various performance metrics have been reported in the

literature. Among classification studies, the most commonly

reported metrics have been accuracy, sensitivity (recall),

specificity, precision, F1 score, and AUROC. In this context,

accuracy refers to the percentage of correctly predicted class

labels/diagnoses. Sensitivity (recall) represents the percentage of

positive cases (ex: OSCC) correctly classified as positive.

Specificity represents the percentage of negative cases (i.e.,

normal mucosa) correctly classified as negative. Precision

represents the percentage of a model’s positive classification

outputs that are actually positive. The F1 score represents the

harmonic mean of sensitivity and precision, granting equal

weight to false positive and false negative outputs. In multi-class

classification studies, these metrics have been calculated for

each class.

Among classification studies, some of the highest performance

outcomes are attested by Warin et al. (44), who achieved a

sensitivity of 98.75%, specificity of 100%, F1 score of 0.99, and

AUROC of 0.99 with their deep CNN classifier of OSCC vs.

normal mucosa. The performance outcomes of the two studies

that performed both internal and external validation will be

highlighted. Fu et al., who developed a deep CNN for binary

classification of OSCC vs. normal mucosa, achieved a sensitivity

of 94.9%, specificity of 88.7%, and AUC of 0.983 on their

internal test set and a sensitivity of 89.6%, specificity of 80.6%,

and AUC of 0.935 on their external validation dataset (31).

Talwar et al., who developed a deep CNN for binary

classification of suspicious lesions (OPMD/oral cancer) vs.

nonsuspicious lesions (benign lesions/normal mucosa), achieved

a sensitivity of 0.83, specificity of 0.85, and F1-score of 0.86 on

their internal test set and a sensitivity of 0.75, specificity of 0.70,

and F1-score of 0.73 on their external validation dataset (37).
Frontiers in Oral Health 09
While AI could theoretically surpass humans in discriminatory

capacity, few studies have compared AI and human performance

in OSCC/OPMD diagnosis. Several studies have compared AI

diagnostic performance to clinician experts and have failed to

demonstrate the superiority of AI (25, 45). Fu et al. (31) did

demonstrate superior performance of their classification model

compared to non-experts (medical and non-medical students), but

not experts (oral cancer specialists). Ye et al. (50) compared the

performance of their classification model with that of senior-level

clinicians, intermediate-level clinicians, and medical graduates

specializing in oral and maxillofacial surgery, and they found that

their model outperformed all three clinician groups in recall,

precision, and specificity. Ye et al. also performed a multicenter

field test of their model with separate external clinicians—

specialists from dental hospitals, general dentists from general

hospitals, and general dentists from community hospitals—and

compared the change in performance of these clinicians when

they classified images themselves and when they were

subsequently provided the model’s predictions as adjunctive

diagnostic information. The authors found not only that the

model significantly enhanced performance across all three groups,

but also that it raised their performance in certain metrics beyond

that of the senior-level dental clinicians tested before.
3.7 Explainability, uncertainty, and
transparency

Of the studies reviewed here, only a third have incorporated

explainability and interpretability tools for their AI models. In

general, visual explanation methods such as saliency maps are very

popular and of the studies reviewed here, the most common

explainability tool has been a type of saliency map called the

gradient-weighted class activation map, which transforms the

photograph of interest into a gradient-based heat map that reflects

the varying contribution of each pixel to the model’s classification

decision (25, 28, 30, 37, 40, 42–44, 47, 53). These maps have

helped highlight certain pitfalls in AI models. For example,

Figueroa et al. (20) noted that stained teeth in images were

identified as discriminatory areas for OSCC/OPMD diagnosis, due

to the coincidental presence of stained teeth in the OSCC/OPMD

images (in the context of reported tobacco chewing) rather than

true discernment of OSCC/OPMD visual characteristics.

Expanding upon the class activation map, Figueroa et al. (20)

applied a guided attention inference network (GAIN) architecture

for enhancing both their model’s classification performance and its

explainability. In this approach, they used traditional gradient-

weighted class activation maps generated by their CNN after a

classification task and reintroduced these maps as a separate input

stream into the CNN, thereby guiding the network to focus its

attention to discriminative areas of photographs.

Parola et al. (46) introduced a unique informed deep learning

and case-based reasoning explainability system. The case-based

reasoning approach uses similarity rankings between images to

explain its decisions, which is said to reflect the decision-making

process of clinicians as they diagnose new cases based on
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previously encountered similar cases. The model developed by

Parola et al. provides a visual explanation for its outputs by

presenting previous cases ranked by similarity to the input

image. Parola et al. also introduced “informed learning” by

having specialists produce their own similarity rankings to

override the model’s rankings in some cases, thereby training the

model to better reflect human cognition.

Uncertainty quantification techniques aim to estimate the

confidence of an AI model in its decisions. Uncertainty in AI

models can arise from various sources, including data randomness

or noise, model parameter uncertainty or architecture limitations,

or inherent ambiguity in the task. Importantly, many classification

models produce a probability score or inference score associated

with the outputted class, but this is not necessarily associated with

the uncertainty or confidence level of the model, as it may simply

reflect the relative area of an image occupied by the pixels relevant

to the classification. For example, Lee et al. (40) employed a soft

labeling algorithm that involved the output of a result vector with

three probability values representing the areas occupied by each of

the three classes (OSCC, OPMD, and noncancerous lesions) in

their classification study. Among the studies reviewed here, true

uncertainty estimation has only been pursued by Song et al. (23),

who developed a Bayesian deep network based on probabilistic

rather than deterministic models for semantic segmentation of oral

lesion images. This approach allows for the model to provide not

only a predicted segmentation but also a measure of the model’s

confidence in that prediction, possibly enhancing clinical utility in

OSCC/OPMD patient care.

Open science practices are crucial for increased transparency,

reproducibility, and collaboration between researchers conducting

medical AI model development. This includes making datasets,

source code, and trained models publicly available to all.

However, the clinical photograph datasets used in studies on

OSCC/OPMD have rarely been made publicly available due to

stated legal or ethical issues. Several groups have based their

research on a publicly available dataset on Kaggle (131 images),

but as previously mentioned, this dataset suffers from a small

size, and a lack of specified histopathology and other clinical data

that limit its validity (32, 33, 36, 39, 41, 42). Recently, Parola

et al. (46) published their oral image dataset (567 images) with

the stated goal of promoting research collaboration. Beyond

datasets themselves, only a few select studies have published their

source code for reference and use (28, 37, 46).
4 Section 3: discussion

Several limitations in study design and methodology become

apparent upon a review of published studies on AI-based

photograph analysis in OSCC/OPMD diagnosis. The most

obvious and well-acknowledged is the small size of the clinical

photograph datasets, even in comparison to other medical

conditions or other imaging modalities. The limited breadth and

scope of OSCC and OPMD photograph datasets present a hurdle

for generalizability and clinical applicability, as it is prudent to

conclude that few if any datasets currently available embody the
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full spectrum of OSCC, OPMDs, and benign lookalike lesions

that may be encountered in a real-world clinical setting. Data

augmentation, while necessary to create diversity in training data

and prevent model overfitting, does not substitute for an

independently larger dataset (10). Indeed, deep CNNs may be

able to learn the original features of images despite augmentation

techniques, diluting the novelty imparted by data augmentation.

There is an urgent need for establishing a well-curated, reliable

and representative database of clinical photographs of OSCC and

OPMDs, ideally accompanied by clinical information and other

metadata (57). Such a project has been initiated by Rajendran

et al. (58) via the MeMoSA® platform and Piyarathne et al. (59),

but only the latter’s repository is currently publicly available.

A large-scale, public database on the order of tens to hundreds

of thousands of trustworthy images could not only be used as

external validation for future studies, but also possibly even

facilitate the self-supervised training of foundation models that

can learn generalizable representations of OSCC/OPMD clinical

images. While amassing a repository of that scale of is a non-

trivial pursuit, even having a central database could facilitate the

fine-tuning of other already published natural image foundation

models or medical image foundation models for OSCC/OPMD

clinical image purposes. Fine-tuning trained foundation models

on smaller datasets for specific tasks like OSCC/OPMD detection

and segmentation, can potentially improve model performance,

robustness, and generalization while reducing the amount of

task-specific training data required. This approach has become

quite popular in the analysis of many other medical images,

from histopathology whole-slide images to radiology 3D image

stacks and even dermatological clinical images.

As far as supervised learning is concerned, external ground truth

establishment is critical, which introduces another potential pitfall in

studies given the subjectivity of ground truths. Indeed, clinicians’

diagnoses of OPMDs based on visual examination may suffer

from intra-observer and/or inter-observer heterogeneity (60).

Discordance in labeling and annotation of clinical images can

transfer human subjectivity to AI models, which can propagate this

issue. As previously discussed, multi-sourced annotation of

individual images has been proposed to reduce bias and has been

employed in some studies with varying methods of resolution of

inter-observer disagreement (16, 27, 44, 47, 49). There is no

consensus on optimal techniques for resolution of disagreement or

integration of multiple localization annotations, as the attested

techniques carry different risks of FN and FP outcomes that must

be weighed with respect to the clinical implications of these in the

context of the clinical questions studied.

The impact of image-taking modality, image quality, and image

normalization have yet to be studied in OSCC/OPMD photograph

analysis. It is naturally ideal to develop a model that can process

photographs derived from varying modalities and that is resistant

to image artefacts and variances. A model trained on a large,

robust dataset may be invariant to minor discrepancies in quality

and normalization. Given small datasets, however, diligent

quality control and normalization may be required in the data

preparation phase to minimize the propagation of biases and

errors. Nonetheless, from a clinical applicability perspective,
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models trained on perfected images may not be generalizable to

real-world photographs. Image dataset harmonization is distinct

from image quality improvement. Certain steps to clean and

organize the dataset such as case anonymization, removal of

sensitive information, extraction of useful labeling information,

unique labeling, and standardized annotation should be pursued

to safeguard data privacy and minimize logistical errors (61).

Scrupulous data maintenance and harmonization can increase

the feasibility of amalgamating image datasets for training or

testing and facilitate multi-institutional collaboration (62, 63).

Careful evaluation of a study’s aim, computer vision task

studied, and study design is also important in assessing clinical

applicability. Given the great variance in objectives pursued

among existing studies, not every model developed will

necessarily be meaningful in clinical OSCC and OPMD diagnosis.

For example, some studies have sought to classify OSCC vs.

normal mucosa, which is not particularly meaningful for clinical

practice unless early-stage cancers without overt visual features of

OSCC can be detected with high accuracy akin to advanced

cancers. Indeed, fewer studies have focused on the “grey” areas,

such as differentiation of OSCC or OPMDs vs. benign look-alikes,

early stage OSCC vs. OPMDs, or high-risk OPMDs vs. low-risk

OPMDs. In a primary care setting, introducing an image of a

benign, chronic traumatic ulcer with a “suspicious” appearance

into a binary classifier of OSCC vs. normal mucosa may lead to a

grossly inaccurate result. Binary classification systems

distinguishing OSCC and high-grade dysplasia vs. low-grade

dysplasia and benign look-alike lesions would be more useful

than binary classification of OSCC vs. normal mucosa. In the

specialist setting, the development of a multi-classification system

for the diagnosis of the full taxonomy of oral mucosal pathologies

may prove to be more clinically meaningful. It will also be

important to further investigate the performance and scope of AI

image analysis in OPMDs that rely more prominently on tactile

examination for accurate diagnosis, namely oral submucous

fibrosis. The ideal AI model will reflect the ontology used in

clinical practice for OSCC/OPMD diagnosis and management,

and its model architecture should be carefully designed

considering the dataset characteristics, sample size, and desired

capabilities. This includes incorporating explainability and/or

uncertainty quantification to enhance clinical usefulness. In any

case, selection of a clinically meaningful question should be at the

forefront of AI image analysis study design, and oral medicine

specialists can help drive future research in valuable directions in

conjunction with other clinicians and data scientist experts.

Additionally, conducting real-world implementation studies to

evaluate the impact of AI systems on clinical outcomes, workflow

efficiency, and cost-effectiveness in various healthcare settings

would provide valuable insights into the practical benefits and

potential limitations of AI-assisted diagnosis.

Many studies have shown promising performance statistics,

and the majority of studies have aptly presented well-established

core metrics such as accuracy, sensitivity, specificity, F1 score,

and AUROC. No single metric embodies all essential properties

of a model’s performance, hence the broad array of metrics

reported in the literature (64). Moreover, it is important to note
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that the relative significance attributed to a metric may differ

based on the setting in which a model is applied. For example,

FP outcomes for OSCC or OPMD diagnosis may have differing

implications in a primary care setting compared to a specialist

setting, and in a low-resource setting compared to a high-

resource setting. Despite these nuances, sensitivity has been

noted by some to be the critical metric in oral cancer diagnostics

given the greater consequences associated with a high FN rate

(65). Another important consideration is how to determine what

values for performance metrics are clinically acceptable. There

are no consensus guidelines on acceptable values for sensitivity

and specificity in OSCC/OPMD diagnostics. However, the

current gold standard, i.e., conventional oral examination

performed prior to histopathological analysis, has been found to

have sensitivity ranging from 0.5–0.99 and specificity ranging

from 0.94–0.99 (66). It has been suggested that novel diagnostic

systems must have sensitivity and specificity values above 0.9–

0.95 to prove clinically superior to the conventional oral exam

(4). Rigorous controlled trials comparing the performance of AI

models and human experts, and as per Ye et al. (50), comparing

the changes in human expert performance when unaided vs.

when aided by AI models, can allow for better contextualization

and validation of AI diagnostic performance.

Regardless of high performance, the risk of a model not being

able to generalize to real-world data is ever present as long as

representative datasets are not available for training and more

extensive external validation is not performed. Few studies on

OSCC OPMD image analysis have pursued external validation,

which hampers their current clinical applicability. The

comparison of the performance of various models seen in many

studies also warrants additional scrutiny. While it is common in

the field of data science to test the performance of various

algorithms or models against one another, the comparison of

models and the selection of one based on its performance on an

internal test set essentially relegates that test set to a validation

set (10). In this context, the differences in performance outcomes

among models noted may be of questionable value. Future

research should prioritize developing and validating models

across multiple diverse datasets to establish both broad

applicability across institutions and geographic regions, as well as

to define the specific conditions under which these models

perform reliably. This approach, combined with thorough

external validation, will help bridge the gap between promising

research results and meaningful clinical implementation.

The need for developing explainable AI has been stressed for

some time, yet progress in this domain has been slow. The

primary explainability technique attested in OPMD and oral

cancer photograph analysis is the class activation map, which

provides a visual survey of the relative discriminative utility of

each image region or pixel to the model’s prediction. Only one

study reviewed here has incorporated an example-based

explainability approach (46). In addition, the paucity of studies

reviewed here that have presented uncertainty quantification

remains another obstacle to AI incorporation into high-stakes

medical decision-making. To advance the community of AI

model development for clinical photographs of OSCC/OPMD,
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future studies should prioritize exploring both explainability and

uncertainty quantification methods (e.g., SHapley Additive

exPlanations, feature attribution methods, Bayesian neural

networks, Monte Carlo dropout, etc.) that are commonly

employed in other similar medical image analysis subfields (67, 68).

Headway in AI image analysis depends on greater transparency

in research. Several studies on OSCC/OPMD have published

their source codes, while few have published their image

datasets. Deliberate efforts to navigate relevant ethical and legal

requirements during initial study design can allow safe data

publicization and sharing, which in turn will provide an impetus

in the development of standardized and representative databases

of OSCC/OPMD images for external validation. These efforts

should begin with obtaining informed consent during data

collection from all patients, with explicit mention that images

will be used for medical image analysis and discussion of the

possible risks and benefits. Furthermore, protocols for de-

identification of images and maintenance of privacy should

be established. Even publishing only the source code of the

model architecture and training protocols should be standard

practice for reproducibility and greater transparency. Recently,

the TRIPOD +AI statement was published to provide

recommendations on responsible reporting for studies describing

the development and evaluation of a clinical AI prediction model

(69). This will further encourage the practice of open science in

the field of medical AI image analysis.

While computer vision in the study of OSCC/OPMD has thus

far focused on images, video analysis may be a feasible future

direction. CNNs have been used to study pharyngeal cancer

diagnosis from endoscopic videos (70). The development of a

standardized video-taking protocol could offer an opportunity for

real-time screening of the oral cavity for OPMD and oral cancer.

Multi-modal AI, which can integrate and process data from

multiple modalities, such as images, text, and audio, has the

potential to expand AI’s diagnostic and predictive power beyond

that of image-based analysis. Just as clinicians rely on more than

a visual examination to render a diagnosis of OSCC/OPMD,

multi-modal AI systems will likely prove more efficacious by

synthesizing clinical imaging with other data sources such as
TABLE 2 Primary limitations of current OSCC/OPMD AI image analysis studie

Current limitations in OSCC/OPMD AI
image analysis Action plans for futu
Limited size, diversity, and representativeness of image
datasets

Global, multi-institutional colla
benign lookalike lesions, ideall

Subjectivity and variability in ground truth
establishment

Adoption of gold standard cri
criteria for OPMDs) and proto
annotations

Questionable clinical meaningfulness of study aims Selection of clinically meaning
population of interest, through

Limited external validation External validation with image

Limited explainability Further research in data engin
decisions by clinicians and oth

Limited uncertainty quantification Further research in data engin
their decisions

Limited transparency in research Working in accordance with e
source codes for research adva
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patient history, demographic information, histopathology images,

and/or videos. ChatGPT, a generative and multimodal AI system,

has recently been studied for its ability to diagnose of oral

mucosal pathology based on visual and textual data (71). Multi-

modal approaches to OSCC/OPMD clinical image analysis can

potentially improve diagnostic accuracy. Additionally, developing

models that can analyze sequences of images over time to

detect progression of OPMDs or early signs of malignant

transformation could be particularly valuable for monitoring

high-risk patients and identifying subtle changes that may

indicate disease progression.

As AI continues to broaden in scope and potential in OSCC/

OPMD diagnostics, clinicians such as oral medicine specialists can

assist in study design to engender meaningful progress in the field.

Such specialists who are involved in OSCC/OPMD management

can contribute significantly to the standardization of clinical

photograph capture and enrichment of potential future public

repositories of OSCC/OPMD/benign lookalike images from

diverse populations. Similarly, they can contribute to projects

involving multi-sourced annotation of images and provide

valuable insight to data scientists on designing AI models that can

synthesize multiple data modalities and explain their prediction

and confidence in that prediction. Importantly, specialists will be

able to define the characteristic spectrum of disease (OSCC/

OPMD/benign lookalike lesions) as well as the clinical dilemmas

in management. This will help guide relevant and ethical study

questions appropriate to the clinical setting (ex: primary vs.

secondary, geographic location) and ensure concordance with the

ontologies, nomenclature, and diagnostic criteria used in clinical

practice. This will also bring into relief the desiderata for

representative external validation sets, narrowing the gap toward

clinical applicability. Table 2 summarizes the primary limitations

of the current state of OSCC/OPMD image analysis and proposes

action plans for improvement, many of which can be supported

by global oral medicine.

Ultimately, AI image analysis for OSCC/OPMD diagnosis

is still in the nascent phase of technical feasibility, and

further methodological advancements and rigorous study design

enhancements are needed to be able to establish generalizability
s and proposed action plans for improvement.

re research
boration to establish a large, variegated repository of OSCC/OPMD images as well as
y accompanied by clinical metadata

teria for ground truth diagnoses (histopathology for OSCC, consensus diagnostic
cols to resolve intra-observer and inter-observer heterogeneity for ground truth

ful study questions applicable to the clinical setting (ex: primary vs. secondary) and
collaboration with clinicians and other stakeholders

sets that represent the population of interest

eering to develop explainability methods that allow interpretation of AI model
er stakeholders

eering to develop methods of quantifying confidence or uncertainty of AI models in

thico-legal frameworks to make feasible the public sharing of image repositories and
ncement

frontiersin.org

https://doi.org/10.3389/froh.2025.1569567
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Mirfendereski et al. 10.3389/froh.2025.1569567
and clinical applicability. Beyond clinical applicability,

implementation and workflow as well as actual patient benefit

must be considered. This review infers that AI is currently

incapable of replacing a conventional visual and tactile exam in

the OSCC/OPMD diagnostic process. Well-designed prospective

studies may help establish clinical generalizability and clinical

applicability, and randomized controlled trials comparing AI

either alone or in adjunctive capacity to conventional diagnostic

methods will be necessary to gauge the benefit to risk ratio of AI

image analysis. This requisite pathway underlines the crucial

need for closer collaboration between clinicians, data scientists,

and other stakeholders in future research on AI image analysis

for OSCC/OPMD diagnosis.
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