
TYPE Mini Review
PUBLISHED 28 April 2025
DOI 10.3389/froh.2025.1592428
EDITED BY

Iole Vozza,

Sapienza University of Rome, Italy

REVIEWED BY

Devesh U. Kapoor,

Gujarat Technological University, India

Fatmah Alsharif,

King Abdulaziz University, Saudi Arabia

*CORRESPONDENCE

Remya Rajan Renuka

remya.praveen5@gmail.com

Prabhu Manickam Natarajan

prabhuperio@gmail.com

RECEIVED 12 March 2025

ACCEPTED 17 April 2025

PUBLISHED 28 April 2025

CITATION

Karuppan Perumal MK, Rajan Renuka R,

Kumar Subbiah S and Manickam Natarajan P

(2025) Artificial intelligence-driven clinical

decision support systems for early detection

and precision therapy in oral cancer: a mini

review.

Front. Oral Health 6:1592428.

doi: 10.3389/froh.2025.1592428

COPYRIGHT

© 2025 Karuppan Perumal, Rajan Renuka,
Kumar Subbiah and Manickam Natarajan. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.
Frontiers in Oral Health
Artificial intelligence-driven
clinical decision support systems
for early detection and
precision therapy in oral cancer:
a mini review
Manoj Kumar Karuppan Perumal1, Remya Rajan Renuka1*,
Suresh Kumar Subbiah1 and Prabhu Manickam Natarajan2*
1Centre for Stem Cell Mediated Advanced Research Therapeutics, Saveetha Dental College and
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Oral cancer (OC) is a significant global health burden, with life-saving
improvements in survival and outcomes being dependent on early diagnosis
and precise treatment planning. However, diagnosis and treatment planning
are predicated on the synthesis of complicated information derived from
clinical assessment, imaging, histopathology and patient histories. Artificial
intelligence-based clinical decision support systems (AI-CDSS) provides a
viable solution that can be implemented via advanced methodologies for data
analysis, and synthesis for better diagnostic and prognostic evaluation. This
review presents AI-CDSS as a promising solution through advanced
methodologies for comprehensive data analysis. In addition, it examines
current implementations of AI-CDSS that facilitate early OC detection, precise
staging, and personalized treatment planning by processing multimodal
patient information through machine learning, computer vision, and natural
language processing. These systems effectively interpret clinical results,
identify critical disease patterns (including clinical stage, site, tumor
dimensions, histopathologic grading, and molecular profiles), and construct
comprehensive patient profiles. This comprehensive AI-CDSS approach allows
for early cancer detection, a reduction in diagnostic delays and improved
intervention outcomes. Moreover, the AI-CDSS also optimizes treatment plans
on the basis of unique patient parameters, tumor stages and risk factors,
providing personalized therapy.
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1 Introduction

Oral cancer (OC) is becoming an increasingly serious global health challenge; thus,

patients must be diagnosed as early as possible to improve survival outcomes. It is the

third most common cancer in India and the major cause of cancer in males, with more

than 100,000 new cases every year (1–4). The alarming mortality rates associated with

OC necessitate intervention strategies focused on early diagnosis, accurate diagnosis,

and individualized treatment (5).
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OC management is highly complex because of the integration

of various information sources, such as clinical examinations,

medical imaging, histopathological analyses, and detailed patient

history. Conventional methods of diagnosis, including clinical

examination and biopsy, offer limited effectiveness in recognizing

early lesions and precancerous changes (6–8). These challenges

of diagnosis are compounded by these treatments being highly

invasive—surgery, chemotherapy, and radiation therapy—on

healthy neighboring tissues, thereby lacking accuracy and

efficiency (9). This clinical reality necessitates exploration of

complementary approaches that can increase early diagnostic

accuracy and refine treatment strategies to improve

patient outcomes.

The inherent heterogeneity of OC imposes additional

complexity on its clinical management. Unlike many other

malignant diseases, OC is characterized by the existence of

several subtypes arising from aberrations in biological entities

such as genes, proteins, RNAs, and metabolites (10). High-level

integration of various multiomics data from genomic,

transcriptomic, proteomic and metabolomic characterization is

needed to characterize these cancers effectively (11–13). With

advances in screening methodologies, diagnostic tools, and

therapeutic methods with better survival outcomes in recent

years, early detection, but still accurate prediction, continues to

pose major challenges in OC management (14).

AI-based clinical decision support systems (AI-CDSS) have

emerged as novel systems to address these intricate challenges in

OC management. These systems use advanced computational

techniques such as machine learning, computer vision, and

natural language processing to identify subtle patterns and

correlations within different types of patient data (15). Therefore,

AI methods contribute to early diagnosis, more accurate staging,

and the formulation of treatment plans specific to individual

patient profiles, tumor biology, and molecular characteristics

(16–18). AI-CDSS is particularly well suited for managing the

complexities and heterogeneity intrinsic to OC, as it analyzes and

merges immense volumes of multimodal data to generate

clinically actionable insights.

The combination of integrative biology with AI and omics

technologies provides opportunities for modeling pathological

processes as well as the clinical trajectories of OC (19). Despite

growing interest in AI applications for cancer management, there

remains a significant knowledge gap regarding the systematic

integration of AI-CDSS specifically for OC management. This

review highlights the importance of the AI-CDSS approach in

early diagnosis, minimization of diagnostic delay, and

improvement of opportunities for successful treatment.

Additionally, the AI-CDSS can detect tumor stage and risk

factors and customize treatment plans on the basis of individual

patient parameters, facilitating precision therapy for individual

patients. Additionally, the status of the AI-CDSS in OC diagnosis

and treatment highlights its role in patient outcome, treatment

efficacy, and diagnostic accuracy. Additionally, the limitations

and challenges of such systems are discussed, and future work

could involve incorporating future technologies into the

framework of OC as discussed in Figure 1.
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2 Role of the AI-CDSS in the early
detection and diagnosis of OC

Early detection of OC is critical for improving survival rates

and treatment outcomes. Conventional diagnostic methods,

such as visual examination and biopsy, on which OC diagnosis

relies, these methods are not as effective in detecting early-

stage lesions and precancerous conditions (20, 21).

Importantly, oral biopsy remains the gold standard for the

diagnosis of definite OC and yields critical histopathological

evidence that permits precise determination of the type of

cancer, grade, and possible molecular characteristics. The AI-

CDSS provides a complementary approach to identifying

patterns and biomarkers through multimodal analysis of data,

including clinical images, patient history, and molecular

profiles. One of the prominent applications of AI-CDSS is in

the analysis of medical imaging data, although some caution is

needed due to current limitations. Preliminary studies have

explored the potential of deep learning algorithms in analyzing

medical imaging data for the detection of oral precancer

lesions and early-stage tumors. However, the present studies

are also limited, and stricter validation is needed to prove the

accuracy of these tests (22). Notably, among imaging

modalities, CT scans are not the most appropriate tool for

evaluating soft tissue in oral squamous cell carcinoma

(OSCC). However, MRI provides greater soft tissue contrast

and is chosen for the delineation of tumor margins, local

spread, and lymph node involvement. Furthermore, AI can be

employed to identify abnormalities, making earlier detection

simpler and enhancing diagnostic potential; however, it cannot

be used as a substitute for traditional diagnostic tests.

The AI-CDSS integrates imaging and molecular information,

such as age, background, risk factors, and symptoms, with

patient data. Large-scale studies of OC diagnosis indicate that

AI can be employed to increase the accuracy of diagnosis and

support early detection programs. For instance, preliminary

findings from trials of experimental deep learning algorithms

indicated good performance, with accuracy rates ranging from

81% to 99.7%, sensitivities ranging from 79% to 98.75%,

specificities ranging from 82% to 100%, and AUC rates

ranging from 79% to 99.5% (23). These studies demonstrate

technical feasibility but lack robust prospective validation in

diverse clinical environments. In contrast, natural language

processing techniques for extracting informative data from

unstructured sources of data, such as clinical notes and

pathology reports, are also applied in the AI-CDSS (24). It

also enables the grading and classification of OC lesions,

which is crucial in treatment planning, prognosis prediction,

and early detection. A deep learning model was applied to

classify OSCC from histopathological images with a 93.2%

accuracy rate (25).

Despite these promising developments, the AI-CDSS must

remain a decision-support system, thus complementing and

augmenting the knowledge of health professionals and not

replacing them (26). Additionally, further research and

validation studies are needed before the universal application
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FIGURE 1

Shows an illustration of AI-driven CDSS for early OC management.

TABLE 1 Application of artificial intelligence in the early detection, diagnosis, and treatment planning of cancer.

Application Technique Purpose Stage References
Early detection Deep learning for medical image analysis (CT,

MRI, etc.)
Identify abnormalities, precancerous lesions, and early-
stage tumors

Experimental (27)

Integration of multimodal data (imaging, clinical,
molecular)

Comprehensive patient assessment for early detection Experimental (28)

Natural language processing of clinical notes and
reports

A Strategy for Deploying Cloud-Based Natural Language
Processing Systems for Clinical Text

Emerging/Clinically
Validated (Limited)

(29)

The Effectiveness of Artificial Intelligence in
Detection of OC

Early detection and diagnosis of OC using AI techniques Experimental (23)

Diagnosis Deep learning for histopathological image
analysis using deep and hybrid learning
approaches

Early diagnosis of oral squamous cell carcinoma based on
histopathological images

Experimental (30)

Combination of optical imaging modalities and
AI approaches

Improve early detection and diagnosis of oral and
oropharyngeal squamous cell carcinoma (OPSCC)

Experimental (31)

Treatment
planning

Analysis of clinical, genomic, imaging, and
multiomics data

Identify deep-level information in genomics,
transcriptomics, proteomics, radionics, digital
pathological images

Experimental (32)

Machine learning for outcome prediction Predict disease course, survival, and treatment response Emerging/Clinically
Validated (Limited)

(33)

Integration of high-throughput data and AI
techniques

Development of personalized medicine through analysis,
integration, and interpretation of massive biomedical data

Experimental (34)
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of the AI-CDSS for the diagnosis and management of OC can be

achieved. In this manner, issues related to data integrity,

algorithmic bias, and the integration of clinical practice should

be resolved. The various applications of AI-CDSSs in the

management of OC, such as early detection, diagnosis,

treatment planning, clinical implementation, ethical and

regulatory concerns, challenges, and potential directions, are

further discussed in Table 1.
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3 Ai models in OC detection and
treatment

AI applications in OC management generally involve diverse

computational models with separate architectures and abilities

for specific aspects of detection and treatment. Understanding

the specifics of these models is crucial in evaluating their clinical

use and limitations. Table 2 provides a comprehensive overview
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TABLE 2 Ai techniques and their applications in OC detection.

AI
technique

Method/
Algorithm

Application in OC Performance metrics Key advantages References

Deep learning Convolutional
Neural Networks
(CNN)

Analysis of oral cavity images for
lesion detection

Accuracy: 86%–97%, Sensitivity:
85%–96%,

Automated feature extraction from
complex visual data; ability to detect
subtle patterns invisible to human eye

(47)

Recurrent Neural
Networks (RNN)

Prediction of cancer progression
from temporal data

AUC: 0.82–0.91 Ability to analyze sequential medical data
and capture temporal dependencies

(48)

Generative
Adversarial
Networks (GAN)

Data augmentation for limited
histopathological datasets

Improved model accuracy by 8%–

15%
Addresses data scarcity through synthetic
image generation

(49)

Machine
learning

Random Forest Risk stratification based on
clinical variables

Accuracy: 78%–89%, F1-score:
0.75–0.86

Robust against overfitting; handles
heterogeneous data types

(50)

Support Vector
Machines

Classification of lesion types
from spectroscopic data

Sensitivity: 81%–92%, Specificity:
83%–94%

Effective with high-dimensional data;
robust classification boundaries

(51)

Computer vision Object Detection
(YOLO, Faster
R-CNN)

Automated detection of
suspicious regions in oral cavity
images

Precision: 83%–94%, Recall:
81%–92%

Real-time analysis; can be deployed on
mobile devices for screening

(52)

Semantic
Segmentation

Precise delineation of tumor
margins from imaging data

Dice coefficient: 0.79–0.88 Assists surgical planning; improves
resection accuracy

(53)

Feature tracking
algorithms

Monitoring lesion changes over
time

Detection of 7%–12% more
progression cases than manual
review

Early identification of malignant
transformation in precancerous lesions

(54)

Multimodal
integration

Ensemble methods Integration of clinical, imaging,
and -omics data

Improved predictive accuracy by
12%–18% over single modality
approaches

Comprehensive patient profiling;
captures multidimensional disease
patterns

(55)

Graph neural
networks

Modeling relationships between
biological pathways and clinical
manifestations

AUC: 0.85–0.93 Captures complex relationships in
heterogeneous data

(56)
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of various AI techniques and their specific applications in

OC detection.
3.1 Deep learning architectures

Deep learning models, such as convolutional neural networks

(CNNs) are the foundation for the detection of OC in images.

They have a definite structure that enables them to distinguish

visual patterns. CNNs extract visual patterns through a layered

structure: initial layers detect simple features like edges and

textures, while later layers identify complex patterns specific to

malignant transformations (35). Popular CNNs like ResNet and

Inception-v3 are utilised in histopathological image analysis for

OC (36). It is also valuable for transfer learning, where islands of

networks that had been previously trained on ImageNet trained

further on smaller, oral-cancer-specific datasets have shown

advantages due to the scarcity of available annotated OC images

(37). For example, a modified ResNet-50 architecture was used

by Aubreville et al. to analyze tissue in oral epithelium samples

with an accuracy of 93.1% in separating normal from cancerous

tissue, while attention maps highlighted diagnostically relevant

regions corresponding with pathologist annotations (38).

U-Net architectures designed for biomedical images have

shown essential accuracy in tracing tumor borders on OC

images. This kind of network adopts an encoder‒decoder layout

with skip connections that retain spatial information essential for

precise segmentation (39). Kanakarajan et al. reported that their

modified U-Net architecture for contrast-enhanced MRI images

achieved a mean Dice coefficient of 0.87 for tumor segmentation,
Frontiers in Oral Health 04
with an accompanying reduction in interobserver variability (40).

This method allows precise segmentation that can help clinicians

in decision-making regarding surgical planning and radiation

therapy targeting.

Long short-term memory (LSTM) networks, which are arch

species of Recurrent Neural Networks (RNNs), have made crucial

marks in the area of temporal data analysis in OC progression,

as well as treatment response monitoring. These architectures

integrate memory cells capable of capturing long-range

dependences in sequential data, making them feasible for the

study of time series clinical measurements and longitudinal

imaging (41). Thus, the LSTM networks have been applied to the

prediction of disease recurrence, basing the model on temporal

arrangements of biomarkers in the posttreatment period and

yielding accuracies ranging from 83% to 89% greater than those

of standard clinical assessment techniques.
3.2 Classical machine learning models

Random forest methods show immense promise in predicting

the risk stratification and prognosis of OC. These methods

generate a multitude of decision trees by training them on

bootstrapped data samples and randomly selected feature subsets,

aggregating their predictions to reduce overfitting and increase

generalization (42). For instance, De Silva et al. developed a

random forest-based model using a combination of clinical

variables, histopathological features, and selected biomarkers,

achieving 84.6% accuracy in predicting lymph node metastasis in

patients with OSCC (43, 44). The random forest models provide
frontiersin.org
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inherent feature importance rankings, offering clinically

interpretable evidence that perineural invasion and tumor

budding are particularly significant predictors.
3.3 Multimodal fusion architectures

Multimodal fusion networks utilize dedicated subnetworks per

data modality (imaging, genomic, or clinical) prior to fusing their

features in layers. These structures use attention mechanisms to

learn to adaptively weight the relevance of various modalities on

a case-by-case basis (45). In OC, this strategy has been shown to

outperform single-modality models by drawing from

complementary information from different clinical exams,

histopathology, radiomics, and genomic markers. Recent

applications have achieved a 5%–10% improvement in predictive

accuracy over single-modality methods through learned cross-

modal attention, which simulates the integrative diagnostic

process of multidisciplinary tumor boards (46).
4 AI-CDSS in treatment planning for
OC

Personalized treatment plans customized by tumor biology,

molecular signatures, and patient features are referred to as

precision oncology. The AI-CDSS is among the most significant

technologies that allow precision medicine in OC by combining

multiple data sources to support personalized treatment. AI

algorithms can analyze clinical, genomic, imaging, and other data

to detect patterns and biomarkers suitable for therapeutic

interventions in individual patients.

The AI-CDSS represents a significant advance in surgical

planning and treatment intervention optimization. The systems are

intended to support medical professionals by integrating a wide

range of data sources, thus enabling more comprehensive and

tailored treatment advice. The AI-CDSS supported improved

surgical decision-making by deciphering complex patient

information, such as clinical, imaging, and molecular data.

Important applications for artificial intelligence technologies in

surgical planning include improvements in tumor margin

delineation, the construction of three-dimensional tumor models,

and the prediction of possible surgical complications (57). Machine

learning algorithms analyze patient-specific information and classify

those risks to identify the best surgical strategies that can enhance

outcomes and ensure the safety of patients in surgical operations

(58). The evolution of genomic and molecular profiling has

revealed the heterogeneity of OC and the promise of targeted

therapy. The AI-CDSS strategy is intended to help surgeons make

data-driven recommendations that can be utilized to plan surgeries.

The prediction of likely surgical complications, determination of

the prominent intervention, and minimization of invasiveness

guarantee the successful resection of tumors (59). The AI-CDSS

also integrates information from several omics platforms, such as

genomics, transcriptomics, proteomics and metabolomics, to

develop an integrated molecular profile of oral tumors. Multiomics
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models yield rich information on the complexity of individual

patient cancer profiles, enabling precise targeting of the main

processes and pathways for personalized treatment strategies (60).

In addition to surgical intervention, the AI-CDSS can be

utilized to enhance other treatment protocols. These options

range from radiation planning therapy to the administration of

chemotherapy, as well as combination regimen planning. Such

platforms can review immense patient information, thereby

generating highly personalized treatment strategies on the basis

of the individual characteristics of the patients, tumor biology,

and projected results of treatment (61). The AI-CDSS can also be

extended to postsurgical management and follow-up. Machine

learning algorithms may help monitor patient recovery, predict

potential recurrence, and provide support for long-term

treatment strategies. However, it is very important to emphasize

that these technologies are designed to support, not replace, the

clinical expertise of healthcare professionals.
4.1 Clinical impact of the AI-CDSS in OC
management

The integration of the AI-CDSS into healthcare is important for

establishing clinical benefits, enhancing clinical decision-making,

increasing diagnostic accuracy, and personalizing treatment plans

(62). However, their use needs careful clinical validation and an

understanding of physician perceptions, which are important for

the successful implementation of technologies such as CURATE, an

AI-driven personalized dosing CDSS. Physicians play an important

role in implementing new clinical technology because developers

are provided with growth as well as feedback from patients. In

order to facilitate the clinical validation, integration, and eventual

adoption of the CURATE AI-CDSS, it is essential to understand the

perspectives of physicians (63). In addition to performance

evaluations, clinical validation is needed as a multidimensional

approach. The comparison of the AI-CDSS with expert clinician

diagnoses should be performed prospectively and through

randomized controlled trials across various clinical settings, and the

methodological protocols need to be standardized. These studies

should also incorporate comprehensive evaluation metrics that

extend beyond diagnostic accuracy, including clinical relevance,

cost-effectiveness, and enhancements in patient care pathways (64).

The key performance indicators should be sensitivity, specificity,

positive and negative predictive values, and clinical impact

measures such as a reduction in diagnostic delays, improvements in

treatment planning precision, and long-term patient outcomes.

Validation studies must involve diverse patient cohorts with

different demographic, genetic, and socioeconomic backgrounds to

establish the reliability and generalizability of the AI-CDSS (65).
4.2 AI/ML in head and neck cancer
diagnosis

AI and machine learning approaches are gradually becoming

very important in automated image analysis for diagnosis of
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patients suffering from head and neck cancers (HNC), particularly

OC. Recent reviews, based on analysis of 32 studies, show that

traditional machine learning methods were used in 29 studies,

whereas deep learning (DL) was used in 25, with only 6% of

combined use (66). Such AI/ML models demonstrated improved

performance compared with human evaluation in detecting

HNC-enhancing diagnostic accuracy and thus have immense

potential. However, their clinical applicability requires further

validation before they can be accepted as reliable and useful.

A significant limitation is the low generalizability of AI models

across different populations and environments. Models developed

using particular datasets, e.g., fair-skinned populations, tend to

underperform in darker-skinned populations, failing to fetch

essential presentations of oral lesions (94). This limitation is

further deteriorated by etiological variations across regions. For

instance, betel quid chewing is a leading risk factor in South

Asia, whereas tobacco and alcohol consumption are more

prevalent in Western nations (95). Consequently, an AI model

trained in one region may not generalize well to another, which

underscores the importance of having diverse training datasets

that capture global differences in disease presentation and risk

factors. Furthermore, the technical inconsistencies develop

increasingly complicated designs for model implementation.

Variations in imaging modalities (e.g., CT, MRI), device

calibration, and histopathological staining protocols affect the

performance of AI models when applied in different clinical

settings (96). Normally, MRI contrast or staining techniques

altered the appearance between the tumors and lesions, leading

to a class misrepresentation of the AI model.

Most of the AI studies are retrospective, and this bias makes

them overestimate performance from what is observed in the

controlled settings of research in comparison to their realities (97).

Only a few prospective clinical studies have been conducted, and

their lack makes it difficult to understand the varied clinical

conditions under which these models perform. Systematic

validation frameworks with multiphase clinical trials are now a

pressing need to close that gap. They should involve not only

algorithm accuracy tests but real-world clinical utility, patient

outcomes, and impacts on treatment strategies. The primary

endpoints of efficacy include but are not limited to early detection

rates, diagnostic precision, treatment optimization, and patient

survival (67). Preliminary studies have reported high accuracy

rates (81%–99.7%), but systematic validation frameworks

involving multiphase clinical trials are urgently needed. These

clinical trials should evaluate not only the accuracy of algorithms

but also their real-world clinical utility, patient outcomes, and

impacts on treatment strategies. Early detection rates, diagnostic

accuracy, treatment optimization, and patient survival are critical

benchmarks for assessing AI-CDSS effectiveness (67).
4.3 AI-CDSS for OC screening and early
detection

The incidence of OC and potentially malignant disorders is

increasing, and mortality rates are greater due to limited access
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to resources for early detection. The use of AI-CDSS in

smartphone-captured images of the oral cavity via deep learning

models is highly promising. These methods have shown

promising results in differentiating between suspicious and

nonsuspicious oral lesions, hence aiding in the screening and

early detection of OC (68). Despite the rapid development of AI-

CDSS, how these systems are being adopted is still unknown.

According to a recent study on Chinese hospitals, 23.75% have

adopted the AI-CDSS. Challenges included methodological

biases, data quality issues, and a lack of improvements in

functions. Furthermore, respondents from hospitals that have

already implemented the AI-CDSS expressed varying levels of

satisfaction, with responses ranging from “neutral” to “satisfied”

(69). The complexity of AI-CDSS implementation requires

frameworks that balance technical sophistication with clinical

interpretability. Figure 2 illustrates a comprehensive Explainable

AI (XAI) CDSS framework that outlines different approaches to

achieving transparency and interpretability in healthcare AI

systems. This framework is particularly relevant for OC

management, where clinician trust and understanding of AI

recommendations are essential for the successful integration of

AI into practice. To ensure that the clinical impact of the AI-

CDSS in the management of OC is maximized, research should

focus on systematic clinical validation frameworks that include

comprehensive prospective studies about the performance of the

AI-CDSS compared with the gold-standard clinical assessments.

The resolution of issues, including methodological biases, data

quality, and system functionality, may significantly enhance

diagnostic accuracy, optimize treatment strategies, and improve

patient outcomes in OC.
4.4 AI in multiomics data integration for OC

The integration of multiomics data presents a unique new

opportunity for AI applications in OC management. These AI

approaches are remarkably versatile in handling heterogeneous

datasets because they involve the application of multiple

advanced mechanisms. AI-based integration of heterogeneous

data can utilize deep learning architectures, particularly

multimodal neural networks that accept data types of various

natures as inputs, enabling their original form and characteristics

to remain (71). These networks use a particular encoding layer

for each data modality—a convolutional layer for imaging data

and recurrent networks for sequential genomic data—and they

feed attention mechanisms on clinical variables. Integrative

transfer learning exploits a high-dimensional data approach in

pretraining models over a large dataset before fine-tuning on OC

data, thereby effectively retaining important biological signals

shiftable in smaller cohorts, which would not have previously

been used for fine-tuning (72). More recent methods include

graph neuro-networks that consider interrelationships of

multiomics as interlinked nodes; therefore, this also enables the

identification of complex cross-platform biomarker patterns (73).

For instance, it can link specific genomic abnormalities with

resulting changes in protein expression and associated
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FIGURE 2

Explainable AI (XAI) clinical decision support systems framework for healthcare applications. The framework illustrates four main approaches to XAI
CDSS: Scoop-based, Model-based, Complexity-based, and Methodology-based. Each approach offers different explainability methods including
data explainability (using text, EHRs, omics, audio, images, graphs, and signals), model explainability (through CNN, RNN, LSTM, transformers, and
reinforcement learning), intrinsic explainability using neural networks, and post-hoc explainability through visualizations. The bottom panel
demonstrates practical applications in (A) disease detection, (B) bedside decision support, (C) treatment and prescription, and (D) clinical practice
implementation. Adapted from Kim et al. (70).
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radiographic features in oral tumors, achieving molecular

phenotyping on a holistic basis that exceeds the explanatory

power of single-modality approaches (74).

Despite these developments, the integration of multiomics

remains a challenge. Data harmonization is exceedingly

difficult, particularly when examining data obtained from two

different platforms or protocols in diverse institutions. AI

methodologies, such as domain adaptation and generative

adversarial networks, can provide promising solutions for

eliminating batch effects and protocol variations without

altering the biological signal characteristics of the data (75,

76). Missing data are a significant problem for multiomics

studies, and current methods for imputing such missing data

are becoming increasingly sophisticated because they consider

correlations across platforms to estimate missing values more

accurately than traditional statistical methods (77). Another

continuing challenge concerns the computational efficiency of

processing multidimensional high-omics datasets that often

require large amounts of computing resources, which may not

be available in a clinical setting. Model compression and edge

computing developments are beginning to help fill this

implementation gap (78). The federated learning approach
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provides a valuable opportunity for collaborative AI model

development across multiple institutions, enabling the creation

of robust multiomics integration models for diverse patient

populations while safeguarding sensitive patient data and

addressing privacy concerns (79).

OC specifically benefits from AI multiomics integration, which

provides an essential opportunity for characterizing the molecular

heterogeneity of malignancies. Recent studies have employed these

methods to identify molecular subtypes with distinct prognoses

and treatment responses not discovered by classical

histopathological classification (80). Clarifying the relationships

between genomic alterations and protein expression patterns has

led to the identification of novel druggable targets in certain

cases of resistant OC. Most importantly, new trends could also

allow the integration of spatial transcriptomics and digital

pathology with traditional omics datasets, thereby providing

insight into the tumor microenvironment and cellular

interactions that drive OC progression (81). These

comprehensive strategies are enhancing a pivotal shift toward AI-

driven multiomics integration in the interrogation of OC biology,

thus enabling more precise diagnostic and therapeutic

interventions specific to an individual’s molecular profile.
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5 Ethical considerations and regulatory
aspects

Clinical decision support systems, or AI-CDSSs, have

demonstrated promise in preclinical testing, although there is

currently insufficient evidence of their advantages in real

patient care. The DECIDE-AI reporting guidelines were

developed to improve standards for early clinical evaluation of

AI systems in an attempt to address this gap. In pursuit of

transparency, security, and reproducibility of outcomes, these

requirements include both specific and general reporting

components (82). Despite a particular focus on global health

issues and crucial ethical, legal, and social ramifications

(ELSIs), healthcare has embraced AI integration in

increasing numbers. The effects of AI on patient‒physician

relationships, accountability, regulatory frameworks,

algorithmic transparency, and patient safety are among the

main issues. Even if AI has the ability to improve patient care,

it is still vital to address ELSI challenges, especially in regard

to the evolving dynamics of patient‒physician interactions

(83). The AI-CDSS has the potential to improve the quality

and reach of OC screenings. However, addressing inequality in

power between healthcare personnel and AI systems is

necessary for successful integration. The development of AI-

based healthcare decision-making involves the development of

mutually beneficial connections between physicians and AI to

maintain public acceptability and avoid ethical issues (84).
FIGURE 3

FDA approvals for AI-based medical devices across specialties. Adapted fro
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5.1 Regulatory framework and clinical
guideline integration for AI-CDSS in OC

The AI-CDSS needs to be integrated into existing clinical

workflows without a detailed examination of existing regulatory

frameworks to align with clinical practice guidelines (85). Most

of the world’s regulatory bodies are trying to develop strategies

for evaluating and approving AI-based medical technology

(Figure 3), but there are still major gaps in the application of

these strategies for OC treatment. For example, the United States

FDA’s establishment of a regulatory framework is based on risk

for AI/ML-based Software as a Medical Device (SaMD) under its

Digital Health Center of Excellence; a proposed regulatory

framework for the modification of AI/ML-based SaMD that

recognizes the unique “learning” capability of these systems (86).

However, most AI-CDSS developed for OC are being researched,

with no actual regulatory approval for clinical deployment. This

poses a crucial challenge for healthcare institutions, which are

inclined to consider the adoption of such systems. The European

Union’s Medical Device Regulation (MDR) and in vitro

Diagnostic Regulation (IVDR) categorize the majority of AI-

CDSS as Class IIa or above medical devices, which necessitate

notified body conformity assessment and substantial clinical

evidence (87). These demands pose a major threat to the

translation of promising studies into clinical tools. Regulatory

agencies are challenged by the difficulty of balancing innovation

and patient safety. The “black box” complexity of most deep
m Benjamens et al. (86).
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learning algorithms makes conventional evaluation strategies based

on knowledge of the exact mechanism of action difficult.

Regulators need to find new ways of validating systems that learn

continuously and whose performance could shift over time

following initial approval (88).

The disconnect between rapidly advancing AI technologies and

more revised clinical guidelines makes clinicians and institutions

uncertain. Due to the absence of clear guidelines on how insights

from AI-CDSS should influence clinical decision-making,

practitioners currently do not have a standardized protocol for

resolving potential conflicts between algorithmic

recommendations and traditional clinical judgment (89). The

lack of formal integration channels complicates routine AI-CDSS

adoption despite encouraging technical performance. Future

regulatory approaches for successful clinical integration of the

AI-CDSS should ensure the rigorous validation of practical

implementation pathways. Such standards provide clinical

performance evaluation and technical accuracy to measure actual

outcomes and qualities of care. Moreover, regulatory frameworks

should address sustaining performance over time in patient

populations and clinical settings concerning the continued

availability of monitoring requirements (12).
6 Critical limitations of the AI-CDSS in
clinical implementation

AI-CDSS offer promising potential for improving OC

management, yet their clinical implementation faces significant

limitations and challenges. However, many major limitations

need to be addressed before these systems can be adopted

clinically on a wide scale. These challenges are technical,

clinical, and implementation types that come into being, and

all affect the real utility of the systems in the long run (90).

OC is a complex illness, and it may not always be possible to

obtain the clinical, imaging, and molecular data required to

train accurate AI models, especially with limited resources.

The development of comprehensive multimodal datasets can

be a challenging process that requires significant effort.

Standardizing data collection procedures and ensuring data

security and privacy are also crucial.

The primary limitations in the development of robust AI

models for OC necessitate large, heterogeneous, high-quality

datasets that are mostly unavailable in clinical settings (23,

91). This data scarcity creates significant challenges, including

poor demographic representation, inconsistent annotation

quality, and integration incompatibility across multiple

modality datasets. Available datasets often contain insufficient

diversity across age, ethnicity, genetic background, and

socioeconomic factors, resulting in models derived from

homogeneous populations being unsuitable for clinical

applications (92). The process of expert annotation for

imaging and histopathology inherently introduces random

variability and potential errors; interobserver variability among

pathologists propagating into AI training data subsequently

results in inconsistent performance of the model (93).
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Furthermore, combining heterogeneous data types (imaging,

genomic, and clinical) requires sophisticated data techniques

that are still evolving, whereas differences in data collection

protocols across institutions further complicate integration

efforts. Recent studies mostly refer to technical performance

metrics, such as accuracy and AUC, rather than useful

clinically relevant outcomes, mostly in terms of survival,

morbidity, or quality of life (98). Only a few randomized

controlled trials have compared the AI-CDSS with standard

practice. These limitations indicate that the findings of AI-

CDSS in OC management should be interpreted with

significant attention.
7 Conclusion

Artificial intelligence-based clinical decision support systems

(AI-CDSS) hold significant promise to enhance OC through

early diagnosis, improved diagnostic accuracy, and

individualized treatment planning. AI-CDSS can interpret

various types of data with advanced machine learning and

deep learning algorithms. However, despite their technical

promise, AI-CDSS for OC remains experimental, and clinical

validation and real-world utility have yet to be established.

Significant challenges include insufficient validation, limited

high-quality datasets, algorithm bias, standardization issues,

regulatory uncertainties, and limited generalizability across

diverse populations (e.g., regional risk factors and ethnic

differences). In order to advance AI-CDSS towards clinical

applications, future advancements require focus on

interdisciplinary collaboration between clinicians, data

scientists, and ethicists to develop systems that are technically

robust, clinically meaningful, and ethically implemented.

Addressing these limitations is essential to ensure AI-CDSS is

adopted into clinical practice and fulfills its transformative

potential in OC management.
Author contributions

MK: Formal analysis, Writing – original draft, Writing – review

& editing, Visualization. RR: Formal analysis, Writing – original

draft, Writing – review & editing, Investigation, Methodology.

SK: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Visualization, Writing – original

draft, Writing – review & editing. PM: Conceptualization, Formal

analysis, Investigation, Methodology, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
frontiersin.org

https://doi.org/10.3389/froh.2025.1592428
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Karuppan Perumal et al. 10.3389/froh.2025.1592428
Acknowledgments

The authors would like to thank the Center of Medical and
Bio-allied Health Sciences and Research, Ajman University,
Ajman, UAE.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Oral Health 10
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Asmin PK, Nusrath F, Divakar DD. Occurrence and distribution of cancers with
emphasis upon oral cancers in registered oncology institutes of south India—a
retrospective study. Indian J Community Med. (2024) 49:120–30. doi: 10.4103/ijcm.
ijcm_106_23

2. Borse V, Konwar AN, Buragohain P. Oral cancer diagnosis and perspectives in
India. Sens Int. (2020) 1:100046. doi: 10.1016/j.sintl.2020.100046

3. Karuppan Perumal MK, Prasad Srinivasan G, Thangavelu L, Rajan Renuka R.
Theragnostic applications of artificial intelligence (AI) in the field of oral cancer
care. Oral Oncol Rep. (2024) 10:100278. doi: 10.1016/j.oor.2024.100278

4. Karuppan Perumal MK, Renuka RR, Thangavelu L, Srinivasan GP. The impact of
innate immunity and inflammation on the development of oral cancer and their role
in tumor promotion and suppression. Oral Oncol Rep. (2024) 10:100277. doi: 10.1016/
j.oor.2024.100277

5. Coelho KR. Challenges of the oral cancer burden in India. J Cancer Epidemiol.
(2012) 2012:701932. doi: 10.1155/2012/701932

6. Matsuda Y, Jayasinghe RD, Zhong H, Arakawa S, Kanno T. Oral health
management and rehabilitation for patients with oral cancer: a narrative review.
Healthcare (Basel). (2022) 10:960. doi: 10.3390/healthcare10050960

7. Vinay V, Jodalli P, Chavan MS, Buddhikot Chaitanya S, Luke AM, Ingafou MSH,
et al. Artificial intelligence in oral cancer: a comprehensive scoping review of
diagnostic and prognostic applications. Diagnostics. (2025) 15:280. doi: 10.3390/
diagnostics15030280

8. Elmakaty I, Elmarasi M, Amarah A, Abdo R, Malki MI. Accuracy of artificial
intelligence-assisted detection of oral squamous cell carcinoma: a systematic review
and meta-analysis. Crit Rev Oncol Hematol. (2022) 178:103777. doi: 10.1016/j.
critrevonc.2022.103777

9. Parmar A, Macluskey M, Goldrick M, Conway N, Glenny DI, Clarkson A-M,
et al. Interventions for the treatment of oral cavity and oropharyngeal cancer:
chemotherapy. Cochrane Database Syst Rev. (2021) 2021:CD006386. doi: 10.1002/
14651858.CD006386.pub4

10. Menyhárt O, Győrffy B. Multi-omics approaches in cancer research with
applications in tumor subtyping, prognosis, and diagnosis. Comput Struct
Biotechnol J. (2021) 19:949–60. doi: 10.1016/j.csbj.2021.01.009

11. Çubukçu HC, Topcu Dİ, Yenice S. Machine learning-based clinical decision
support using laboratory data. Clin Chem Lab Med. (2024) 62:793–823. doi: 10.
1515/cclm-2023-1037

12. Elhaddad M, Hamam S. AI-driven clinical decision support systems: an ongoing
pursuit of potential. Cureus. (2024) 16:e57728. doi: 10.7759/cureus.57728

13. Krishnan G, Singh S, Pathania M, Gosavi S, Abhishek S, Parchani A, et al.
Artificial intelligence in clinical medicine: catalyzing a sustainable global
healthcare paradigm. Front Artif Intell. (2023) 6:1227091. doi: 10.3389/frai.2023.
1227091

14. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare
applications. In: Boh A, Memarzadeh K, editors. Artificial Intelligence in Healthcare.
San Diego, CA: Academic Press, an imprint of Elsevier (2020). p. 25–60. doi: 10.
1016/B978-0-12-818438-7.00002-2

15. Mirfendereski P, Li GY, Pearson AT, Kerr AR. Artificial intelligence and the
diagnosis of oral cavity cancer and oral potentially malignant disorders from
clinical photographs: a narrative review. Front Oral Health. (2025) 6:1569567.
doi: 10.3389/froh.2025.1569567
16. Allen B. The promise of explainable AI in digital health for precision medicine: a
systematic review. J Pers Med. (2024) 14:277. doi: 10.3390/jpm14030277

17. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare:
transforming the practice of medicine. Future Healthc J. (2021) 8:e188–94. doi: 10.
7861/fhj.2021-0095

18. Zhang C, Xu J, Tang R, Yang J, Wang W, Yu X, et al. Novel research and future
prospects of artificial intelligence in cancer diagnosis and treatment. J Hematol Oncol.
(2023) 16:114. doi: 10.1186/s13045-023-01514-5

19. Mahadevaiah G, Rv P, Bermejo I, Jaffray D, Dekker A, Wee L. Artificial
intelligence-based clinical decision support in modern medical physics: selection,
acceptance, commissioning, and quality assurance. Med Phys. (2020) 47:e228–35.
doi: 10.1002/mp.13562

20. Zabin Alotaibi K, Hameed Kolarkodi S. Effectiveness of adjunctive screening
tools for potentially malignant oral disorders and oral cancer: a systematic review.
Saudi Dent J. (2024) 36:28–37. doi: 10.1016/j.sdentj.2023.10.011

21. Duangthip D, Chu CH. Challenges in oral hygiene and oral health policy. Front
Oral Health. (2020) 1:575428. doi: 10.3389/froh.2020.575428

22. Hegde S, Ajila V, Zhu W, Zeng C. Artificial intelligence in early diagnosis and
prevention of oral cancer. Asia-Pac J Oncol Nurs. (2022) 9:100133. doi: 10.1016/j.
apjon.2022.100133

23. Al-Rawi N, Sultan A, Rajai B, Shuaeeb H, Alnajjar M, Alketbi M, et al. The
effectiveness of artificial intelligence in detection of oral cancer. Int Dent J. (2022)
72:436–47. doi: 10.1016/j.identj.2022.03.001

24. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language
processing do for clinical decision support? J Biomed Inform. (2009) 42:760–72.
doi: 10.1016/j.jbi.2009.08.007

25. Khanagar SB, Alkadi L, Alghilan MA, Kalagi S, Awawdeh M, Bijai LK, et al.
Application and performance of artificial intelligence (AI) in oral cancer diagnosis
and prediction using histopathological images: a systematic review. Biomedicines.
(2023) 11:1612. doi: 10.3390/biomedicines11061612

26. Van Baalen S, Boon M, Verhoef P. From clinical decision support to clinical
reasoning support systems. Eval Clin Pract. (2021) 27:520–8. doi: 10.1111/jep.13541

27. Mohammed BA, MS A-A. Review research of medical image analysis using deep
learning. UHD J Sci Technol. (2020) 4:75–90. doi: 10.21928/uhdjst.v4n2y2020.pp75-90

28. Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data
integration to advance precision oncology. Nat Rev Cancer. (2022) 22:114–26. doi: 10.
1038/s41568-021-00408-3

29. Carrell D. A strategy for deploying secure cloud-based natural language
processing systems for applied research involving clinical text. 2011 44th Hawaii
International Conference on System Sciences (2011). p. 1–11. doi: 10.1109/HICSS.
2011.32

30. Fati SM, Senan EM, Javed Y. Early diagnosis of oral squamous cell carcinoma
based on histopathological images using deep and hybrid learning approaches.
Diagnostics. (2022) 12:1899. doi: 10.3390/diagnostics12081899

31. Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving oral cancer outcomes with
imaging and artificial intelligence. J Dent Res. (2020) 99:241–8. doi: 10.1177/
0022034520902128

32. Liao J, Li X, Gan Y, Han S, Rong P, Wang W, et al. Artificial intelligence assists
precision medicine in cancer treatment. Front Oncol. (2023) 12:998222. doi: 10.3389/
fonc.2022.998222
frontiersin.org

https://doi.org/10.4103/ijcm.ijcm_106_23
https://doi.org/10.4103/ijcm.ijcm_106_23
https://doi.org/10.1016/j.sintl.2020.100046
https://doi.org/10.1016/j.oor.2024.100278
https://doi.org/10.1016/j.oor.2024.100277
https://doi.org/10.1016/j.oor.2024.100277
https://doi.org/10.1155/2012/701932
https://doi.org/10.3390/healthcare10050960
https://doi.org/10.3390/diagnostics15030280
https://doi.org/10.3390/diagnostics15030280
https://doi.org/10.1016/j.critrevonc.2022.103777
https://doi.org/10.1016/j.critrevonc.2022.103777
https://doi.org/10.1002/14651858.CD006386.pub4
https://doi.org/10.1002/14651858.CD006386.pub4
https://doi.org/10.1016/j.csbj.2021.01.009
https://doi.org/10.1515/cclm-2023-1037
https://doi.org/10.1515/cclm-2023-1037
https://doi.org/10.7759/cureus.57728
https://doi.org/10.3389/frai.2023.1227091
https://doi.org/10.3389/frai.2023.1227091
https://doi.org/10.1016/B978-0-12-818438-7.00002-2
https://doi.org/10.1016/B978-0-12-818438-7.00002-2
https://doi.org/10.3389/froh.2025.1569567
https://doi.org/10.3390/jpm14030277
https://doi.org/10.7861/fhj.2021-0095
https://doi.org/10.7861/fhj.2021-0095
https://doi.org/10.1186/s13045-023-01514-5
https://doi.org/10.1002/mp.13562
https://doi.org/10.1016/j.sdentj.2023.10.011
https://doi.org/10.3389/froh.2020.575428
https://doi.org/10.1016/j.apjon.2022.100133
https://doi.org/10.1016/j.apjon.2022.100133
https://doi.org/10.1016/j.identj.2022.03.001
https://doi.org/10.1016/j.jbi.2009.08.007
https://doi.org/10.3390/biomedicines11061612
https://doi.org/10.1111/jep.13541
https://doi.org/10.21928/uhdjst.v4n2y2020.pp75-90
https://doi.org/10.1038/s41568-021-00408-3
https://doi.org/10.1038/s41568-021-00408-3
https://doi.org/10.1109/HICSS.2011.32
https://doi.org/10.1109/HICSS.2011.32
https://doi.org/10.3390/diagnostics12081899
https://doi.org/10.1177/0022034520902128
https://doi.org/10.1177/0022034520902128
https://doi.org/10.3389/fonc.2022.998222
https://doi.org/10.3389/fonc.2022.998222
https://doi.org/10.3389/froh.2025.1592428
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Karuppan Perumal et al. 10.3389/froh.2025.1592428
33. Alhazmi A, Alhazmi Y, Makrami A, Masmali A, Salawi N, Masmali K, et al.
Application of artificial intelligence and machine learning for prediction of oral
cancer risk. J Oral Pathol Med. (2021) 50:444–50. doi: 10.1111/jop.13157

34. Schork NJ. Artificial intelligence and personalized medicine. In: Von Hoff DD,
Han H, editors. Precision Medicine in Cancer Therapy. Cham: Springer International
Publishing (2019). p. 265–83. doi: 10.1007/978-3-030-16391-4_11

35. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an
overview and application in radiology. Insights Imaging. (2018) 9:611–29. doi: 10.1007/
s13244-018-0639-9

36. Samala RK, Chan H-P, Hadjiiski LM, Helvie MA, Cha KH, Richter CD. Multi-
task transfer learning deep convolutional neural network: application to computer-
aided diagnosis of breast cancer on mammograms. Phys Med Biol. (2017)
62:8894–908. doi: 10.1088/1361-6560/aa93d4

37. Dixit S, Kumar A, Srinivasan K. A current review of machine learning and deep
learning models in oral cancer diagnosis: recent technologies, open challenges, and
future research directions. Diagnostics (Basel). (2023) 13:1353. doi: 10.3390/
diagnostics13071353

38. Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, et al.
Automatic classification of cancerous tissue in laserendomicroscopy images of the oral
cavity using deep learning. Sci Rep. (2017) 7:11979. doi: 10.1038/s41598-017-12320-8

39. Khouy M, Jabrane Y, Ameur M, Hajjam El Hassani A. Medical image
segmentation using automatic optimized U-net architecture based on genetic
algorithm. JPM. (2023) 13:1298. doi: 10.3390/jpm13091298

40. Kanakarajan H, De Baene W, Hanssens P, Sitskoorn M. Automated
segmentation of brain metastases in T1-weighted contrast-enhanced MR images pre
and post stereotactic radiosurgery. BMC Med Imaging. (2025) 25:101. doi: 10.1186/
s12880-025-01643-y

41. Mienye ID, Swart TG, Obaido G. Recurrent neural networks: a comprehensive
review of architectures, variants, and applications. Information. (2024) 15:517. doi: 10.
3390/info15090517

42. Sun Z, Wang G, Li P, Wang H, Zhang M, Liang X. An improved random forest
based on the classification accuracy and correlation measurement of decision trees.
Expert Syst Appl. (2024) 237:121549. doi: 10.1016/j.eswa.2023.121549

43. De Silva RK, Siriwardena BS, Samaranayaka A, Abeyasinghe WA, Tilakaratne
WM. A model to predict nodal metastasis in patients with oral squamous cell
carcinoma. PLoS One. (2018) 13:e0201755. doi: 10.1371/journal.pone.0201755

44. Kim DW, Lee S, Kwon S, Nam W, Cha I-H, Kim HJ. Deep learning-based
survival prediction of oral cancer patients. Sci Rep. (2019) 9:6994. doi: 10.1038/
s41598-019-43372-7

45. Guarrasi V, Aksu F, Caruso CM, Di Feola F, Rofena A, Ruffini F, et al. A
systematic review of intermediate fusion in multimodal deep learning for
biomedical applications. Image Vis Comput. (2025) 158:105509. doi: 10.1016/j.
imavis.2025.105509

46. Broggi G, Maniaci A, Lentini M, Palicelli A, Zanelli M, Zizzo M, et al. Artificial
intelligence in head and neck cancer diagnosis: a comprehensive review with emphasis
on radiomics, histopathological, and molecular applications. Cancers (Basel). (2024)
16:3623. doi: 10.3390/cancers16213623

47. Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P, Vicharueang
S. AI-based analysis of oral lesions using novel deep convolutional neural networks for
early detection of oral cancer. PLoS One. (2022) 17:e0273508. doi: 10.1371/journal.
pone.0273508

48. Kantharimuthu M, Malathi M, Sinthia P. Oral cancer prediction using a
probability neural network (PNN). Asian Pac J Cancer Prev. (2023) 24:2991–5.
doi: 10.31557/APJCP.2023.24.9.2991

49. Ruiz-Casado JL, Molina-Cabello MA, Luque-Baena RM. Enhancing
histopathological image classification performance through synthetic data generation
with generative adversarial networks. Sensors. (2024) 24:3777. doi: 10.3390/s24123777

50. Wongvibulsin S, Wu KC, Zeger SL. Clinical risk prediction with random forests
for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Med Res
Methodol. (2020) 20:1. doi: 10.1186/s12874-019-0863-0

51. Patel S, Kumar D. Predictive identification of oral cancer using AI and machine
learning. Oral Oncol Rep. (2025) 13:100697. doi: 10.1016/j.oor.2024.100697

52. Terven J, Córdova-Esparza D-M, Romero-González J-A. A comprehensive
review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and
YOLO-NAS. Mach Learn Knowl Extr. (2023) 5:1680–716. doi: 10.3390/make5040083

53. Dharani R, Danesh K. Oral cancer segmentation and identification system based
on histopathological images using MaskMeanShiftCNN and SV-OnionNet. Intell-
Based Med. (2024) 10:100185. doi: 10.1016/j.ibmed.2024.100185

54. Kavyashree C, Vimala HS, Shreyas J. A systematic review of artificial intelligence
techniques for oral cancer detection. Healthc Anal. (2024) 5:100304. doi: 10.1016/j.
health.2024.100304

55. Shakila M, Dhasaratham M, Saranya NN, Thotapalli A, Telrandhe SV.
Integration of clinical and imaging data for enhancing oral cancer detection using
deep learning. 2024 International Conference on Intelligent Algorithms for
Computational Intelligence Systems (IACIS) (2024). Hassan, India: IEEE. p. 1–6.
doi: 10.1109/IACIS61494.2024.10721686
Frontiers in Oral Health 11
56. Gogoshin G, Rodin AS. Graph neural networks in cancer and oncology research:
emerging and future trends. Cancers (Basel). (2023) 15:5858. doi: 10.3390/
cancers15245858

57. Bhalla S, Laganà A. Artificial intelligence for precision oncology. In: Laganà A,
editor. Computational Methods for Precision Oncology. Advances in Experimental
Medicine and Biology. Cham: Springer International Publishing (2022). p. 249–68.
doi: 10.1007/978-3-030-91836-1_14

58. Chu CS, Lee NP, Adeoye J, Thomson P, Choi S. Machine learning and treatment
outcome prediction for oral cancer. J Oral Pathol Med. (2020) 49:977–85. doi: 10.1111/
jop.13089

59. Pereira-Prado V, Martins-Silveira F, Sicco E, Hochmann J, Isiordia-Espinoza M,
González R, et al. Artificial intelligence for image analysis in oral squamous cell
carcinoma: a review. Diagnostics. (2023) 13:2416. doi: 10.3390/diagnostics13142416

60. Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, et al. Omics-based molecular
classifications empowering in precision oncology. Cell Oncol. (2024) 47(3):759–77.
doi: 10.1007/s13402-023-00912-8

61. Vollmer A, Hartmann S, Vollmer M, Shavlokhova V, Brands RC, Kübler A, et al.
Multimodal artificial intelligence-based pathogenomics improves survival prediction
in oral squamous cell carcinoma. Sci Rep. (2024) 14:5687. doi: 10.1038/s41598-024-
56172-5

62. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI.
An overview of clinical decision support systems: benefits, risks, and strategies for
success. NPJ Digit Med. (2020) 3:1–10. doi: 10.1038/s41746-020-0221-y

63. Vijayakumar S, Lee VV, Leong QY, Hong SJ, Blasiak A, Ho D. Physicians’
perspectives on AI in clinical decision support systems: interview study of the
CURATE.AI personalized dose optimization platform. JMIR Hum Fact. (2023) 10:
e48476. doi: 10.2196/48476

64. Wenderott K, Krups J, Zaruchas F, Weigl M. Effects of artificial intelligence
implementation on efficiency in medical imaging—a systematic literature review
and meta-analysis. NPJ Digit Med. (2024) 7:265. doi: 10.1038/s41746-024-01248-9

65. Chang V, Ganatra MA, Hall K, Golightly L, Xu QA. An assessment of machine
learning models and algorithms for early prediction and diagnosis of diabetes using
health indicators. Healthc Anal. (2022) 2:100118. doi: 10.1016/j.health.2022.100118

66. Mahmood H, Shaban M, Rajpoot N, Khurram SA. Artificial intelligence-based
methods in head and neck cancer diagnosis: an overview. Br J Cancer. (2021)
124:1934–40. doi: 10.1038/s41416-021-01386-x

67. Bozyel S, Şimşek E, Koçyiğit D, Güler A, Korkmaz Y, Şeker M, et al. Artificial
intelligence-based clinical decision support systems in cardiovascular diseases.
Anatol J Cardiol. (2024) 28:74–86. doi: 10.14744/AnatolJCardiol.2023.3685

68. Talwar V, Singh P, Mukhia N, Shetty A, Birur P, Desai KM, et al. AI-assisted
screening of oral potentially malignant disorders using smartphone-
based photographic images. Cancers (Basel). (2023) 15:4120. doi: 10.3390/
cancers15164120

69. Ji M, Chen X, Genchev GZ, Wei M, Yu G. Status of AI-enabled clinical decision
support systems implementations in China. Methods Inf Med. (2021) 60:123–32.
doi: 10.1055/s-0041-1736461

70. Kim SY, Kim DH, Kim MJ, Ko HJ, Jeong OR. XAI-based clinical decision
support systems: a systematic review. Appl Sci. (2024) 14:6638. doi: 10.3390/
app14156638

71. Waqas A, Tripathi A, Ramachandran RP, Stewart PA, Rasool G. Multimodal
data integration for oncology in the era of deep neural networks: a review. Front
Artif Intell. (2024) 7:1408843. doi: 10.3389/frai.2024.1408843

72. Pan L, Gao Q, Wei K, Yu Y, Qin G, Wang T. A robust transfer learning approach
for high-dimensional linear regression to support integration of multi-source gene
expression data. PLoS Comput Biol. (2025) 21:e1012739. doi: 10.1371/journal.pcbi.
1012739

73. Valous NA, Popp F, Zörnig I, Jäger D, Charoentong P. Graph machine learning
for integrated multi-omics analysis. Br J Cancer. (2024) 131:205–11. doi: 10.1038/
s41416-024-02706-7

74. Wang T, Shao W, Huang Z, Tang H, Zhang J, Ding Z, et al. MOGONET
integrates multi-omics data using graph convolutional networks allowing patient
classification and biomarker identification. Nat Commun. (2021) 12:3445. doi: 10.
1038/s41467-021-23774-w

75. Griffith LE, Van Den Heuvel E, Fortier I, Sohel N, Hofer SM, Payette H, et al.
Statistical approaches to harmonize data on cognitive measures in systematic reviews
are rarely reported. J Clin Epidemiol. (2015) 68:154–62. doi: 10.1016/j.jclinepi.2014.09.
003

76. Adhikari K, Patten SB, Patel AB, Premji S, Tough S, Letourneau N, et al. Data
harmonization and data pooling from cohort studies: a practical approach for data
management. IJPDS. (2021) 6:1680. doi: 10.23889/ijpds.v6i1.1680

77. Lin D, Zhang J, Li J, Xu C, Deng H-W, Wang Y-P. An integrative imputation
method based on multi-omics datasets. BMC Bioinform. (2016) 17:247. doi: 10.
1186/s12859-016-1122-6

78. Azar J, Makhoul A, Barhamgi M, Couturier R. An energy efficient IoT data
compression approach for edge machine learning. Future Gener Comput Syst.
(2019) 96:168–75. doi: 10.1016/j.future.2019.02.005
frontiersin.org

https://doi.org/10.1111/jop.13157
https://doi.org/10.1007/978-3-030-16391-4_11
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1088/1361-6560/aa93d4
https://doi.org/10.3390/diagnostics13071353
https://doi.org/10.3390/diagnostics13071353
https://doi.org/10.1038/s41598-017-12320-8
https://doi.org/10.3390/jpm13091298
https://doi.org/10.1186/s12880-025-01643-y
https://doi.org/10.1186/s12880-025-01643-y
https://doi.org/10.3390/info15090517
https://doi.org/10.3390/info15090517
https://doi.org/10.1016/j.eswa.2023.121549
https://doi.org/10.1371/journal.pone.0201755
https://doi.org/10.1038/s41598-019-43372-7
https://doi.org/10.1038/s41598-019-43372-7
https://doi.org/10.1016/j.imavis.2025.105509
https://doi.org/10.1016/j.imavis.2025.105509
https://doi.org/10.3390/cancers16213623
https://doi.org/10.1371/journal.pone.0273508
https://doi.org/10.1371/journal.pone.0273508
https://doi.org/10.31557/APJCP.2023.24.9.2991
https://doi.org/10.3390/s24123777
https://doi.org/10.1186/s12874-019-0863-0
https://doi.org/10.1016/j.oor.2024.100697
https://doi.org/10.3390/make5040083
https://doi.org/10.1016/j.ibmed.2024.100185
https://doi.org/10.1016/j.health.2024.100304
https://doi.org/10.1016/j.health.2024.100304
https://doi.org/10.1109/IACIS61494.2024.10721686
https://doi.org/10.3390/cancers15245858
https://doi.org/10.3390/cancers15245858
https://doi.org/10.1007/978-3-030-91836-1_14
https://doi.org/10.1111/jop.13089
https://doi.org/10.1111/jop.13089
https://doi.org/10.3390/diagnostics13142416
https://doi.org/10.1007/s13402-023-00912-8
https://doi.org/10.1038/s41598-024-56172-5
https://doi.org/10.1038/s41598-024-56172-5
https://doi.org/10.1038/s41746-020-0221-y
https://doi.org/10.2196/48476
https://doi.org/10.1038/s41746-024-01248-9
https://doi.org/10.1016/j.health.2022.100118
https://doi.org/10.1038/s41416-021-01386-x
https://doi.org/10.14744/AnatolJCardiol.2023.3685
https://doi.org/10.3390/cancers15164120
https://doi.org/10.3390/cancers15164120
https://doi.org/10.1055/s-0041-1736461
https://doi.org/10.3390/app14156638
https://doi.org/10.3390/app14156638
https://doi.org/10.3389/frai.2024.1408843
https://doi.org/10.1371/journal.pcbi.1012739
https://doi.org/10.1371/journal.pcbi.1012739
https://doi.org/10.1038/s41416-024-02706-7
https://doi.org/10.1038/s41416-024-02706-7
https://doi.org/10.1038/s41467-021-23774-w
https://doi.org/10.1038/s41467-021-23774-w
https://doi.org/10.1016/j.jclinepi.2014.09.003
https://doi.org/10.1016/j.jclinepi.2014.09.003
https://doi.org/10.23889/ijpds.v6i1.1680
https://doi.org/10.1186/s12859-016-1122-6
https://doi.org/10.1186/s12859-016-1122-6
https://doi.org/10.1016/j.future.2019.02.005
https://doi.org/10.3389/froh.2025.1592428
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Karuppan Perumal et al. 10.3389/froh.2025.1592428
79. Ng D, Lan X, Yao MM-S, Chan WP, Feng M. Federated learning: a collaborative
effort to achieve better medical imaging models for individual sites that have small
labelled datasets. Quant Imaging Med Surg. (2021) 11:852–7. doi: 10.21037/qims-
20-595

80. Li L, Sun M, Wang J, Wan S. Multi-omics based artificial intelligence for cancer
research. In: Madan E, Fisher PB, Gogna R, editors. Advances in Cancer Research.
Richmond, VA: Elsevier (2024). p. 303–56. doi: 10.1016/bs.acr.2024.06.005

81. Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and
challenge of spatial omics in dissecting tumour microenvironment and the role of AI.
Front Oncol. (2023) 13:1172314. doi: 10.3389/fonc.2023.1172314

82. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al.
Reporting guideline for the early stage clinical evaluation of decision support systems
driven by artificial intelligence: DECIDE-AI. Br Med J. (2022) 377:e070904. doi: 10.
1136/bmj-2022-070904

83. Čartolovni A, Tomičić A, LazićMosler E. Ethical, legal, and social considerations
of AI-based medical decision-support tools: a scoping review. Int J Med Inf. (2022)
161:104738. doi: 10.1016/j.ijmedinf.2022.104738

84. Kar A, Wreesmann VB, Shwetha V, Thakur S, Rao VUS, Arakeri G, et al.
Improvement of oral cancer screening quality and reach: the promise of artificial
intelligence. J Oral Pathol Med. (2020) 49:727–30. doi: 10.1111/jop.13013

85. Elgin CY, Elgin C. Ethical implications of AI-driven clinical decision support systems
on healthcare resource allocation: a qualitative study of healthcare professionals’
perspectives. BMC Med Ethics. (2024) 25:148. doi: 10.1186/s12910-024-01151-8

86. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based
FDA-approved medical devices and algorithms: an online database. npj Digit Med.
(2020) 3:118. doi: 10.1038/s41746-020-00324-0

87. Lubbers BR, Schilhabel A, Cobbaert CM, Gonzalez D, Dombrink I, Brüggemann
M, et al. The new EU regulation on in vitro diagnostic medical devices: implications
and preparatory actions for diagnostic laboratories. HemaSphere. (2021) 5:e568.
doi: 10.1097/HS9.0000000000000568

88. Price WN. Big data and black-box medical algorithms. Sci Transl Med. (2018)
10:eaao5333. doi: 10.1126/scitranslmed.aao5333

89. Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial intelligence and
decision-making in healthcare: a thematic analysis of a systematic review of reviews.
Frontiers in Oral Health 12
Health Serv Res Manag Epidemiol. (2024) 11:23333928241234863. doi: 10.1177/
23333928241234863

90. Golden G, Popescu C, Israel S, Perlman K, Armstrong C, Fratila R, et al.
Applying Artificial Intelligence to Clinical Decision Support in Mental Health:
What Have We Learned? (2023). doi: 10.48550/ARXIV.2303.03511

91. García-Pola M, Pons-Fuster E, Suárez-Fernández C, Seoane-Romero J, Romero-
Méndez A, López-Jornet P. Role of artificial intelligence in the early diagnosis of oral
cancer. A scoping review. Cancers (Basel). (2021) 13:4600. doi: 10.3390/
cancers13184600

92. Amann J, Vetter D, Blomberg SN, Christensen HC, Coffee M, Gerke S, et al. To
explain or not to explain?—artificial intelligence explainability in clinical decision
support systems. PLOS Digit Health. (2022) 1:e0000016. doi: 10.1371/journal.pdig.
0000016

93. Gomez-Cabello CA, Borna S, Pressman S, Haider SA, Haider CR, Forte AJ.
Artificial-intelligence-based clinical decision support systems in primary care: a
scoping review of current clinical implementations. Eur J Investig Health Psychol
Educ. (2024) 14:685–98. doi: 10.3390/ejihpe14030045

94. Benčević M, Habijan M, Galić I, Babin D, Pižurica A. Understanding skin color
bias in deep learning-based skin lesion segmentation. Comput Methods Programs
Biomed. (2024) 245:108044. doi: 10.1016/j.cmpb.2024.108044

95. Jasim A, Li X, Octavia A, Gunardi I, Crocombe L, Sari EF. The association
between betel quid use and oral potentially malignant and malignant disorders in
southeast Asian and Pacific regions: a systematic review and meta-analysis with
GRADE evidence profile. Front Oral Health. (2024) 5:1397179. doi: 10.3389/froh.
2024.1397179

96. Bai B, Yang X, Li Y, Zhang Y, Pillar N, Ozcan A. Deep learning-enabled virtual
histological staining of biological samples. Light Sci Appl. (2023) 12:57. doi: 10.1038/
s41377-023-01104-7

97. Han R, Acosta JN, Shakeri Z, Ioannidis JPA, Topol EJ, Rajpurkar P.
Randomised controlled trials evaluating artificial intelligence in clinical practice: a
scoping review. Lancet Digit Health. (2024) 6:e367–73. doi: 10.1016/S2589-7500(24)
00047-5

98. Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes:
systematic literature review. JMIR Med Inform. (2020) 8:e18599. doi: 10.2196/18599
frontiersin.org

https://doi.org/10.21037/qims-20-595
https://doi.org/10.21037/qims-20-595
https://doi.org/10.1016/bs.acr.2024.06.005
https://doi.org/10.3389/fonc.2023.1172314
https://doi.org/10.1136/bmj-2022-070904
https://doi.org/10.1136/bmj-2022-070904
https://doi.org/10.1016/j.ijmedinf.2022.104738
https://doi.org/10.1111/jop.13013
https://doi.org/10.1186/s12910-024-01151-8
https://doi.org/10.1038/s41746-020-00324-0
https://doi.org/10.1097/HS9.0000000000000568
https://doi.org/10.1126/scitranslmed.aao5333
https://doi.org/10.1177/23333928241234863
https://doi.org/10.1177/23333928241234863
https://doi.org/10.48550/ARXIV.2303.03511
https://doi.org/10.3390/cancers13184600
https://doi.org/10.3390/cancers13184600
https://doi.org/10.1371/journal.pdig.0000016
https://doi.org/10.1371/journal.pdig.0000016
https://doi.org/10.3390/ejihpe14030045
https://doi.org/10.1016/j.cmpb.2024.108044
https://doi.org/10.3389/froh.2024.1397179
https://doi.org/10.3389/froh.2024.1397179
https://doi.org/10.1038/s41377-023-01104-7
https://doi.org/10.1038/s41377-023-01104-7
https://doi.org/10.1016/S2589-7500(24)00047-5
https://doi.org/10.1016/S2589-7500(24)00047-5
https://doi.org/10.2196/18599
https://doi.org/10.3389/froh.2025.1592428
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/

	Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review
	Introduction
	Role of the AI-CDSS in the early detection and diagnosis of OC
	Ai models in OC detection and treatment
	Deep learning architectures
	Classical machine learning models
	Multimodal fusion architectures

	AI-CDSS in treatment planning for OC
	Clinical impact of the AI-CDSS in OC management
	AI/ML in head and neck cancer diagnosis
	AI-CDSS for OC screening and early detection
	AI in multiomics data integration for OC

	Ethical considerations and regulatory aspects
	Regulatory framework and clinical guideline integration for AI-CDSS in OC

	Critical limitations of the AI-CDSS in clinical implementation
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


