

OPEN ACCESS

EDITED BY

Morenike Oluwatoyin Folayan, Nigerian Institute of Medical Research (NIMR), Nigeria

REVIEWED BY

Franco Cavalla, University of Chile, Chile Roberto Antonio Leon-Manco, Universidad Peruana Cayetano Heredia, Peru

*CORRESPONDENCE

Abanoub Riad

abanoub.riad@med.muni.cz

RECEIVED 01 August 2025
ACCEPTED 15 September 2025
PUBLISHED 03 October 2025

CITATION

Riad A (2025) National-, institutional-, and individual-level determinants of dental research excellence: an analysis of Stanford–Elsevier lists of the top 2% scholars worldwide (2017–2023).

Front. Oral Health 6:1675102. doi: 10.3389/froh.2025.1675102

COPYRIGHT

© 2025 Riad. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

National-, institutional-, and individual-level determinants of dental research excellence: an analysis of Stanford-Elsevier lists of the top 2% scholars worldwide (2017–2023)

Abanoub Riad^{1,2}*

¹Masaryk Centre for Global Health (MCGH), Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czechia, ²Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czechia

Background: Research excellence, distinct from productivity, is a key criterion in science policy and institutional evaluation. This study examined global distribution and determinants of dental research excellence using the Stanford–Elsevier Lists (SEL) of the top 2% most-cited scientists.

Methods: A bibliometric analysis was conducted using SEL datasets from 2017 to 2023. The analysis followed an ecological model consisting of three layers of independent variables: national-level indicators (macroeconomic metrics, oral disease burden, and development indices), institutional rankings, and individual-level variables (gender and academic age) were analysed. Descriptive statistics, multivariable regressions, and mixed-effects models were applied.

Results: The analysis demonstrated a markedly uneven global distribution of excellent dental scholars (EDS), with 96.1% and 88.9% of career-long and single-year EDS, respectively, based in high-income countries. English-speaking countries dominated, reflecting historical and linguistic biases. Institutional elitism was apparent, with 20 universities accounting for nearly one-fifth of all EDS worldwide. Gender disparities persisted, with women comprising only 14.8% (*career-long*) and 18.1% (*single-year*). Academic age consistently predicted scholarly metrics more strongly than gender. EDS numbers correlated positively with macroeconomic indicators, particularly R&D investment, while oral disease burden was negatively correlated.

Conclusions: Dental research excellence is disproportionately concentrated in high-income, English-speaking countries and elite institutions. Historic gender disparities remain, though narrowing trends are noticeable. The observed misalignment between oral disease burden and research excellence highlights the need for inclusive, needs-based research investment.

KEYWORDS

academia, career ladder, dental education, dental research, gender equity, global burden of disease, health policy, macroeconomic factors

1 Introduction

Research excellence is increasingly recognised as a central concept in academia, shaping funding allocation, policy development, and institutional practices worldwide (1, 2). Originating in Europe, where it was adopted as a key criterion by the European Research Council (ERC), the concept has since been disseminated globally and applied across various disciplines, including the medical and health sciences such as dentistry (3, 4). While some scholars have criticised research excellence for its methodological limitations and conceptual ambiguity, it remains integral to contemporary science policy (5). Its appeal lies in offering a coherent, if contested, policy tool for evaluating scientific contributions; thus supporting competitive funding allocation, institutional benchmarking, and strategic agenda setting (3, 5)...

In the field of dentistry and oral health, meta-research and bibliometric studies have traditionally focused on research productivity, measured merely by publication and citation counts (6-8). An analysis of research productivity among members of the International Association for Dental Research (IADR) identified gender and academic age, i.e., time spent in a research career, as the strongest individual-level predictors (9). After adjusting for gender, academic age remained the most robust predictor of productivity (9). The IADR Distinguished Scientist Awards, widely regarded as indicators of research prestige, have historically exhibited significant gender disparity, with women comprising only 13% of awardees between 1955 and 2018 and remaining consistently underrepresented in relation to their share of the IADR membership (10). Moreover, prior empirical evidence has shown that macroeconomic factors, such as gross domestic product (GDP) per capita and the proportion of GDP allocated to research and education have a direct impact on national dental research productivity (6). Nevertheless, no study to date has examined research excellence among dental scholars using objective metrics of scholarly output, such as h-index, authorship position, or selfcitations proportion.

The "science-wide author databases of standardized citation indicators" is a large-scale bibliometric initiative led by Professor John P.A. Ioannidis at Stanford University, developed in collaboration with Elsevier; therefore, referred to as the Stanford-Elsevier Lists (SEL) (11). It provides a publicly accessible lists ranking the top 2% of scientists globally across 22 scientific fields and 176 subfields, using a composite citation indicator that accounts for self-citations, author position, and co-authorship-adjusted metrics (11-13). The SEL include two principal components: the career-long impact list, which reflects cumulative scholarly influence over a scientist's entire publication history, and the single-year impact list, which captures citation performance within a specific year, allowing distinction between sustained and recent scientific impact (11, 12). Recent updates to the SEL included the integration of retraction data, allowing for more nuanced assessments of research credibility and impact (14-16). As a standardised, fieldnormalised, and methodologically transparent resource, the SEL offers a robust foundation for evaluating research excellence across disciplines and countries, while promoting responsible and contextual interpretation of citation-based metrics (13, 17).

The objectives of this study were (a) to assess the distribution of excellent dental scholars (EDS) globally and explore its association with national-level determinants, i.e., macroeconomic indicators, human development metrics, and oral disease burden, (b) to assess institutional-level determinants of dental research excellence, e.g., general and field-specific rankings in recognised databases, (c) to assess individual-level determinants of dental research excellence, i.e., academic age and gender, and (d) to evaluate temporal trends of EDS distribution between 2017 and 2023, focusing on gender, and official language.

2 Materials and methods

2.1 Study design

This bibliometric study employed an ecological model to examine the global distribution of EDS included in the SEL of the top 2% most-cited scientists. The study is reported in accordance with the REporting of studies Conducted using Observational Routinely-collected Data (RECORD) guidelines (18). The conceptual framework of this study consists of three levels of dental research excellence determinants: national, institutional and individual Figure 1.

2.2 Data sources

The primary data source was the SEL, first released in July 2019 and incorporating citation metrics for the years 2017 and 2018. Subsequent updates were issued annually in October 2020, 2021, 2022, 2023, and 2024, covering citation metrics from 2017 to 2023. The raw datasets were obtained from the Elsevier Data Repository (19).

Complementary data sources for national- and institutional-level indicators included the following:

- Macroeconomic indicators, such as gross national income (GNI) per capita and research and development (R&D) expenditure as a percentage of GDP, were retrieved from the World Bank DataBank (20).
- Oral disease burden estimates, such as dental caries and edentulism, were obtained from the Global Health Data Exchange (GHDx) platform of the Institute for Health Metrics and Evaluation (IHME), as part of the Global Burden of Disease (GBD) Study (21).
- Human Development Index (HDI) values and their components, such as mean years of schooling and life expectancy, were downloaded from the United Nations Development Programme (UNDP) data centre (22).
- Economic level classifications of countries were based on the World Bank's fiscal year 2025 classification system (23).
- Official languages of countries were retrieved from the Central Intelligence Agency (CIA) World Factbook, as updated in January 2025 (24).

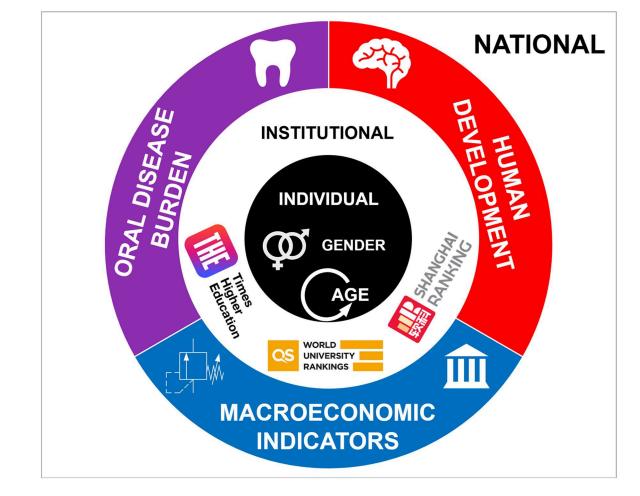


FIGURE 1
Theoretical framework of multilevel determinants shaping dental research excellence: individual-, institutional-, and national-level predictors.

 Institutional rankings, including overall and discipline-specific indicators for medicine and dentistry, were obtained from the QS World University Rankings, Times Higher Education (THE) Rankings, and the Academic Ranking of World Universities (ARWU) (25–27).

2.3 Data cleaning and pre-processing

Both the *career-long* and *single-year* SEL datasets were downloaded and prepared for analysis. Dental scholars were identified as those whose disciplinary classification in either "subfield 1" or "subfield 2" was listed as *Dentistry*.

As the SEL datasets do not include gender information and provide only the scholars' names in the format "last name, first name" as stored in the Scopus database, gender was inferred algorithmically. Full names from the *career-long* lists (n = 11,023) and the *single-year* lists (n = 10,326) were processed using the genderizeR package in R. This tool predicts gender based on first names by aggregating data from publicly available user profiles across online platforms (28). While widely used in bibliometric research, its

predictive accuracy varies depending on cultural and linguistic context (29).

Names that could not be classified with sufficient confidence using the R-based approach (n = 3,648 for the *career-long* lists; n = 2,647 for the *single-year* lists) were subsequently assessed using Claude Sonnet 3.7, a large language model developed by Anthropic AI. Nevertheless, a considerable number remained unclassified (n = 903 and n = 628, respectively), most of which comprised only initials or abbreviated given names, limiting algorithmic inference (30).

A manual review was conducted for the 50 most frequently represented institutions to harmonise names recorded in varying formats, including differences in language (official vs. English), length (full vs. abbreviated), and form (with or without acronyms). This step was undertaken to ensure consistency and accuracy in institutional-level analyses.

2.4 Independent variables

Independent variables were stratified into three levels: national, institutional, and individual. National-level

determinants included: (i) macroeconomic and policy indicators, i.e., gross domestic product per capita (GDP), gross national income per capita (GNI), and the percentage of gross domestic product allocated to research and development (% R&D), healthcare (% Health), and education (% Education); (ii) human development metrics, i.e., Human Development Index (HDI), life expectancy, expected years of schooling, and mean years of schooling; and (iii) oral disease burden measured by disability-adjusted life years (DALYs) for deciduous dental caries, permanent dental caries, periodontal diseases, edentulism, oral and lip cancer, and other oral conditions.

Institutional-level determinants comprised global and discipline-specific rankings and scores from three major university ranking systems: QS (overall rank, dentistry rank, and dentistry score), Times Higher Education (THE; overall rank, medicine rank, and medicine score), and the Academic Ranking of World Universities (ARWU; overall rank, dentistry rank, and dentistry score).

Individual-level determinants included inferred gender (female vs. male) and academic age, calculated as the difference between the most recent and earliest years of publication listed in the Scopus database.

2.5 Dependent variables

Out of the variables provided in the SEL datasets, the number of EDS, their composite citation score (C-score), modified h-index, total citation count, and percentage of self-citations were selected for analysis.

The C-score is a composite indicator reflecting multiple dimensions of citation impact, including total citations, h-index, authorship position, and adjustments for co-authorship. The modified h-index accounts for authorship position, while the percentage of self-citations captures the proportion of citations attributed to the author's own publications (11, 12).

2.6 Statistical analyses

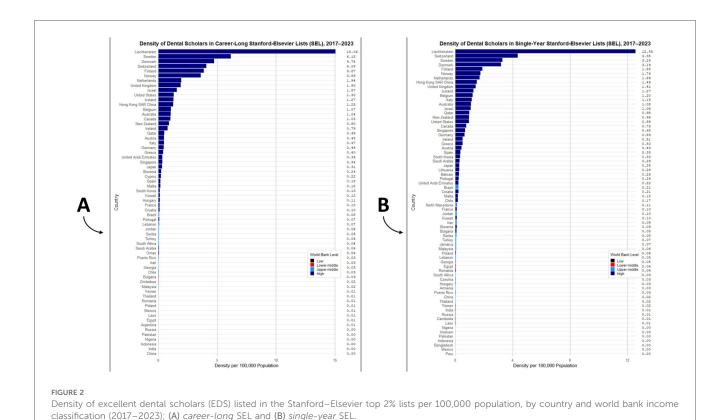
Descriptive statistics were performed using appropriate summary measures, and non-parametric tests (Chi-squared, Fisher's exact, Mann-Whitney U, Kruskal-Wallis, and Spearman's rho) were applied to assess group differences and correlations following normality testing by the Shapiro-Wilk test.

Multivariable linear regression models were constructed to examine the association of individual- and national-level determinants with scholarly metrics, including the composite citation score (C-score), modified *h*-index, total citation count, and percentage of self-citations. In addition, mixed-effects linear regression models were constructed with random intercepts specified for official language and World Bank income classification to account for unobserved heterogeneity across these contextual groupings.

Finally, binary and multinomial logistic regression analyses were performed to explore predictors of female gender group membership. A two-sided p-value < 0.05 was considered indicative of statistical significance.

3 Results

A total of 11,023 EDS were identified in the *career-long* Stanford–Elsevier Lists (SEL) between 2017 and 2023, compared to 10,326 EDS in the corresponding *single-year* lists; this minor discrepancy is due to the absence of a *single-year* SEL update for 2018. The number of EDS included in each annual SEL update increased steadily, from 803 to 2,218 (+176.2%) in the *career-long* lists, and from 628 to 2,261 (+259.9%) in the *single-year* lists between 2017 and 2023.


3.1 National-level analyses

According to the *career-long* SEL, 80% of EDS worldwide were concentrated in only 10 countries, all of which are high-income, with the largest share affiliated with the US (40.1%), followed by the UK (12.0%), Sweden (6.0%), Canada (3.8%), and Japan (3.6%). Similarly, in the *single-year* SEL, 80% of EDS were concentrated in only 13 countries, all high-income except for Brazil and China; the US again accounted for the largest global share (31.3%), followed by the UK (9.4%) and Italy (6.7%) Supplementary Tables 1, 2.

The highest densities of EDS per 100,000 population were observed in high-income countries such as Liechtenstein (*careerlong*: 15.06 and *single-year*: 12.55), Sweden (6.15 and 3.28), Denmark (4.74 and 3.19), Switzerland (4.08 and 4.35), Finland (3.87 and 1.88), Norway (3.59 and 1.74), and the Netherlands (1.94 and 1.69), while middle- and low-income countries showed substantially lower or near-zero densities. Figure 2.

In the *career-long* SEL, 96.1% of EDS were affiliated with high-income countries, vs. only <0.1% from low-income countries; 59.5% were based in English-speaking countries, followed by German- (7.3%), Swedish- (6%), and Dutch-speaking (4.4%) countries. Mean citation counts were highest among scholars from upper-middle-income countries (5,044), followed by those from high- (4,228), lower-middle- (2,052), and low-income (1,316) countries; by language, citation means were highest among Dutch-speaking countries (6,430), followed by Portuguese- (6,072) and Mandarin Chinese-speaking (5,844) countries Table 1.

Likewise, in the *single-year* SEL, 88.9% of EDS were affiliated with high-income countries vs. only 0.1% from low-income countries; 47.7% were based in English-speaking countries, followed by German- (9.5%), Italian- (6.7%), and Portuguese-speaking (4.6%) countries. Mean citation counts were highest among scholars from upper-middle-income countries (577), followed by those from high- (471), lower-middle- (343), and low-income (306) countries; by language, citation means were highest among scholars from Dutch-speaking countries (695), followed by Mandarin Chinese- (637) and Cantonese Chinese-speaking (627) countries. Table 1.

The number of EDS was strongly and positively correlated with % GDP allocated to research and development (*career-long* ρ = 0.739; *single-year* ρ = 0.706), and moderately correlated with HDI (ρ = 0.621 and 0.564), life expectancy (ρ = 0.608 and 0.549), GDP per capita (ρ = 0.604 and 0.527), % GDP for health (ρ = 0.538 and 0.497), and % GDP for education (ρ = 0.462 and 0.376). Conversely, negative correlations were observed with DALYs from caries of deciduous teeth (ρ = -0.527 and -0.495) and caries of permanent teeth (ρ = -0.375 and -0.312). Similar correlation patterns were observed for citation counts and were consistent across scholars classified under *Clinical Medicine*, the parent field of *Dentistry* Table 2.

3.2 Institutional-level analyses

About 20% of the world's EDS were concentrated in only 20 institutions (career-long: 23.8%; single-year: 19.8%). This institutional elitism declined over time, from 29.8% to 22.3% in the career-long SEL (-7.5%) and from 24.7% to 20.0% in the single-year SEL (-4.7%) between 2017 and 2023. The leading institution was the University of Washington (career-long: 1.9%; single-year: 1.6% of the global share), followed by King's College London (1.7% and 1.4%), Harvard University (1.6% and 1.3%), and the University of Toronto (1.5% and 1.0%). The only institutions among the top 20 not located in North America or Western Europe were the University of São Paulo and the University of Hong Kong, which appeared in the single-year SEL but not in the career-long list, suggesting the emerging nature of dental research excellence in developing countries Table 3.

The number of EDS and their citation counts were negatively correlated with university ranking positions and positively correlated with ranking scores, particularly within the subject-specific categories of *Dentistry* or *Medicine*. The strongest correlation was observed between the number of scholars in the *single-year* SEL and the ARWU database (rank: $\rho = -0.675$; score: $\rho = 0.676$), followed by THE ($\rho = -0.601$ and 0.601), whereas correlations with the QS ranking were not statistically significant ($\rho = -0.197$ and 0.059) Table 2.

3.3 Individual-level analyses

3.3.1 Gender

On analysing gender, male dominance was evident in the career-long SEL (85.2% vs. 14.8%) and the single-year SEL (81.9% vs. 18.1%). Among countries with at least 50 scholars, the highest female proportions were observed in Finland (27.3%), France (24.2%), Sweden (22.0%), Denmark (21.9%), and the UK (20.1%) in the career-long SEL, and in Finland (32.3%), Denmark (31.5%), China (26.1%), Belgium (24.6%), and India (24.2%) in the single-year SEL. Contrarily, the lowest female representation was found in Australia (9.2%), the Netherlands (10.3%), Switzerland (10.5%), Hong Kong (10.5%), and Spain (10.8%) in the career-long SEL, and in Hong Kong (6.5%), Taiwan (10.8%), Turkey (11.5%), Canada (12.0%), and Saudi Arabia (12.4%) in the single-year SEL Supplementary Tables 3, 4.

Despite this pronounced gender gap in scholar numbers, the median citation count did not significantly differ between

TABLE 1 National-level analysis: distribution of excellent dental scholars (EDS) and their citation counts in the *career-long* and *single-year* Stanford-Elsevier lists (SEL) of top scientists worldwide (2017–2023), stratified by world bank classification (FY 2024) and official language (CIA world factbook).

					Career-Long	SEL				
	Variable	Outcome	SEL 2017	SEL 2018	SEL 2019	SEL 2020	SEL 2021	SEL 2022	SEL 2023	Total ▼
Scholars	World Bank	High	702 (99.0%)	738 (98.5%)	1,372 (97.0%)	1,692 (96.6%)	1,871 (95.8%)	1,963 (95.0%)	2,084 (94.5%)	10,422 (96.1%
		Upper-middle	6 (0.8%)	11 (1.5%)	41 (2.9%)	53 (3.0%)	70 (3.6%)	87 (4.2%)	101 (4.6%)	369 (3.4%)
		Lower-middle	1 (0.1%)	0 (0.0%)	2 (0.1%)	6 (0.3%)	13 (0.7%)	15 (0.7%)	19 (0.9%)	56 (0.5%)
		Low	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	1 (0.0%)	1 (0.0%)	2 (0.0%)
	Official Language	English	470 (66.3%)	500 (66.8%)	873 (61.7%)	1,035 (59.1%)	1,133 (58.0%)	1,182 (57.2%)	1,257 (57.0%)	6,450 (59.5%
		German	48 (6.8%)	50 (6.7%)	100 (7.1%)	124 (7.1%)	149 (7.6%)	158 (7.6%)	166 (7.5%)	795 (7.3%)
		Swedish	40 (5.6%)	48 (6.4%)	91 (6.4%)	105 (6.0%)	117 (6.0%)	121 (5.9%)	126 (5.7%)	648 (6.0%)
		Dutch	31 (4.4%)	30 (4.0%)	62 (4.4%)	83 (4.7%)	84 (4.3%)	87 (4.2%)	95 (4.3%)	472 (4.4%)
		Japanese	18 (2.5%)	17 (2.3%)	45 (3.2%)	70 (4.0%)	75 (3.8%)	82 (4.0%)	83 (3.8%)	390 (3.6%)
		Danish	27 (3.8%)	22 (2.9%)	33 (2.3%)	46 (2.6%)	52 (2.7%)	51 (2.5%)	51 (2.3%)	282 (2.6%)
		Italian	8 (1.1%)	12 (1.6%)	33 (2.3%)	45 (2.6%)	49 (2.5%)	60 (2.9%)	73 (3.3%)	280 (2.6%)
		Finnish	16 (2.3%)	15 (2.0%)	27 (1.9%)	35 (2.0%)	40 (2.0%)	40 (1.9%)	43 (2.0%)	216 (2.0%)
		Norwegian	10 (1.4%)	12 (1.6%)	23 (1.6%)	36 (2.1%)	41 (2.1%)	38 (1.8%)	38 (1.7%)	198 (1.8%)
		Portuguese	2 (0.3%)	6 (0.8%)	23 (1.6%)	28 (1.6%)	37 (1.9%)	39 (1.9%)	49 (2.2%)	184 (1.7%)
		Hebrew	11 (1.6%)	8 (1.1%)	16 (1.1%)	24 (1.4%)	29 (1.5%)	33 (1.6%)	32 (1.5%)	153 (1.4%)
		Mandarin Chinese	3 (0.4%)	4 (0.5%)	12 (0.8%)	16 (0.9%)	25 (1.3%)	28 (1.4%)	30 (1.4%)	118 (1.1%)
		Spanish	3 (0.4%)	3 (0.4%)	15 (1.1%)	17 (1.0%)	20 (1.0%)	23 (1.1%)	25 (1.1%)	106 (1.0%)
		Arabic	3 (0.4%)	5 (0.7%)	11 (0.8%)	17 (1.0%)	16 (0.8%)	20 (1.0%)	25 (1.1%)	97 (0.9%)
		Chinese	6 (0.8%)	7 (0.9%)	11 (0.8%)	16 (0.9%)	19 (1.0%)	17 (0.8%)	18 (0.8%)	94 (0.9%)
		Other	13 (1.8%)	10 (1.3%)	40 (2.8%)	54 (3.1%)	68 (3.5%)	87 (4.2%)	94 (4.3%)	366 (3.4%)
Citations	World Bank	High	4,387.5 (3,023-7,189)	4,955 (3,456– 8,025)	3,992 (2,521– 6,467)	3,942 (2,485– 6,348)	3,941 (2,470– 6,483)	4,247 (2,656– 6,942)	4,438 (2,782– 7,293)	4,228 (2,668- 6,882)
		Upper-middle	3,535 (2,400– 3,739)	4,533 (4,224– 9,257)	4,984 (3,098– 6,979)	4,446 (2,326– 6,703)	4,717 (2,727– 6,907)	5,327 (2,870– 8,088)	5,795 (3,065– 8,943)	5,044 (2,857- 7,866)
		Lower-middle	2,716 (2,716– 2,716)	NA	5,457 (3,883– 7,031)	1,122 (964– 1,403)	1,517 (1,311– 2,524)	1,893 (1,643– 3,458)	2,537 (1,772– 5,111)	2,052 (1,384- 3,291)
		Low	NA	NA	NA	NA	NA	1,121 (1,121– 1,121)	1,512 (1,512– 1,512)	1,316 (1,219- 1,414)
	Official Language	English	4,329 (2,895– 6,894)	4,828 (3,311– 7,636)	3,867 (2,428– 6,357)	3,819 (2,400– 6,255)	3,834 (2,366– 6,390)	4,058 (2,555– 6,894)	4,211 (2,656– 7,292)	4,075 (2,583- 6,784)
		German	4,862 (3,454– 7,684)	5,448 (4,202– 8,776)	4,694 (3,144– 7,946)	4,916 (3,166– 7,807)	4,917 (3,043– 7,564)	5,464 (3,263– 7,976)	5,621 (3,476- 8,649)	5,176 (3,280- 8,078)
		Swedish	4,894 (3,542- 9,096)	4,677 (3,688– 10,879)	3,750 (2,427– 5,663)	3,790 (2,361– 6,326)	3,703 (2,331– 5,801)	3,665 (2,466– 5,828)	3,698 (2,413– 6,174)	6,364) 6,430 (4,343– 10,178)
		Dutch	6,805 (4,314– 10,728)	6,710 (4,811– 9,725)	6,154 (4,522- 9,118)	6,045 (3,752- 9,564)	6,375 (3,920– 10,063)	6,650 (4,285– 10,888)	6,916 (4,779– 11,466)	
		Japanese	4,692 (3,968– 7,942)	5,022 (3,043- 9,718)	4,313 (3,070- 5,947)	4,480 (2,982- 5,498)	4,651 (3,084- 6,550)	5,014 (3,127- 7,242)	5,029 (3,307- 6,702)	4,758 (3,096- 6,700)
		Danish	4,311 (2,524– 5,818)	4,810 (3,230- 6,231)	3,726 (2,861- 6,317)	3,402 (2,467- 5,804)	3,384 (2,540– 5,881)	3,523 (2,626– 6,412)	3,774 (2,846– 6,705)	3,726 (2,613- 6,234)
		Italian	5,606 (4,794- 8,358)	6,528 (5,221– 9,908)	4,420 (2,522– 7,369)	4,265 (3,071- 7,773)	4,277 (3,133– 7,918)	4,984 (3,779- 8,525)	5,649 (4,406– 8,630)	5,132 (3,388- 8,263)
		Finnish	6,209 (4,029– 11,269)	5,622 (4,792– 10,202)	3,643 (2,650– 5,846)	3,942 (2,592– 5,902)	4,048 (2,312- 6,210)	3,988 (2,530– 6,730)	4,239 (2,698– 7,056)	4,232 (2,724- 6,976)
		Norwegian	3,623 (2,804– 5,684)	3,814 (3,020– 5,564)	2,688 (1,984- 3,638)	2,702 (1,954– 3,651)	2,603 (1,958– 3,856)	2,708 (2,024– 4,216)	3,022 (2,097– 4,504)	2,928 (2,014- 4,244)
		Portuguese	3,688 (3,637– 3,739)	6,087 (4,372– 10,065)	4,799 (3,573- 6,604)	5,803 (4,389– 7,445)	5,850 (4,464– 7,014)	6,601 (5,082– 7,992)	7,270 (5,025– 8,629)	6,072 (4,265- 7,888)
		Hebrew	2,376 (1,890- 3,724)	2,490 (2,119– 3,755)	2,657 (2,274- 3,094)	2,514 (2,101- 3,790)	2,539 (2,096– 3,795)	3,016 (2,323- 4,229)	2,933 (2,236– 3,735)	2,780 (2,127- 3,748)
		Mandarin Chinese	2,365 (1,974- 6,770)	3,478 (2,567– 4,520)	4,862 (2,758- 6,285)	4,132 (3,082- 6,600)	5,391 (3,367– 7,159)	6,982 (3,935– 9,458)	7,489 (4,380– 11,383)	5,844 (3,403- 8,827)
		Spanish	6,556 (6,126– 7,538)	8,189 (7,093– 8,224)	4,492 (3,146– 6,736)	5,228 (3,176– 7,185)	4,260 (3,125– 7,546)	4,134 (2,920- 8,272)	4,798 (3,429– 8,945)	4,908 (3,240- 7,600)
		Arabic	3,553 (3,316– 3,726)	5,033 (3,339– 5,396)	2,088 (1,617– 3,246)	2,462 (1,471- 2,630)	2,247 (1,472– 2,930)	2,406 (1,630– 3,532)	3,235 (1,848– 4,482)	2,600 (1,634- 3,581)
		Chinese	3,358 (2,852– 3,679)	4,150 (3,406– 8,782)	4,138 (3,437- 4,814)	4,855 (3,805- 6,851)	5,076 (3,736– 6,468)	5,440 (4,078– 7,898)	5,674 (3,406– 7,988)	4,614 (3,464- 6,682)
		Other	3,693 (2,704– 5,424)	4,488 (3,643– 5,533)	3,520 (2,156– 5,626)	2,863 (1,932– 5,139)	2,719 (1,952– 4,192)	3,175 (2,096– 4,643)	3,122 (2,057– 4,884)	3,210 (2,090- 5,025)

(continued)

TABLE 1 Continued

Single-Y	ear SEL								
	Variable	Outcome	SEL 2017	SEL 2019	SEL 2020	SEL 2021	SEL 2022	SEL 2023	Total ▼
cholars	World Bank	High	534 (95.5%)	1,293 (91.9%)	1,639 (90.0%)	1,789 (88.8%)	1,854 (87.2%)	1,943 (86.2%)	
		Upper-middle	23 (4.1%)	102 (7.2%)	155 (8.5%)	188 (9.3%)	232 (10.9%)	267 (11.8%)	
		Lower-middle	2 (0.4%)	11 (0.8%)	25 (1.4%)	36 (1.8%)	38 (1.8%)	43 (1.9%)	
		Low	0 (0.0%)	1 (0.1%)	2 (0.1%)	1 (0.0%)	1 (0.0%)	1 (0.0%)	
	Official	English	338 (60.5%)	722 (51.3%)	893 (49.0%)	938 (46.6%)	966 (45.5%)	1,000 (44.4%)	
	Language	German	59 (10.6%)	142 (10.1%)	173 (9.5%)	185 (9.2%)	201 (9.5%)	207 (9.2%)	
		Italian	20 (3.6%)	91 (6.5%)	114 (6.3%)	142 (7.1%)	153 (7.2%)	160 (7.1%)	
		Portuguese	12 (2.1%)	59 (4.2%)	79 (4.3%)	99 (4.9%)	110 (5.2%)	110 (4.9%)	
		Dutch	28 (5.0%)	65 (4.6%)	76 (4.2%)	88 (4.4%)	88 (4.1%)	98 (4.3%)	
		Mandarin Chinese	6 (1.1%)	33 (2.3%)	56 (3.1%)	66 (3.3%)	85 (4.0%)	113 (5.0%)	359 (3.5%)
		Swedish	23 (4.1%)	64 (4.5%)	71 (3.9%)	64 (3.2%)	65 (3.1%)	59 (2.6%)	346 (3.4%)
		Japanese	10 (1.8%)	47 (3.3%)	59 (3.2%)	72 (3.6%)	75 (3.5%)	81 (3.6%)	344 (3.4%)
		Arabic	5 (0.9%)	18 (1.3%)	34 (1.9%)	43 (2.1%)	54 (2.5%)	62 (2.8%)	
		Spanish	3 (0.5%)	20 (1.4%)	35 (1.9%)	50 (2.5%)	43 (2.0%)	53 (2.4%)	
		Danish	17 (3.0%)	28 (2.0%)	39 (2.1%)	39 (1.9%)	33 (1.6%)	34 (1.5%)	
		Korean	4 (0.7%)	19 (1.4%)	26 (1.4%)	31 (1.5%)	44 (2.1%)	48 (2.1%)	
		Chinese	6 (1.1%)	21 (1.5%)	22 (1.2%)	22 (1.1%)	19 (0.9%)	22 (1.0%)	
		Finnish	8 (1.4%)	13 (0.9%)	19 (1.0%)	23 (1.1%)	19 (0.9%)	23 (1.0%)	
		Hebrew	6 (1.1%)	10 (0.7%)	20 (1.1%)	21 (1.0%)	24 (1.1%)	22 (1.0%)	
		Other	14 (2.5%)	55 (3.9%)	105 (5.8%)	131 (6.5%)	146 (6.9%)	162 (7.2%)	
Citations	World Bank	High	447 (310–683)	489 (312– 751)	634 (373– 1,014.5)	427 (265– 697)	439 (279– 735)	434 (278– 716)	471 (298–769)
		Upper-middle	490 (360–631)	617 (470– 889)	766 (489– 1,202)	536 (356– 822)	547 (374- 850)	548 (378- 893)	346 (3.4%) 344 (3.4%) 216 (2.1%) 204 (2.0%) 190 (1.9%) 172 (1.7%) 112 (1.1%) 105 (1.0%) 103 (1.0%) 613 (6.0%)
		Lower-middle	286 (245–326)	287 (193– 334)	409 (334– 650)	387 (218– 721)	315 (208– 818)	365 (197– 1,026)	
		Low	N/A	188 (188– 188)	319 (315– 324)	239 (239– 239)	303 (303– 303)	385 (385– 385)	
	Official Language	English	436 (300–649)	469 (290– 740)	587 (348- 994)	410 (238– 684)	416 (260– 715)	412 (256– 708)	
		German	442 (324–728)	598 (416- 810)	765 (515– 1,111)	523 (368- 805)	529 (346- 804)	523 (324– 788)	
		Italian	550 (336–652)	516 (357- 684)	779 (526– 1,029)	480 (341- 714)	517 (353– 799)	484 (348– 736)	540 (361–800)
		Portuguese	528 (462–605)	665 (537– 874)	872 (624– 1,178)	566 (414- 800)	576 (432- 828)	574 (441- 892)	628 (463–892)
		Dutch	664 (426–959)	738 (483– 1,044)	1,000 (544– 1,442)	636 (338– 899)	635 (360– 892)	600 (360– 894)	695 (384–1,038)
		Mandarin Chinese	576 (424–892)	770 (487– 1,016)	870 (638– 1,574)	546 (399– 988)	587 (422– 948)	584 (385– 937)	637 (430–1,020)
		Swedish	522 (346–959)	832)	587 (288– 994)	398 (254– 835)	398 (236– 762)	406 (210- 889)	
		Japanese	456 (373–556)	568 (402– 720)	731 (445– 926)	462 (310– 636)	488 (288– 622)	451 (275– 602)	
		Arabic	347 (336–367)	292 (232– 487)	319 (162– 697)	239 (142– 464)	278 (162– 528)	282 (194– 568)	
		Spanish	574 (522–757)	628 (458– 748)	624 (458– 998)	454 (316– 658)	480 (348– 720)	463 (342– 661)	
		Danish	321 (217–487)	390 (276– 593)	508 (361– 874)	349 (238– 629)	309 (253– 589)	342 (238– 583)	
		Korean	330 (233–504)	472 (286– 679)	516 (342- 688)	363 (263– 506)	376 (262– 452)	366 (242– 445)	
		Chinese	522 (381–668)	453 (329– 809)	822 (522– 1,321)	625 (346- 889)	696 (398– 1,024)	548 (364– 729)	
		Finnish	728 (467–957)	460 (319– 1,132)	689 (428– 1,008)	554 (307- 820)	536 (317– 875)	550 (282- 882)	204 (2.0%) 190 (1.9%) 172 (1.7%) 112 (1.1%) 105 (1.0%) 103 (1.0%) 613 (6.0%) 471 (298-769) 577 (390-898) 343 (208-752) 306 (255-324) 448 (278-756) 570 (368-861) 540 (361-800) 628 (463-892) 695 (384-1,038) 637 (430-1,020) 448 (259-888) 500 (324-686) 280 (168-540) 504 (350-742) 377 (265-602) 386 (260-524) 627 (360-942) 554 (315-935) 271 (191-460)
		Hebrew	197 (161–237)	246 (190– 322)	374 (262– 622)	267 (175– 436)	248 (175– 471)	331 (203- 490)	271 (191–460)
		Other	362 (258–622)	394 (230– 533)	450 (289– 694)	299 (199– 494)	324 (233– 558)	352 (226– 632)	363 (230–579)

genders in either the *career-long* SEL (female: 4,287 vs. male: 4,233; p = 0.864) or the *single-year* SEL (472 vs. 280; p = 0.684). When examining gender-based differences in citation counts across SEL annual updates, World Bank income levels, and official language categories in both the *career-long* and *single-year* SEL, no statistically significant differences were observed (p > 0.05) Table 4.

Further gender-based analysis of scholarly output metrics indicated that in the *career-long* SEL, male scholars had significantly higher C-scores (3.40 vs. 3.35; p < 0.001) and modified h-indices (16.47 vs. 15.69; p < 0.001), while female scholars had a higher self-citation percentage (0.10 vs. 0.09; p = 0.002). Similarly, in the *single-year* SEL, males exhibited significantly higher C-scores (2.59 vs. 2.58; p = 0.001) and modified h-indices (4.92 vs. 4.88; p = 0.002), whereas females had higher self-citation percentages (0.09 vs. 0.08; p = 0.002) Supplementary Table 5.

3.3.2 Academic age

Academic age, which was used in this study as a proxy for scholar age, had a median of 37 years [IQR: 30-44] in the career-long SEL, notably longer than the 29 years [20-39] observed in the single-year SEL. Among countries with at least 50 scholars in the career-long SEL, the shortest median academic ages were observed in South Korea [24 (21-29.5)], Brazil [26 (22-34)], Taiwan [26 (22-32)], China [31 (26.5-35.25)], and Germany [31 (25-39)], whereas the longest were in France [44 (27-48)], Sweden [40 (33-45)], Denmark [40 (33-48)], the US [39 (32-46)], and Norway [39 (35-45.75)]. Likewise, in the single-year SEL, the shortest median academic ages were observed in Saudi Arabia [12 (8-16)], India [15 (12-18)], Iran [16 (13-19)], China [20 (15-26)], and Turkey [20 (12.5-25.5)], while the longest were found in Denmark [39 (29-48)], Norway [38.5 (33.75-44.25)], Sweden [37 (27-43)], Israel [36 (23-42)], and the US [35 (24-43)] Supplementary Tables 6, 7.

Among all scholarly output metrics established by the SEL methodology, the number of single-authored publications exhibited the strongest positive correlation with academic age (career-long $\rho=0.404$; single-year $\rho=0.452$), whereas the percentage of self-citations was the only metric negatively correlated with academic age ($\rho=-0.232$ and -0.361, respectively) Supplementary Table 8.

Male scholars had significantly longer academic ages in both the *career-long* SEL (38 vs. 35 years; p < 0.001) and the *single-year* SEL (31 vs. 26; p < 0.001). This pattern was consistently observed across all SEL annual updates and within high-income countries, except for Finland where females had longer academic age in the *single-year* SEL (43 vs. 31; p < 0.001) Table 4.

3.4 Time-trend analyses

Tracking changes from SEL 2017 to SEL 2023, the proportion of female scholars gradually increased in both the *career-long* (10.9% vs. 16.6%) and *single-year* (15.7% vs. 20.6%) lists. Moreover, the proportion of scholars based in non-English-

speaking countries rose in the *career-long* (33.7% vs. 43.0%) and *single-year* (39.5% vs. 55.6%) lists. Similarly, the proportion of scholars based in countries outside the high-income group increased in the *career-long* (1.0% vs. 5.5%) and *single-year* (4.5% vs. 13.8%) lists Figure 3.

3.5 Gender gap in dental research excellence

To better understand the gender gap in dental research excellence, logistic regression models were constructed to identify factors associated with female group membership among EDS. The analysis revealed that female gender was significantly associated with shorter academic age; for each additional year of scholarly activity, the odds of female group membership decreased [career-long: OR = 0.967 (95% CI: 0.962–0.973); single-year: OR = 0.977 (0.973–0.981)]. Consistently, female gender was also significantly associated with lower scholarly output metrics, except for citation count. This included C-score [0.629 (0.520–0.761); 0.727 (0.617–0.856)], modified h-index [0.968 (0.959–0.978); 0.954 (0.925–0.984)], and percentage of self-citations [4.293 (1.805–10.209); 2.479 (1.360–4.517)].

The likelihood of being female increased with higher national investment in education, as each one-point increase in GDP share allocated to education was associated with higher odds of female representation [1.238 (1.168–1.312); 1.102 (1.040–1.167)]. Contrarily, higher national burdens of deciduous caries [0.643 (0.499–0.827); 0.715 (0.581–0.880)], permanent caries [0.976 (0.965–0.987); 0.990 (0.981–0.999)], and periodontal disease [0.994 (0.991–0.997); 0.997 (0.995–0.999)] were associated with lower odds of female representation Supplementary Table 9.

3.6 Social and macroeconomic determinants of dental research excellence

Mixed-effects linear regression models were constructed for each scholarly output metric (C-score, modified *h*-index, citation count, and self-citation percentage). World Bank income classification and official language were specified as fixed effects to evaluate their consistent and group-distinguishing influence on scholarly productivity across countries, as they represent broad structural determinants that are stable and theoretically grounded. In contrast, other national-level indicators (such as life expectancy, disease burden from deciduous caries, permanent caries, and edentulism, and the percentages of GDP spent on research, health, and education) were included as continuous covariates. Individual-level indicators (gender and academic age) were also controlled for. Country was treated as a random intercept to account for clustering and unobserved heterogeneity at the national level Table 5.

In the *career-long* SEL, official language accounted for a substantial portion of the variance in self-citation percentage (ICC = 33.5%), modified h-index (17.0%), and C-score (12.1%),

TABLE 2 National— and institutional—level analyses: correlations between macroeconomic indicators, human development metrics, oral disease burden, and global university rankings with the number and citations of excellent dental scholars (EDS) in the Stanford—Elsevier lists (2017–2023).

National-level analysis (// - All countines)	(103)								
Group	Parameter		Career-long SEI	ng SEL			Single-year SEL	rear SEL	
		Clinical Medicine	edicine	Dent	Dentistry	Clinical	Clinical Medicine	Dent	Dentistry
		Scholars	Citations	Scholars	Citations	Scholars	Citations	Scholars	Citations
Macroeconomic Indicators	Gross National Income per Capita (GNI)	0.558**	0.541**	0.575**	0.571**	0.562**	0.529**	0.521**	0.459**
	Gross Domestic Product per Capita (GDP)	0.458**	0.462**	0.604**	0.605**	0.430**	0.399**	0.527**	0.475**
	% GDP Expenditure on Research	0.775**	0.772**	0.739**	0.749**	0.758**	0.743**	0.706**	0.638**
	% GDP Expenditure on Health	0.326**	0.330**	0.538**	0.521**	0.284**	0.244**	0.497**	0.469**
	% GDP Expenditure on Education	0.203*	0.178*	0.462**	0.429**	0.163	0.119	0.376**	0.313**
Human Development Metrics	Human Development Index (HDI)	0.603**	0.584**	0.621**	0.630**	0.589**	0.554**	0.564**	0.518**
	Life Expectancy	0.555**	0.543**	0.608**	0.603**	0.534**	0.483**	0.549**	0.515**
	Expected Schooling Years	0.587**	0.573**	0.534**	0.558**	0.558**	0.533**	0.499**	0.459**
	Mean Schooling Years	0.511**	0.485**	0.443**	0.461**	0.494**	0.468**	0.404**	0.362**
National Burden of Oral Diseases	Deciduous Teeth Caries	-0.466**	-0.455**	-0.527**	-0.536**	-0.458**	-0.406**	-0.495**	-0.437**
	Permanent Teeth Caries	-0.132	-0.147	-0.375**	-0.386**	-0.166*	-0.210**	-0.312**	-0.374**
	Periodontal Diseases	0.251**	0.259**	0.122	0.152	0.245**	0.188*	0.168	0.125
	Edentulism	0.352**	0.328**	0.152	0.187	0.344**	0.286**	0.167	0.118
	Oral & Lip Cancer	0.199*	0.165*	0.002	0.052	0.170*	0.145	0.110	0.100
	Other Oral Diseases	0.382**	0.361**	0.179	0.227	0.377**	0.320**	0.244*	0.189
Institutional-level analysis ($N = \text{top } 20$ institutions)	0 institutions)								
Group	Parameter		Career-long SEL	ng SEL			Single-	Single-year SEL	
		Scholars	ars	Citat	Citations	Sch	Scholars	Cital	Citations
QS World University Rankings	Rank: General	-0.267	22	-0.	-0.143	-0.	-0.469*	-0.	-0.223
	Rank: Dentistry	-0.067	57	-0.	-0.311	0	-0.197	-0	-0.316
	Score: Dentistry	0.129	6	0.1	0.176	0.0	0.059	0.1	0.168
Times Higher Education (THE)	Rank: General	-0.349	63	-0.	-0.219	-0.5	-0.576**	-0	-0.318
	Rank: Medicine	-0.411	.11	-0.	-0.301	-0.6	-0.601**	-0.	-0.405
	Score: Medicine	0.411	1	0.301	01	9.0	0.601**	0.4	0.405
Academic Ranking of World Universities (ARWU)	Rank: General	-0.505*	5*	-0.	-0.219	-0.6	-0.606**	-0.	-0.283
	Rank: Dentistry	-0.484^{*}	4*	9.0-	-0.668**	-0.6	-0.675**	9.0-	-0.633**
	Score: Dentistry	0.544*	*	0.63	0.631**	9.0	0.676**	9.0	0.634**

Spearman's rank correlation (ρ) was carried out with a significance level. $^*\gamma \leq 0.05$ level. $^*\gamma \leq 0.01$ level.

TABLE 3 Institution-Level analysis: distribution of excellent dental scholars (EDS) and their citation counts of Top 20 institutions in the Stanford-elsevier lists (SEL) of Top scientists worldwide (2,017–2,023).

	(SEE) OF TOP SCIENTISES WORKINGE (2,017-2									
Ca	areer–Long SEL: Total Scholar Cou	unt								
R	Institution (Acronym)	СТҮ	SEL 2017	SEL 2018	SEL 2019	SEL 2020	SEL 2021	SEL 2022	SEL 2023	Total ▼
1	University of Washington (UW)	USA	20 (2.5%)	16 (2.1%)	26 (1.8%)	34 (1.9%)	34 (1.7%)	39 (1.9%)	40 (1.8%)	209 (1.9%)
2	King's College London (KCL)	GBR	22 (2.7%)	9 (1.2%)	38 (2.7%)	28 (1.6%)	27 (1.4%)	26 (1.2%)	33 (1.5%)	183 (1.7%)
3	Harvard University (HU)	USA	21 (2.6%)	22 (2.9%)	24 (1.7%)	22 (1.2%)	26 (1.3%)	30 (1.4%)	35 (1.6%)	180 (1.6%)
4	University of Toronto (UofT)	CAN	17 (2.1%)	14 (1.9%)	23 (1.6%)	24 (1.4%)	28 (1.4%)	27 (1.3%)	27 (1.2%)	160 (1.5%)
5	University of California, San Francisco (UCSF)	USA	14 (1.7%)	14 (1.9%)	22 (1.5%)	27 (1.5%)	27 (1.4%)	27 (1.3%)	26 (1.2%)	157 (1.4%)
6	University of Michigan (U-M)	USA	14 (1.7%)	12 (1.6%)	21 (1.5%)	25 (1.4%)	29 (1.5%)	27 (1.3%)	28 (1.3%)	156 (1.4%)
7	Karolinska Institute (KI)	SWE	10 (1.2%)	19 (2.5%)	17 (1.2%)	24 (1.4%)	27 (1.4%)	27 (1.3%)	27 (1.2%)	151 (1.4%)
8	New York University (NYU)	USA	4 (0.5%)	11 (1.5%)	23 (1.6%)	22 (1.2%)	25 (1.3%)	26 (1.2%)	27 (1.2%)	138 (1.3%)
9	University of Zurich (UZH)	CHE	11 (1.4%)	8 (1.1%)	18 (1.3%)	21 (1.2%)	24 (1.2%)	24 (1.2%)	25 (1.1%)	131 (1.2%)
10	University of North Carolina (UNC)	USA	18 (2.2%)	16 (2.1%)	12 (0.8%)	20 (1.1%)	18 (0.9%)	24 (1.2%)	22 (1.0%)	130 (1.2%)
11	University of Texas (UT)	USA	13 (1.6%)	11 (1.5%)	18 (1.3%)	21 (1.2%)	21 (1.1%)	22 (1.1%)	22 (1.0%)	128 (1.2%)
12	University of Pennsylvania (UPenn)	USA	9 (1.1%)	11 (1.5%)	13 (0.9%)	17 (1.0%)	23 (1.2%)	27 (1.3%)	27 (1.2%)	127 (1.2%)
13	University of Florida (UF)	USA	13 (1.6%)	13 (1.7%)	19 (1.3%)	19 (1.1%)	19 (1.0%)	19 (0.9%)	18 (0.8%)	120 (1.1%)
14	University of Bern (UNIBE)	CHE	15 (1.9%)	13 (1.7%)	14 (1.0%)	15 (0.8%)	17 (0.9%)	19 (0.9%)	20 (0.9%)	113 (1.0%)
15	University of Oslo (UIO)	NOR	9 (1.1%)	9 (1.2%)	11 (0.8%)	19 (1.1%)	22 (1.1%)	20 (1.0%)	21 (0.9%)	111 (1.0%)
16	Academic Centre for Dentistry Amsterdam (ACTA)	NLD	0 (0.0%)	0 (0.0%)	14 (1.0%)	21 (1.2%)	22 (1.1%)	23 (1.1%)	16 (0.7%)	96 (0.9%)
17	The University of Hong Kong (HKU)	HKG	6 (0.7%)	7 (0.9%)	11 (0.8%)	16 (0.9%)	18 (0.9%)	16 (0.8%)	20 (0.9%)	94 (0.9%)
18	University of Gothenburg (GU)	SWE	0 (0.0%)	12 (1.6%)	8 (0.6%)	9 (0.5%)	10 (0.5%)	10 (0.5%)	36 (1.6%)	85 (0.8%)
19	Catholic University of Leuven (KU Leuven)	BEL	10 (1.2%)	7 (0.9%)	9 (0.6%)	12 (0.7%)	13 (0.7%)	12 (0.6%)	15 (0.7%)	78 (0.7%)
20	University College London (UCL)	GBR	13 (1.6%)	8 (1.1%)	0 (0.0%)	12 (0.7%)	17 (0.9%)	13 (0.6%)	10 (0.5%)	73 (0.7%)
То	tal (Top 20 Institutions)		239 (29.8%)	232 (30.9%)	341 (24.0%)	408 (23.0%)	447 (22.7%)	458 (22.0%)	495 (22.3%)	2,620 (23.8%)
Ca	areer-Long SEL: Average Citation	Coun	t							
R	Institution (Acronym)	СТҮ	SEL 2017	SEL 2018	SEL 2019	SEL 2020	SEL 2021	SEL 2022	SEL 2023	Total ▼
1	Catholic University of Leuven (KU Leuven)	BEL	12,173	12,917	14,254	13,477	13,654	15,038	16,256	14,153
2	University of Bern (UNIBE)	CHE	7,435	11,423	10,924	12,226	10,959	12,237	13,891	11,442
3	Harvard University (HU)	USA	9,529	10,131	9,583	8,041	10,284	9,397	9,833	9,574
4	University of Gothenburg (GU)	SWE	NA	8,472	7,718	7,722	4,990	9,471	9,082	8,288
5	University of Texas (UT)	USA	6,877	8,255	7,757	6,408	6,944	7,541	7,827	7,330
6	King's College London (KCL)	GBR	5,038	5,558	6,684	7,172	8,529	6,759	9,157	7,234
7	University of Michigan (U-M)	USA	5,906	6,903	7,171	7,015	6,005	7,283	7,180	6,816
8	University College London (UCL)	GBR	6,150	9,135	NA	6,851	6,700	5,979	6,406	6,725
9	University of California, San Francisco (UCSF)	USA	6,592	7,109	5,792	6,263	6,507	6,900	7,470	6,653
10	Academic Centre for Dentistry Amsterdam (ACTA)	NLD	NA	NA	4,946	6,016	6,111	6,547	7,921	6,327
-	The University of Hong Kong (HKU)	HKG	4,598	6,815	5,386	6,106	5,445	6,361	7,497	6,191
_	University of Toronto (UofT)	CAN	5,833	7,174	5,817	6,079	5,781	6,357	6,388	6,158
-	University of Zurich (UZH)	CHE	6,760	6,091	4,902	5,438	5,565	6,342	6,963	5,995
-	University of North Carolina (UNC)	USA	5,871	6,481	5,171	6,050	5,784	6,050	5,953	5,944
15	University of Washington (UW)	USA	6,117	6,430	5,677	6,220	5,401	5,959	5,568	5,852
-	University of Pennsylvania (UPenn)	USA	7,342	7,128	7,207	5,054	4,564	5,172	5,673	5,684
-	University of Florida (UF)	USA	5,300	5,994	4,844	5,444	5,616	6,168	5,257	5,507
-	Karolinska Institute (KI)	SWE	5,147	7,272	4,772	4,473	3,895	4,937	4,286	4,850
_	New York University (NYU)	USA	6,212	5,603	4,038	4,895	4,649	4,678	5,288	4,838
-	University of Oslo (UIO)	NOR	3,899	4,416	4,022	3,328	3,336	3,649	3,851	3,690
	tal (Top 20 Institutions)		6,544	7,582	6,477	6,465	6,360	6,835	7,456	6,807
	ngle–Year SEL: Total Scholar Cour									
R	Institution (Acronym)	CTY	SEL 2017	SEL 2019	SEL 2020	SEL 2	2021	SEL 2022	SEL 2023	Total ▼
1	University of Washington (UW)	USA	17 (2.7%)	25 (1.8%)	30 (1.6%)	31 (1	.5%)	31 (1.5%)	29 (1.3%)	163 (1.6%)
2	King's College London (KCL)	GBR	16 (2.5%)	27 (1.9%)	26 (1.4%)	25 (1	.2%)	25 (1.2%)	30 (1.3%)	149 (1.4%)
3	University of Bern (UNIBE)	CHE	17 (2.7%)	21 (1.5%)	25 (1.4%)	23 (1	.1%)	28 (1.3%)	29 (1.3%)	143 (1.4%)
4	Harvard University (HU)	USA	14 (2.2%)	22 (1.5%)	21 (1.1%)	24 (1	.2%)	24 (1.1%)	30 (1.3%)	135 (1.3%)

(Continued)

TABLE 3 Continued

Ca	areer–Long SEL: Total Scholar Cou	unt								
R	Institution (Acronym)	СТҮ	SEL 2017	SEL 2018	SEL 2019	SEL 2020	SEL 2021	SEL 2022	SEL 2023	Total ▼
5	University of Michigan (U-M)	USA	10 (1.6%)	20 (1.4%)	24 (1.3%)	22 (1	.1%)	22 (1.0%)	23 (1.0%)	121 (1.2%)
6	New York University (NYU)	USA	2 (0.3%)	20 (1.4%)	26 (1.4%)	23 (1	.1%)	23 (1.1%)	25 (1.1%)	119 (1.2%)
7	University of Zurich (UZH)	CHE	11 (1.8%)	17 (1.2%)	20 (1.1%)	24 (1	.2%)	23 (1.1%)	24 (1.1%)	119 (1.2%)
8	The University of Hong Kong (HKU)	HKG	6 (1.0%)	20 (1.4%)	22 (1.2%)	23 (1	.1%)	21 (1.0%)	25 (1.1%)	117 (1.1%)
9	University of Pennsylvania (UPenn)	USA	6 (1.0%)	12 (0.8%)	18 (1.0%)	22 (1	.1%)	28 (1.3%)	27 (1.2%)	113 (1.1%)
10	University of California, San Francisco (UCSF)	USA	9 (1.4%)	19 (1.3%)	22 (1.2%)	22 (1	.1%)	20 (0.9%)	20 (0.9%)	112 (1.1%)
11	University of North Carolina (UNC)	USA	13 (2.1%)	11 (0.8%)	21 (1.1%)	21 (1	.0%)	25 (1.2%)	20 (0.9%)	111 (1.1%)
12	University of São Paulo (USP)	BRA	3 (0.5%)	22 (1.5%)	28 (1.5%)	17 (0	0.8%)	17 (0.8%)	17 (0.8%)	104 (1.0%)
13	University of Toronto (UofT)	USA	10 (1.6%)	15 (1.1%)	17 (0.9%)	20 (1	.0%)	19 (0.9%)	18 (0.8%)	99 (1.0%)
14	University of Texas (UT)	USA	6 (1.0%)	14 (1.0%)	16 (0.9%)	16 (0	0.8%)	17 (0.8%)	19 (0.8%)	88 (0.9%)
15	Catholic University of Leuven (KU Leuven)	BEL	11 (1.8%)	13 (0.9%)	13 (0.7%)	16 (0	0.8%)	15 (0.7%)	18 (0.8%)	86 (0.8%)
16	University of Milan (UNIMI)	ITA	3 (0.5%)	12 (0.8%)	12 (0.7%)	18 (0	· ·	17 (0.8%)	18 (0.8%)	80 (0.8%)
17	São Paulo State University (UNESP)	BRA	0 (0.0%)	7 (0.5%)	13 (0.7%)	13 (0	0.6%)	11 (0.5%)	17 (0.8%)	61 (0.6%)
18	Sichuan University (SCU)	CHN	0 (0.0%)	4 (0.3%)	11 (0.6%)	13 (0		3 (0.1%)	24 (1.1%)	55 (0.5%)
19	University of Gothenburg (GU)	SWE	0 (0.0%)	5 (0.4%)	4 (0.2%)	4 (0.		6 (0.3%)	23 (1.0%)	42 (0.4%)
-	University of Amsterdam (UvA)	NEL	1 (0.2%)	1 (0.1%)	4 (0.2%)	3 (0.		4 (0.2%)	17 (0.8%)	30 (0.3%)
-	tal (Top 20 Institutions)		155 (24.7%)	307 (21.5%)	373 (20.2%)	380 (1		379 (17.7%)	453 (20.0%)	2,047 (19.8%
C:	· · · · · · · · · · · · · · · · · · ·									
SII	ngle-Year SEL: Average Citation C	ount								
R	Institution (Acronym)	CTY	SEL	2017	SEL	SEL	SEL	SEL	SEL	Total ▼
					2019	2020	2021	2022	2023	TOtal V
1	Sichuan University (SCU)	CHN	N	Ā	2019 1,273					1,320
2	Sichuan University (SCU) King's College London (KCL)	CHN GBR		A 12		2020	2021	2022	2023	
_			1,1		1,273	2020	2021 1,343	2022 1,339	2023	1,320
2	King's College London (KCL)	GBR	1,1	12	1,273 1,561	2020 1,810 1,605	2021 1,343 1,298	2022 1,339 627	2023 1,088 928	1,320 1,192
2	King's College London (KCL) Catholic University of Leuven (KU Leuven)	GBR BEL	1,1 97 69	70	1,273 1,561 1,262	1,810 1,605 1,779	2021 1,343 1,298 1,070	2022 1,339 627 1,110	2023 1,088 928 1,023	1,320 1,192 1,190
3 4	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT)	GBR BEL USA	1,1 92 69	12 70 94	1,273 1,561 1,262 1,205	2020 1,810 1,605 1,779 1,686	2021 1,343 1,298 1,070 1,260	2022 1,339 627 1,110 1,261	2023 1,088 928 1,023 656	1,320 1,192 1,190 1,160
2 3 4 5	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU)	GBR BEL USA USA	1,1 9; 6! 9;	112 70 94 31	1,273 1,561 1,262 1,205 1,030	2020 1,810 1,605 1,779 1,686 1,223	2021 1,343 1,298 1,070 1,260 994	2022 1,339 627 1,110 1,261 958	2023 1,088 928 1,023 656 907	1,320 1,192 1,190 1,160 1,003
2 3 4 5 6	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE)	GBR BEL USA USA CHE	1,1 9? 69 93 64	12 70 94 31 42	1,273 1,561 1,262 1,205 1,030 994	2020 1,810 1,605 1,779 1,686 1,223 1,323	2021 1,343 1,298 1,070 1,260 994 940	2022 1,339 627 1,110 1,261 958 931	2023 1,088 928 1,023 656 907 1,006	1,320 1,192 1,190 1,160 1,003 991
2 3 4 5 6 7	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH)	GBR BEL USA USA CHE CHE	1,1 97 69 99 66 88	12 70 94 31 42	1,273 1,561 1,262 1,205 1,030 994 862	1,810 1,605 1,779 1,686 1,223 1,323 1,152	2021 1,343 1,298 1,070 1,260 994 940 716	1,339 627 1,110 1,261 958 931 779	2023 1,088 928 1,023 656 907 1,006	1,320 1,192 1,190 1,160 1,003 991 858
2 3 4 5 6 7 8	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU)	GBR BEL USA USA CHE CHE SWE	1,1 99 66 99 66 88 N	12 70 94 31 42 12	1,273 1,561 1,262 1,205 1,030 994 862 909	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315	2021 1,343 1,298 1,070 1,260 994 940 716 415	2022 1,339 627 1,110 1,261 958 931 779 851	2023 1,088 928 1,023 656 907 1,006 851	1,320 1,192 1,190 1,160 1,003 991 858 820
2 3 4 5 6 7 8	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU)	GBR BEL USA USA CHE CHE HKG	1,1 99 69 90 66 8 N 5-	12 70 94 31 42 12 7A	1,273 1,561 1,262 1,205 1,030 994 862 909 637	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060	2021 1,343 1,298 1,070 1,260 994 940 716 415 663	2022 1,339 627 1,110 1,261 958 931 779 851 802	2023 1,088 928 1,023 656 907 1,006 851 777 758	1,320 1,192 1,190 1,160 1,003 991 858 820 772
2 3 4 5 6 7 8 9	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M)	GBR BEL USA USA CHE CHE SWE HKG	1,1 9: 6: 9: 6- 8 8 N 5- 6: 6: 5:	112 770 94 81 81 142 12 74 46	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626	2022 1,339 627 1,110 1,261 958 931 779 851 802 743	2023 1,088 928 1,023 656 907 1,006 851 777 758 726	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746
2 3 4 5 6 7 8 9 10	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP)	GBR BEL USA USA CHE CHE SWE HKG USA	1,1 9: 6: 9: 6- 8. N 5- 6: 5:	112 770 94 331 42 12 4A 446 97	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707
2 3 4 5 6 7 8 9 10 11	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA	1,1 9: 6: 9: 6- 8. N 5- 6: 5: 9:	112 770 94 331 442 112 4A 446 97 552	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707
2 3 4 5 6 7 8 9 10 11 12 13	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of California, San Francisco (UCSF)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA	1,1 9: 6: 9: 6- 8. N 5- 6: 6: 9: 9: 6: 7:	112 770 994 331 142 112 7A 446 907 552 599 78	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647
2 3 4 5 6 7 8 9 10 11 12 13	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of California, San Francisco (UCSF) University of Washington (UW)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA USA	1,1 9: 6: 9: 6- 8. N 5- 6: 6: 9: 6: 7: 3:	112 770 94 31 42 112 44 46 97 75 52 78 84	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655 798	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892 701	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574 421	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573 478	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481 711	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647 642 631
2 3 4 5 6 7 8 9 10 11 12 13 14 15	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of California, San Francisco (UCSF) University of Washington (UW) New York University (NYU)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA USA USA	1,1 9: 6: 9: 6- 8. N 5- 6: 6: 5: 9: 6: 7: 3: N	112 770 94 31 31 42 12 74 46 97 552 59 78 84	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655 798	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892 701 818	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574 421 569	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573 478	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481 711 556	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647 642 631 601
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of California, San Francisco (UCSF) University of Washington (UW) New York University (NYU) São Paulo State University (UNESP)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA USA USA BRA	1,1 9: 6: 9. 6- 8. N 5- 6: 5: 9: 6: 7: 3: N 4:	112 770 94 31 142 12 144 146 177 152 159 178 184 154 164 164 164 164 164 164 164 16	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655 798 467 632	1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892 701 818 756	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574 421 569 539	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573 478 575 564	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481 711 556 519	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647 642 631 601 595
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of Washington (UW) New York University (NYU) São Paulo State University (UNESP) University of Milan (UNIMI)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA USA BRA TTA	1,1 9: 6: 9. 6- 8. N 5- 6: 5: 9: 6: 7: 3: N 4:	112 770 94 31 42 112 77 77 75 75 77 78 88 84 64 67 77 77 78 78 78 78 78 78 78 7	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655 798 467 632 511	2020 1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892 701 818 756 774	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574 421 569 539	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573 478 575 564 574	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481 711 556 519 583	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647 642 631 601 595
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	King's College London (KCL) Catholic University of Leuven (KU Leuven) University of Texas (UT) Harvard University (HU) University of Bern (UNIBE) University of Zurich (UZH) University of Gothenburg (GU) The University of Hong Kong (HKU) University of Michigan (U-M) University of São Paulo (USP) University of Pennsylvania (UPenn) University of California, San Francisco (UCSF) University of Washington (UW) New York University (NYU) São Paulo State University (UNESP) University of Milan (UNIMI) University of Amsterdam (UvA)	GBR BEL USA USA CHE CHE SWE HKG USA BRA USA USA USA BRA ITA NEL	1,1 9: 6: 9: 6: 8 8 N 5: 6: 6: 7: 3: 8. N 4: 4:	112 770 94 31 42 112 77 77 75 75 77 78 88 84 64 67 77 77 78 78 78 78 78 78 78 7	1,273 1,561 1,262 1,205 1,030 994 862 909 637 728 688 900 655 798 467 632 511	2020 1,810 1,605 1,779 1,686 1,223 1,323 1,152 1,315 1,060 951 860 764 892 701 818 756 774 813	2021 1,343 1,298 1,070 1,260 994 940 716 415 663 626 582 543 574 421 569 539 536 634	2022 1,339 627 1,110 1,261 958 931 779 851 802 743 586 531 573 478 575 564 574 533	2023 1,088 928 1,023 656 907 1,006 851 777 758 726 753 593 481 711 556 519 583 513	1,320 1,192 1,190 1,160 1,003 991 858 820 772 746 707 647 642 631 601 595 584

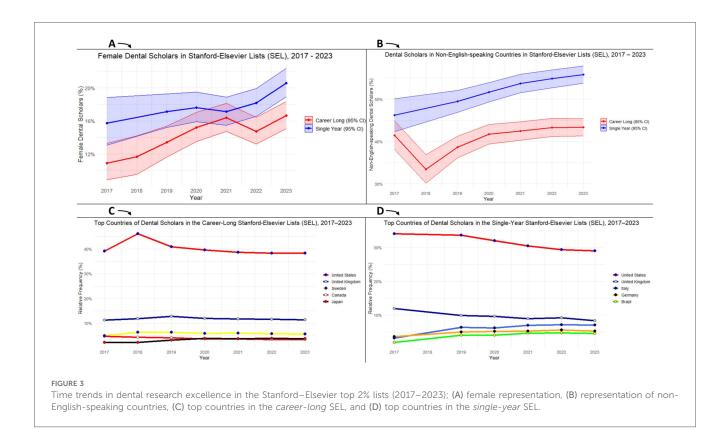
whereas World Bank income level showed the strongest effect for citation count (31.7%). Moreover, the *single-year* SEL demonstrated stronger clustering by World Bank level, which explained the majority of the variance in citation count (79.2%) and considerable portions in C-score (25.2%) and modified *h*-index (24.1%), while official language continued to exert notable influence on citation count (41.3%) and self-citation percentage (25.7%) Table 5.

For individual-level indicators, male gender was significantly associated with a higher modified h-index in the *career-long* SEL [adjusted β = 0.55 (95% CI: 0.23–0.88)] and with higher citation counts in the *single-year* SEL [84.25

(34.08–134.43)]. Academic age demonstrated a more consistent effect across scholarly metrics: for each additional year of academic activity, the C-score increased (*career-long*: 0.01; *single-year*: 0.004), the modified *h*-index rose (0.18; 0.03), and the percentage of self-citations decreased slightly (– 0.0011; –0.0019), all with statistically significant confidence intervals Figure 4.

Concerning national-level budgetary indicators, GDP expenditure on education was not significantly associated with any scholarly metric in either the *career-long* or *single-year* SEL. In the *career-long* SEL, higher GDP expenditure on health was associated with increased C-score [0.01 (0.006–0.018)], citation

TABLE 4 Individual-level analysis: sex and academic age of excellent dental scholars (EDS) in the Stanford-Elsevier lists (SEL) of top scientists worldwide (2017-2023).


Career-long SEI	ng SEL									
Variable	Outcome		Female			Male			d	
		Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars	Citations	Age
Year	SEL 2017	83 (10.9%)	4,888 (3,352–7,921)	36 (29–41)	679 (89.1%)	4,283 (2,964–6,941)	37 (31–43)	<0.001	0.070	0.136
	SEL 2018	84 (11.7%)	5,280 (3,972-7,747)	35 (29–41)	636 (88.3%)	4,912 (3,380–8,188)	39 (32–45)		0.199	<0.001
	SEL 2019	171 (13.4%)	4,178 (2,625–6,552)	35 (27–41)	1,104 (86.6%)	3,993 (2,514–6,601)	38 (31–45)		0.481	<0.001
	SEL 2020	245 (15.2%)	4,132 (2,568–6,166)	35 (27-41)	1,368 (84.8%)	3,972 (2,471–6,526)	37 (31–44)		0.774	<0.001
	SEL 2021	298 (16.4%)	3,864 (2,476–5,897)	34.5 (27-40)	1,522 (83.6%)	3,998 (2,429–6,626)	37 (31–45)		0.401	<0.001
	SEL 2022	280 (14.7%)	4,266 (2,734–6,557)	34 (28–42)	1,619 (85.3%)	4,260 (2,630–7,024)	38 (31–45)		0.900	<0.001
	SEL 2023	338 (16.6%)	4,367 (2,828–7,094)	34 (28–40)	1,693 (83.4%)	4,473 (2,745–7,465)	38 (31–45)		0.732	<0.001
World Bank	High	1,440 (15.0%)	4,264 (2,727–6,549)	35 (28-41)	8,164 (85.0%)	4,249 (2,665–7,013)	38 (31–45)	0.631	0.808	<0.001
	Upper-middle	39 (13.0%)	6,117 (3,724–8,555)	24 (22–29)	261 (87.0%)	4,770 (2,759–7,473)	29 (23–42)		0.276	0.002
	Lower-middle	9 (18.4%)	1,848 (1,311–2,524)	14 (13–30)	40 (81.6%)	2,310 (1,463–3,291)	22 (19–31)		0.638	0.102
	Low	0 (0.0%)	NA	NA	2 (100.0%)	1,317 (1,219–1,414)	10 (9-10)		NA	NA
Official	English	900 (14.8%)	4,062 (2,670–6,067)	34 (27–40)	5,163 (85.2%)	4,106 (2,582–6,980)	39 (32–46)	<0.001	0.198	<0.001
Language	German	78 (10.6%)	5,442 (4,121–7,502)	26 (19–32)	661 (89.4%)	5,100 (3,261–8,188)	33 (26–40)		0.389	<0.001
	Swedish	126 (22.0%)	4,832 (2,696–7,598)	40 (35–45)	447 (78.0%)	3,794 (2,439–5,845)	40 (33–45)		090'0	0.351
	Dutch	50 (12.3%)	7,109 (5,452–11,353)	33 (21–36)	355 (87.7%)	6,579 (4,355–10,341)	36 (33–42)		0.271	<0.001
	Japanese	43 (12.2%)	5,529 (3,600- 10,144)	38 (32–42)	310 (87.8%)	4,679 (3,099–6,638)	37 (33–41)		0.019	0.832
	Danish	55 (21.9%)	3,994 (2,976–5,607)	37 (33–43)	196 (78.1%)	3,735 (2,623–6,307)	41 (33–49)		0.712	0.009
	Italian	39 (14.8%)	5,764 (2,961–7,191)	35 (22–39)	225 (85.2%)	5,015 (3,377-8,691)	32 (26–36)		0.535	0.398
	Finnish	51 (27.3%)	4,123 (2,128–14,538)	38 (32–45)	136 (72.7%)	4,214 (2,845–6,464)	35 (30–45)		0.564	0.905
	Norwegian	28 (16.7%)	2,956 (2,152–4,288)	43 (35–47)	140 (83.3%)	2,822 (1,978–4,337)	39 (35–46)		0.570	0.346
	Portuguese	28 (18.8%)	6,281 (4,968–8,869)	24 (22–27)	121 (81.2%)	5,850 (4,129–7,641)	27 (23–37)		0.208	0.019
	Hebrew	17 (11.4%)	2,412 (2,211–2,736)	42 (32–47)	132 (88.6%)	2,868 (2,122–4,145)	38 (34–44)		0.112	0.340
	Mandarin Chinese	10 (11.0%)	6,925 (4,144–7,734)	20 (19–30)	81 (89.0%)	5,272 (3,386–10,217)	30 (23–35)		0.694	0.074
	Spanish	10 (10.2%)	5,175 (3,124–7,516)	32 (28–34)	(88.68) 88	5,222 (3,345-8,196)	35 (30–40)		0.769	0.242
	Arabic	7 (8.0%)	1,617 (1,453–4,545)	14 (13–33)	81 (92.0%)	2,600 (1,639–3,557)	30 (27–36)		0.483	0.276
	Chinese	8 (10.5%)	4,154 (3,451–6,108)	31 (29–36)	(86.2%)	5,095 (3,468–7,072)	31 (26–34)		0.554	1.000
	Other	49 (10.5%)	2,976 (2,435–5,057)	34 (26–43)	417 (89.5%)	3,274 (2,079–5,149)	34 (25–44)		0.384	0.276
Total		1,499 (14.8%)	4,287 (2,721–6,624)	35 (28–41)	8,621 (85.2%)	4,233 (2,656–6,993)	38 (31–45)	10,120 (91.8%)	0.864	<0.001
Single-year SEL	ar SEL									
Variable	Outcome		Female			Male			Ъ.	
		Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars	Citations	Age
Year	SEL 2017	96 (15.7%)	416 (266–611)	NA	514 (84.3%)	451 (313–693)	NA	0.020	0.180	NA
	SEL 2019	227 (17.1%)	494 (328–762)	27 (20–35)	1,097 (82.9%)	491 (312–753)	32 (22–40)		0.581	<0.001
	SEL 2020	304 (17.6%)	664 (397–1,050)	26 (18–36)	1,421 (82.4%)	634 (369–1,020)	31 (20–40)		0.274	<0.001
	SEL 2021	327 (17.1%)	460 (303–688)	25 (18–35)	1,584 (82.9%)	430 (260–713)	30 (20–39)		0.290	<0.001
									(,

(Continued)

TABLE 4 Continued

Career-long SEL									
		Female			Male			d	
	Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars: N (%)	Citations: Median (IQR)	Academic Age: Median (IQR)	Scholars	Citations	Age
	364 (18.2%)	440 (301–699)	25 (18–34)	1,640 (81.8%)	445 (281–760)	31 (20–40)		0.757	<0.001
	437 (20.6%)	410 (273–663)	26 (19–35)	1,687 (79.4%)	451 (286–752)	30 (20–40)		0.072	<0.001
	1,539 (18.0%)	460 (303–737)	27 (19–36)	7,027 (82.0%)	473 (297–774)	32 (22–40)	0.199	0.337	<0.001
Upper-middle	160 (18.8%)	604 (405–988)	20.5 (16–26)	690 (81.2%)	570 (374–881)	20 (16–27)		0.063	0.913
Lower-middle	35 (24.1%)	364 (253–513)	14 (11.5–17)	110 (75.9%)	339 (203–843)	14 (11–18)		0.969	0.808
	0 (0.0%)	NA	NA	5 (100.0%)	310 (303–328)	9 (8–10)		NA	NA
	795 (17.1%)	435 (286–718)	27 (21–36)	3,853 (82.9%)	450 (277–759)	35 (25–44)	<0.001	0.929	<0.001
	136 (14.8%)	485 (360–710)	21 (16–30)	780 (85.2%)	588 (368–877)	25 (18–34)		0.048	0.001
	157 (23.5%)	520 (359–730)	23 (16–33)	512 (76.5%)	542 (362–824)	26 (17–34)		0.371	0.156
Portuguese	76 (18.7%)	596 (479–994)	22 (18–26)	331 (81.3%)	619 (456–873)	21 (18–27)		0.558	0.487
	72 (17.8%)	739 (421–996)	25 (19–35)	333 (82.2%)	678 (368–1,061)	34 (25–40)		0.954	<0.001
Mandarin Chinese	70 (22.9%)	688 (455–1,090)	20 (16–26)	236 (77.1%)	647 (431–1,025)	21 (15–29)		0.440	0.570
	75 (23.4%)	383 (265–1,027)	37 (26–44)	245 (76.6%)	462 (262–873)	37 (27–43)		0.953	0.557
	50 (15.4%)	525 (408–692)	32 (28–38)	275 (84.6%)	488 (312–680)	32 (26–37)		0.242	0.612
	30 (15.1%)	274 (104–741)	13 (11–16)	169 (84.9%)	282 (185–510)	14 (10–19)		0.415	0.332
	28 (14.7%)	563 (442–877)	26 (19–31)	163 (85.3%)	503 (350–747)	25 (16–34)		0.274	0.925
	58 (31.5%)	369 (274–590)	37 (33–45)	126 (68.5%)	363 (259–590)	40 (27–49)		0.949	0.879
	24 (17.0%)	338 (242–457)	18 (16–24)	117 (83.0%)	388 (265–515)	21 (16–25)		0.186	0.563
	6 (6.5%)	745 (529–1,140)	31 (27–33)	87 (93.5%)	630 (359–937)	26 (21–33)		0.416	0.431
	31 (32.3%)	674 (455–1,081)	43 (33–45)	65 (67.7%)	536 (309–926)	31 (27–39)		0.062	0.019
	19 (18.6%)	357 (160–422)	26 (21–46)	83 (81.4%)	271 (202–482)	37 (24-41)		0.300	0.238
	107 (19.0%)	348 (200–548)	19 (14–26)	457 (81.0%)	368 (235–591)	23 (15–36)		0.171	0.058
	1,755 (18.1%)	472 (309–548)	26 (18–35)	7,943 (81.9%)	480 (299–786)	31 (20–40)	9,698 (93.9%)	0.684	<0.001

Chi-squared (χ^2) test, Fisher's exact test, and Mann–Whitney (U) test were used with a significance level $p \le 0.05$. Bold font indicates statistically significant values (p < 0.05).

count [173.33 (52.81–293.85)], and reduced percentage of self-citations $[-1.4 \times 10^{-3} (-2.7 \times 10^{-3} \text{ to } -1.0 \times 10^{-5})]$ Table 5.

Three sequential multivariable linear regression models were developed for each scholarly metric: Model 1 included individual-level indicators (gender and academic age); Model 2 added public health indicators (life expectancy and oral disease burden); and Model 3 further incorporated economic indicators (GNI per capita and GDP shares for R&D, health, and education). The progressive increase in explained variance $(R^2_3 > R^2_2 > R^2_1)$ aligns with the mixed-effects model findings, underscoring the effect of national-level indicators Supplementary Table 10.

4 Discussion

4.1 Summary of findings

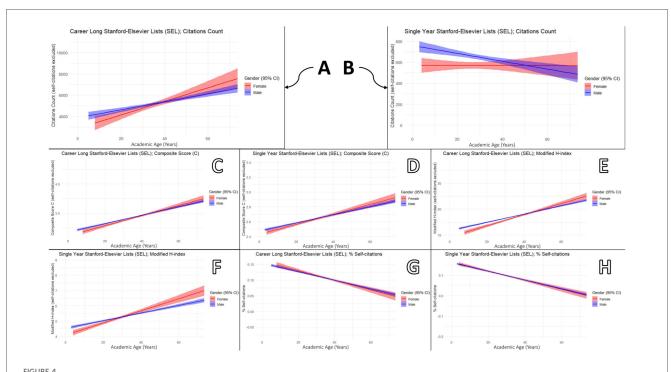
The present analysis revealed that the distribution of EDS was strikingly uneven worldwide, with 80% of those listed in the *careerlong* and *single-year* SEL were based in only 10 and 13 countries, respectively. Moreover, 96.1% and 88.9% of scholars in the *careerlong* and *single-year* SEL were based in high-income countries. English-speaking countries accounted for 59.5% of *career-long* and 47.7% of *single-year* SEL, reflecting both the historical origins of dental sciences in Anglophone settings and the language bias inherent in Elsevier's journal indexing, which predominantly favours English-language publications (31–36). Institutional elitism was also evident, with 23.8% of *career-long* and 19.8% of *single-year* scholars affiliated with only 20 institutions, all of which are historically prestigious centres located in high-income countries. This

concentration illustrates the continued clustering of resources and talent within long-established academic powerhouses such as the University of Washington, King's College London, and Harvard University, consistent with historical patterns of institutional dominance (37–39).

Macroeconomic indicators were positively correlated with number of EDS, particularly GDP share allocated to R&D (*career-long* ρ = 0.739; single-year ρ = 0.706), GDP per capita (0.604; 0.527), and GDP shares for health (0.538; 0.497) and education (0.462; 0.376). Gender disparities in dental research excellence were substantial, with women comprising only 14.8% of career-long and 18.1% of single-year SEL, while male scholars exhibited longer academic ages and higher scholarly output metrics. Mixed-effect regression models emphasised the principal role of World Bank income classification and official language as categorical determinants of scholarly output metrics. Academic age consistently emerged as a stronger predictor than gender across all scholarly performance indicators. In addition, national public health indicators, particularly life expectancy and the burden of oral diseases such as deciduous and permanent caries and edentulism, were also significantly associated with citation outcomes, suggesting that broader social and health system contexts are associated with research productivity, though causality cannot be inferred from these ecological associations.

4.2 Macroeconomic determinants of dental research excellence

The unequal distribution of research productivity in the biomedical sciences, including dentistry, is a well-documented,


TABLE 5 Individual-level analysis: mixed-effects regression models of scholarly outputs of excellent dental scholars (EDS) in the Stanford-Elsevier lists (SEL) of Top scientists worldwide (2017–2023).

Model fit			C	areer-	-long SEL			
	Composite scor	e (C)	Modified H-inc	lex	Citations co	ount	% Self-citations	
Official Language as Intercept: ICC	12.1%		17%		13.8%		33.5%	
World Bank Level as Intercept: ICC	7%		5.9%		31.7%		0%	
Predictor	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.
Gender (Male vs. Female)	0.02 (0.002-0.034)	0.030	0.55 (0.23-0.88)	<0.001	73.53 (-214.45 to -361.5)	0.617	$-1.3 \times 10^{-3} \ (-4.4 \times 10^{-3} \ \text{to}$ $-1.8 \times 10^{-3})$	0.408
Academic Age (per Year)	0.01 (0.007-0.008)	<0.001	0.18 (0.17-0.19)	<0.001	48.41 (38.37- 58.45)	<0.001	$-1.1 \times 10^{-3} \ (-1.2 \times 10^{-3} \ \text{to}$ $-9.9 \times 10^{-4})$	<0.001
Life Expectancy (per Year)	0.02 (0.010-0.021)	<0.001	0.31 (0.2-0.43)	<0.001	325.81 (209.74- 441.88)	<0.001	$3.2 \times 10^{-4} \ (-4.3 \times 10^{-4} \ \text{to}$ $-1.1 \times 10^{-3})$	0.398
Deciduous Caries (per DALY/100 K)	0.01 (-0.015 to -0.042)	0.347	0.11 (-0.49 to -0.71)	0.721	321.48 (-204.36 to -847.32)	0.232	6.1×10^{-4} $(-5.2 \times 10^{-3} - 6.4 \times 10^{-3})$	0.837
Permanent Caries (per DALY/100 K)	0.003 (0.001-0.004)	0.005	0.02 (-0.02 to -0.06)	0.328	27.47 (-6.39 to - 61.33)	0.113	$-2.7 \times 10^{-4} \ (-6.6 \times 10^{-4} \ \text{to} -$ $1.1 \times 10^{-4})$	0.168
Edentulism (per DALY/ 100 K)	-0.001 (-0.001 to -0.0003)	<0.001	-0.01 (-0.01 to -0.002)	0.014	-6.39 (-11.59 to -1.19)	0.016	$1.2 \times 10^{-4} (6.4 \times 10^{-5} \text{ to}$ $-1.8 \times 10^{-4})$	<0.001
GDP Expenditure on R & D (per %)	0.01 (-0.020 to -0.034)	0.606	-0.07 (-0.67 to -0.54)	0.830	289.15 (-216.49 to -794.79)	0.266	$-6.7 \times 10^{-3} \ (-1.3 \times 10^{-2} \ \text{to}$ $-2.4 \times 10^{-4})$	0.043
GDP Expenditure on Health (per %)	0.01 (0.006-0.018)	<0.001	0.04 (-0.1 to -0.17)	0.579	173.33 (52.81– 293.85)	0.005	$-1.4 \times 10^{-3} \ (-2.7 \times 10^{-3} \ \text{to}$ $-1.0 \times 10^{-5})$	0.049
GDP Expenditure on Education (per %)	-0.001 (-0.023 to - 0.021)	0.929	-0.16 (-0.63 to -0.31)	0.508	314.44 (-97.43 to -726.31)	0.137	$4.5 \times 10^{-3} \ (-1.1 \times 10^{-4} \ \text{to}$ $9.1 \times 10^{-3})$	0.056
Model Fit	odel Fit			'ear SEL				
	Composite Scor	e (C)	Modified H-inc	dex	Citations Co	ount	% Self-citations	
Official Language as Intercept: ICC	15.2%		18.6%		41.3%		25.7%	
World Bank Level as Intercept: ICC	25.2%		24.1%		79.2%		0%	
Predictor	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.	Adj. β (95% CI)	p.
Gender (Male vs. Female)	0.02 $(-7.92 \times 10^{-4} \text{ to} -0.03)$	0.062	0.03 (-0.06 to -0.12)	0.476	84.25 (34.08- 134.43)	0.001	$1.7 \times 10^{-4} \ (-3.7 \times 10^{-3} \text{to}$ $-4.1 \times 10^{-3})$	0.932
Academic Age (per Year)	0.004 (0.004-0.01)	<0.001	0.03 (0.02-0.03)	<0.001	-2.26 (-3.9 to -0.62)	0.007	$-1.9 \times 10^{-3} \ (-2.0 \times 10^{-3} \ \text{to}$ $-1.8 \times 10^{-3})$	<0.001
Life Expectancy (per Year)	0.01 (0.01-0.02)	<0.001	0.14 (0.1-0.18)	<0.001	62.13 (37.79– 86.47)	<0.001	$3.5 \times 10^{-4} (-7.5 \times 10^{-4} \text{ to}$ $-1.4 \times 10^{-3})$	0.534
Deciduous Caries (per DALY/100 K)	0.01 (-0.02 to -0.04)	0.569	0.08 (-0.09 to -0.25)	0.373	74.59 (-30.32 to -179.51)	0.164	$4.7 \times 10^{-3} \ (-2.8 \times 10^{-3} \ \text{to}$ $-1.2 \times 10^{-2})$	0.218
Permanent Caries (per DALY/100 K)	0.004 (0.003-0.01)	<0.001	0.02 (0.01-0.04)	<0.001	2.26 (-4.43 to -8.95)	0.508	$-2.9 \times 10^{-4} (-7.5 \times 10^{-4} \text{ to}$ $-1.6 \times 10^{-4})$	0.210
Edentulism (per DALY/ 100 K)	-1.14×10^{-4} (-4.24 × 10 ⁻⁴ to -0.)	0.469	$-8.82 \times 10^{-4} \ (-0.003 \ \text{to}$ $-8.19 \times 10^{-4})$	0.310	1.26 (0.24-2.28)	0.016	$1.3 \times 10^{-4} $ (5.7 × 10 ⁻⁵ to -2.1×10^{-4})	<0.001
GDP Expenditure on R & D (per %)	0.03 (0.003-0.06)	0.032	-0.05 (-0.21 to -0.12)	0.561	93.4 (-14.97 to -201.76)	0.092	$-3.1 \times 10^{-3} \ (-1.1 \times 10^{-2} \ \text{to}$ $-4.5 \times 10^{-3})$	0.423
GDP Expenditure on Health (per %)	0.01 (-9.33 × 10 ⁻⁴ to - 0.01)	0.090	0.07 (0.03-0.11)	<0.001	7.86 (-16.18 to -31.89)	0.522	$-1.7 \times 10^{-3} (-3.4 \times 10^{-3} \text{ to } -$ $-1.1 \times 10^{-4})$	0.037
GDP Expenditure on Education (per %)	0. (-0.03 to -0.02)	0.783	-0.06 (-0.19 to -0.06)	0.319	-5.46 (-87.07 to -76.14)	0.896	$8.7 \times 10^{-4} \ (-4.6 \times 10^{-3} \ \text{to}$ $-6.4 \times 10^{-3})$	0.757

Bold font indicates statistically significant values (p < 0.05).

longstanding, and global phenomenon, predominantly attributed to macroeconomic factors (6, 40–44). A bibliometric analysis revealed that over half of dental research publications worldwide in 2013 originated from only five countries, i.e., the US, Brazil, India, Japan, and the UK (6). Moreover, the findings demonstrated strong positive correlations between dental research output and macroeconomic indicators such as HDI and

GNI; countries in the highest HDI and GNI groups published on average 166.2 and 177.7 articles respectively, compared to only 1.7 and 0.8 articles in the lowest groups (6). Remarkably, certain middle-income economies, namely India and Brazil, exhibited disproportionately high research outputs, suggesting that strategic national priorities can significantly drive research productivity beyond macroeconomic determinants (45, 46).

Gender-stratified associations between academic age and scholarly output metrics among excellent dental scholars (EDS) in the Stanford–Elsevier top 2% lists (2017–2023): (A,B) citation count, (C,D) composite score, (E,F) modified h-index, and (G,H) percentage of self-citations for *career-long* and *single-year* lists, respectively.

Subnational disparities in dental research productivity are also evident, as shown by a recent bibliometric analysis of North East England (NEE), one of the most socioeconomically deprived regions in the UK, where all five NEE universities collectively contributed less than 4% of the country's dental publications, alongside low inter-institutional collaboration and uneven output distribution (47). In Brazil, a bibliometric analysis of dental research productivity across states revealed moderate correlations between the number of publications per 100,000 inhabitants and key socioeconomic indicators, including GNI per capita (ρ = 0.38), mean individual income (ρ = 0.40), and proportion of poverty (ρ = -0.48) (48). The subnational distribution of research output was strongly disproportionate, with the State of São Paulo alone accounting for 46% of all dental publications, while four states produced none during the study period (2006–2016) (48).

In contrast to research productivity, which is a predominantly quantitative metric, research excellence is a more qualitative construct that emphasises the potential impact of dental research on oral health outcomes and clinical practice (49–51). A recent study by Lalloo and Borrell analysed the distribution of recipients of the IADR annual awards from 2019 to 2024 and found that 94% were from high-income countries and 6% from upper-middle-income countries, with no recipients from lower-middle- or low-income countries, nor from the African or Middle Eastern regions (52). The US (38.8%), the UK (12.2%), and Australia (11.1%) accounted for the majority of awards, reflecting a dominance of both high-income and English-speaking countries in the global recognition of dental research excellence (52).

The present study identified consistent associations between dental research excellence and macroeconomic indicators, such as the GDP shares allocated to R&D and education. Empirical evidence suggests that higher efficiency of R&D investment, as measured by the number of scientific publications generated per 1% of GDP allocated to R&D, is not only indicative of enhanced research productivity but also significantly associated with long-term economic growth, particularly in emerging economies where the marginal returns appear more pronounced (53). Complementary findings from institutionallevel analyses of US and European universities indicate that scholarly output and impact increase more than proportionally with the financial resources available to universities (54). In particular, funding per academic staff member emerged as a key driver of bibliometric performance, highlighting how concentrated investments enable institutions to attract talent and amplify research visibility (54).

Beyond macroeconomic indicators, structural barriers constrain the development of dental research excellence in low-and middle-income countries (LMIC) (55). Limited laboratory infrastructure, high costs of biomedical equipment, and disparities in remuneration discourage dentist-scientist careers and drive talent abroad. Although Africa bears a disproportionate share of the global disease burden, it receives only a fraction of global health research funding (56, 57). Additional non-economic barriers, including political instability, restricted access to scientific journals, and weak regional research networks, further limit capacity development and perpetuate inequities in global knowledge production (58, 59).

4.3 Institutional elitism in dental research excellence

The Matthew effect refers to the cumulative advantage by which well-resourced and visible institutions continue to attract disproportionate recognition, funding, and talent (60). To formally describe this persistent and historically documented phenomenon, particularly in academic medicine and dentistry, we propose the term institutional elitism, defined as "the systemic concentration of academic prestige, research productivity, and investment within a limited subset of institutions, reinforced by performance-based funding, reputation-driven rankings, and policy frameworks that favour scale and visibility" (54, 60–63).

The vicious circle underlying institutional elitism can be attributed to funding sustainability, as Katz and Matter found that since 1985, an increasing share of the US National Institutes of Health (NIH) funding has been captured by a small, fixed segment of scholars and institutions, with those initially in top funding tiers consistently retaining their positions, ultimately resulting in stasis and reduced academic mobility (63). Editorial bias is a contributing factor to institutional elitism, reflected in the preferential treatment received by authors affiliated with prestigious institutions, who benefit from both higher acceptance rates and shorter peer-review durations in leading academic journals (61). Another explanation for institutional elitism is the self-reinforcing nature of faculty hiring networks, in which a small number of prestigious institutions disproportionately place their graduates into academic positions across the system (64). This entrenched hierarchy not only perpetuates institutional dominance but also limits upward mobility and reinforces disparities in academic visibility, influence, and opportunity (64).

In terms of dental research productivity, institutional elitism is consistently observed; for example, in Brazil, more than half of all dental publications originate from only three institutions: the University of São Paulo (28.2%), São Paulo State University (14.7%), and the State University of Campinas (12.8%) (48). Likewise, in Spain, dental research between 1993 and 2012 was dominated by three institutions: the University of Granada (14.9%), the Complutense University of Madrid (13.2%), and the University of Valencia (10.3%) (65). Moreover, two Saudi institutions accounted for over half of the country's dental research output between 2009 and 2018, namely King Saud University (37.7%) and King Abdulaziz University (17.6%) (66).

The results of the present study largely echo previous findings from sporadic national analyses on the concentration of dental research production within historically prestigious institutions (48, 65, 66). They further demonstrate that dental research excellence, as measured by citation-based metrics, is similarly dominated by a narrow subset of institutions globally, with 20 institutions accounting for 23.8% of *career-long* and 19.8% of *single-year* scholars.

4.4 Gender disparities in dental research excellence

Dentistry, which originated as a predominantly male profession, has been undergoing a gradual feminisation globally, with women now comprising over 60% of practising dentists across Europe and nearly 80% in countries such as Finland, Russia, Latvia, and Lithuania (67–71). In the UK, this shift reached a milestone in 2021 when women accounted for 51% of all registered dentists; yet significant gender disparities persist: women represent only 22% of professors in academia, while they account for 58% of lecturers; they outnumber men in six of fifteen dental specialities, but remain markedly underrepresented in oral surgery (less than one-third), prosthodontics (27%), and restorative dentistry (24%), highlighting a steep gender gradient in higher-status roles and specialities (71)...

Globally, gender disparities persist across various aspects of dental research and practice; for instance, an examination of editorial boards of dental journals indexed in the Journal Citation Reports[®] (Clarivate Analytics) revealed that 82% of editors-in-chief were men (72). Encouraging developments are emerging within leading dental organisations such as the World Dental Federation (FDI) and the IADR, which have adopted diversification policies aimed at promoting gender balance; at present, women comprise 76% of IADR and 84% of FDI headquarters staff, offering a potential model for national member organisations (73). Consequently, men account for 54% of chief dental officer positions, indicating a near-balanced distribution and signalling gradual progress towards gender parity in senior leadership roles (73).

A recent bibliometric analysis of the most-cited dental publications from 1980 to 2019 revealed a pronounced gender imbalance, with men accounting for 83.8% of first authors and 86.8% of last authors (74). Although women's representation as last authors increased modestly from 6% in the 1980s to 22% in the 2010s, no significant progress was observed in their representation as first authors (74). Likewise, another bibliometric analysis of dental publications between 1996 and 2019 revealed that women accounted for 28.4% of first authors and 22.1% of last authors, with a modest upward trend in last authorship from 16.1% in 1996 to 22.1% in 2019 (75).

On the other side of the coin, women scholars appear to lead dental research output in low-income settings (76). For instance, in Nigeria, women scholars had significantly more Web of Science-indexed publications (3.7 vs. 2.6; p = 0.03), received more citations (3,892 vs. 3,779; p = 0.04), and held a greater share of first-authorship positions (26.6% vs. 20.5%; p = 0.048) compared to their male counterparts (76). Moreover, between 2016 and 2023, four women scholars were ranked among the top ten most productive authors in Africa in terms of dental research output (7).

In the US, women constituted only 36.5% of dental faculty and just 24.4% of full professors at the top eight NIH-funded dental schools in 2017 (77). Women dental faculty tend to be younger, as they have generally graduated more recently (77, 78). Although women faculty had fewer publications and lower

h-indices than men, they had graduated more recently, and when adjusted for age and productivity, gender was not significantly associated with academic rank (77). Furthermore, between 2007 and 2016, approximately two-thirds of NIH Research Project Grant applicants and awardees in dental and oral health research were men (79). Although men submitted more applications and received more awards, no gender differences were observed in award rates or in the age at which the first early-stage investigator grant (R01) was obtained (79). These results reflect historic gender disparities reflected in senior dental academic positions distribution, yet suggest that such imbalances may be gradually diminishing as increasing numbers of female dental graduates enter academia and research, where they increasingly match or surpass their male counterparts in early-career performance.

In the present study, women were significantly underrepresented among EDS globally, constituting only 14.8% of the *career-long* SEL and 18.1% of the *single-year* SEL, thus reflecting the historic gender imbalance in dentistry. Nevertheless, female representation across SEL annual updates from 2017 to 2023 demonstrated a clear upward trend, and women scholars were significantly younger than their male counterparts. Notably, regression analyses adjusted for academic age and macroeconomic indicators revealed no significant gender differences in scholarly output metrics, suggesting comparable research influence between male and female scholars.

4.5 Academic age and dental research excellence

The association between academic age and research productivity in dentistry has been recognised for decades, predating the widespread adoption of common author-level scientometrics, such as the h-index (80). In contrast to intuitive assumptions of linear growth, the relationship between academic age and citation-based metrics exhibits a non-linear pattern, characterised by phases of initial increase, subsequent stabilisation, and eventual decline (81, 82). Milestones in academic careers, such as the attainment of a PhD, can serve as important catalysts for subsequent research performance, with empirical evidence suggesting that younger PhD graduates tend to achieve higher productivity and citation impact over time (83). Nevertheless, there remains a lack of in-depth analyses focusing on dental scholars to determine whether similar milestones contribute to catalysing and sustaining long-term research productivity or excellence.

The findings of this study demonstrated that academic age was the only factor significantly associated with all scholarly output metrics, i.e., citation count, *h*-index, C-score, and the proportion of self-citations, in both unadjusted and adjusted regression models, confirming its predictive value for dental research excellence. However, further research is needed to explore the underlying mechanisms and trajectories of this factor within the context of dental research.

4.6 Oral diseases burden and dental research excellence

Disease burden is an appealing contextual variable in bibliometric studies, as it links research activity to population health needs. A recent bibliometric analysis of surgical publications from 2010 to 2022 revealed a weak and statistically non-significant correlation between surgical disease burden and both research output ($\rho = -0.041$, p = 0.682) and research-producing human capital ($\rho = -0.047$, p = 0.641) (84). Furthermore, more than 90% of the global surgical disease burden was concentrated in countries outside the top 20 contributors to surgical research, underscoring a substantial misalignment between research efforts and global health priorities (84). Likewise, a bibliometric analysis of oncology research in Southeast Asia (SEA) between 1980 and 2020 revealed a significant inverse relationship between disease burden and research productivity, with higher incidence, mortality, and DALYs associated with lower levels of key bibliometric indicators, including total publications, citations, and social media attention (85). Furthermore, dementia research production in SEA was not significantly associated with disease burden in any of the region's

Funding allocation for health research may explain observed mismatches between research activity and disease burden in different disciplines. A bibliometric analysis of 52 infectious diseases showed that while HIV/AIDS and influenza attracted disproportionately high research attention, many neglected tropical diseases such as paratyphoid fever and schistosomiasis remained under-researched relative to their burden, as indicated by the Burden Adjusted Research Intensity (BARI) index (87). Oral diseases emphasise this mismatch, as shown by a recent Australian study that assessed government research funding in relation to disease burden (88). Although oral disorders accounted for a substantial proportion of non-fatal DALYs, they received only 15 million AUD in NHMRC funding between 2017 and 2021, representing just 0.23% of the total NHMRC budget allocated to the top 75 disease categories in Australia. This resulted in a Fair Research Funding (FRF) index of 10.7, the highest level of underfunding among all categories assessed (88).

In spite of oral diseases constituting the largest share of the non-fatal disease burden across all WHO regions and countries, the present study identified a negative correlation between this burden and both the number of EDS per country and their citation count, with deciduous caries showing $\rho = -0.527$ and -0.536, and permanent caries showing $\rho = -0.375$ and -0.386, respectively (89).

4.7 Time-trends of dental research excellence

The inclusion of both *career-long* and *single-year* SEL aimed to capture temporal patterns in dental research excellence. While the *career-long* SEL provides a cumulative and historical perspective, the *single-year* SEL offers a more current, cross-sectional view of ongoing shifts. Complementing this approach, annual

comparisons of SEL updates from 2017 to 2023 revealed five major trends that suggest a progressively inclusive and evolving global dental research landscape.

Firstly, increasing female representation, with women comprising a higher proportion of the *single-year* SEL (18.1%) compared to the *career-long* SEL (14.8%). This trend is further supported by the rise in female inclusion from 10.9% (*career-long*) and 15.7% (*single-year*) in 2017 to 16.6% and 20.6%, respectively, in 2023. This finding echoes the global trend of feminisation in dental education, practice, and research (67–71)...

Secondly, increasing geographical diversity, with more countries represented in the *single-year* SEL (n=71) compared to the *career-long* SEL (n=65), including a greater presence of Global South countries in the former, e.g., Bangladesh, Cambodia, and Vietnam. Annual SEL comparisons also revealed an upward trend in the number of represented countries, increasing from 33 to 57 in the *career-long* SEL and from 37 to 63 in the *single-year* SEL between 2017 and 2023. This finding aligns with previous observations of increased dental research productivity in countries that have historically shown limited engagement in dental research (8).

Thirdly, increasing the representation of non-high-income countries, with their proportion being higher in the *single-year* SEL (11.1%) than the *career-long* SEL (3.9%), and showing an upward trend between 2017 (1.0% and 4.5%) and 2023 (5.5% and 13.8%), respectively. It is worth noting that this rise is largely driven by upper-middle-income countries, particularly Brazil and China, with only minimal and stagnating contributions from lower-middle and low-income countries.

Fourthly, increasing non-English-speaking countries representation, with their proportion being higher in the *single-year* SEL (52.3%) than the *career-long* SEL (41.5%), and showing an upward trend between 2017 (33.7% and 39.5%) and 2023 (43% and 55.6%), respectively. Given that the vast majority of Elsevier-indexed publications are in English, this trend reflects the growing engagement of scholars based in non-English-speaking countries in publishing their work in English as the lingua franca of science (90, 91).

Fifthly, decreasing median age of enlisted EDS was observed, with women in the *single-year* SEL having a lower median age compared to those in the *career-long* SEL (26 vs. 35 years), and men showing a similar pattern (31 vs. 38 years). Recently, empirical evidence indicated that pursuing an academic career was cited as the first or second career preference by 3.6% and 13.5%, respectively, of a global sample of dental students (92). This reflects a growing interest among young dentists in engaging with research.

4.8 Implications

The concentration of EDS in high-income countries reflects persistent global disparities in research capacity and suggests a potential role for sustained investment in research infrastructure and academic training programmes within low- and middle-income settings. The dominance of a small number of elite institutions in global dental research reflects systemic institutional elitism, which underscores the importance of diversifying funding

allocation and enhancing visibility of emerging research centres. The pronounced underrepresentation of women among EDS, despite comparable citation outcomes, calls for institutional reforms that promote gender equity through supportive academic pathways and inclusive leadership development. Finally, the negative correlation between oral disease burden and scholarly excellence signals a misalignment between research outputs and population health needs, highlighting the urgency of reorienting national research priorities toward high-burden conditions.

4.9 Limitations

One limitation of this study is the reliance on citation-based metrics, which may favour senior scholars and underrepresent regionally relevant or non-English outputs (93). The SEL methodology partly mitigates these concerns by excluding self-citations, adjusting for authorship position, and employing a composite citation score that better reflects individual contributions. Complementary dimensions of excellence, including translational value, societal outcomes, and clinical relevance, were not captured by the SEL framework and should be considered in future investigations for a more comprehensive assessment.

Another limitation is gender assignment, an inherent challenge in bibliometric research. Algorithmic inference is vulnerable to cultural variation and inconsistent naming conventions, leading to potential misclassification. Such errors are more likely to attenuate observed gender differences than to generate spurious disparities, rendering estimates conservative. Greater transparency and standardisation in gender determination, together with integration of self-reported demographic data where feasible, remain essential for future research (94, 95).

Additionally, the use of academic age as a proxy for biological age, a practice that is criticised as the correlation between the two is not universal; empirical evidence suggests that the use of academic age should be limited to science, technology, engineering, mathematics, and medicine (STEMM) disciplines and scientifically advanced countries (96).

4.10 Strengths

This study is the first to focus specifically on dental research excellence, rather than productivity, offering a qualitatively distinct perspective on scholarly impact. It represents the most extensive analysis to date, utilising both the career-long and single-year SEL over a seven-year period (2017-2023) to enable cumulative and time-trend assessments. Moreover, incorporating national-, institutional-, and individual-level determinants, the study provides a multidimensional framework for understanding the macroeconomic and sociodemographic drivers of dental research excellence. Finally, the use of mixedeffects linear regression models with country-level clustering and contextual fixed effects enhances the robustness of the findings accounting for unobserved heterogeneity structural confounding.

5 Conclusion

Excellence in dental research, as measured by citation-based indicators, is not evenly distributed worldwide but shaped by national-, institutional-, and individual-level factors. This study found that high-income countries and a select group of elite institutions dominate the global landscape of dental research excellence, while lower-income regions remain markedly underrepresented. Gender disparities persist, with female scholars comprising a minority of EDS, although their citation performance was comparable to that of male peers when adjusted for academic age. Notably, academic age proved to be a consistent predictor of scholarly output across all metrics. The negative correlation between oral disease burden and the presence of EDS points to a misalignment between research impact and public health relevance. These findings highlight disparities in research excellence and point to the need for more inclusive research policies that strengthen capacity in underserved regions and promote equity in academic recognition systems.

Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: Elsevier data repository; version 1 (July 2019) doi: 10.17632/btchxktzyw.1; Version 2 (October 2020) doi: 10.17632/btchxktzyw.2; version 3 (October 2021) doi: 10.17632/btchxktzyw.3; version 4 (October 2022) doi: 10.17632/btchxktzyw.4; version 5 (November 2022) doi: 10.17632/btchxktzyw.5; version 6 (October 2023) doi: 10.17632/btchxktzyw.6; version 7 (September 2024) doi: 10.17632/btchxktzyw.7.

Author contributions

AR: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writing – original draft.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This study was supported by the NPO "Systemic Risk Institute" no. LX22NPO5101, funded by European Union–Next Generation EU (Ministry of Education, Youth and Sports, NPO: EXCELES).

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor MF declared a past co-authorship with the author(s).

Generative Al statement

The author declares that Generative AI was used in the creation of this manuscript. The author declares that Generative AI, specifically OpenAI's ChatGPT (version 4), was used in preparing this manuscript. ChatGPT was solely used in proofreading and refining language to enhance readability. All intellectual content, research findings, and substantive elements were independently developed by the authors.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/froh.2025. 1675102/full#supplementary-material.

References

- 1. Konig T, Mohammadi E. Europeanising academia: the curious case of "Scientific excellence". *JEIH J Eur Integr Hist*. (2024) 30(2):285–300. doi: 10.5771/0947-9511-2024-2-285
- 2. Van Leeuwen TN, Visser MS, Moed HF, Nederhof TJ, Van Raan AFJ. The holy grail of science policy: exploring and combining bibliometric tools in search of scientific excellence. *Scientometrics*. (2003) 57(2):257–80. doi: 10.1023/A:1024141819302
- 3. Pinar M, Horne TJ. Assessing research excellence: evaluating the research excellence framework. *Res Eval.* (2022) 31(2):173–87. doi: 10.1093/reseval/rvab042
- 4. Rons N. Research excellence milestones of BRIC and N-11 countries. In: Noyons E, Ngulube P, Leta J, editors. Proceedings of ISSI 2011, 13th Conference of the International Society for Scientometrics and Informetrics; 2011 July 04-07; Durban, South Africa, 04-07 July 2011. (2013) 2:1049-51. doi: 10.48550/arXiv.1307.6791
- 5. Ferretti F, Pereira ÂG, Vértesy D, Hardeman S. Research excellence indicators: time to reimagine the "making of"? *Sci Public Policy.* (2018) 45(5):731–41. doi: 10.1093/scipol/scy007
- 6. Allareddy V, Allareddy V, Rampa S, Nalliah RP, Elangovan S. Global dental research productivity and its association with human development, gross national

income, and political stability. *J Evid Based Dent Pract.* (2015) 15(3):90–6. doi: 10. 1016/j.jebdp.2015.01.004

- 7. El Tantawi M, Bhayat A, Foláyan MO. A bibliometric analysis of African dental research and the sustainable development goals, 2016–2023. *Front Oral Healt.* (2024) 5:1498827. doi: 10.3389/froh.2024.1498827
- 8. Cartes-Velásquez R, Manterola Delgado C. Bibliometric analysis of articles published in ISI dental journals, 2007–2011. *Scientometrics*. (2014) 98(3):2223–33. doi: 10.1007/s11192-013-1173-7
- 9. Milgrom DP, Heima DM, Tomar DS, Kunzel DC. Research productivity of members of IADR behavioral sciences and health services research group: relationship to professional and personal factors. *J Dent Educ.* (2008) 72(10):1142. doi: 10.1002/j.0022-0337.2008.72.10.tb04592.x
- 10. D'Silva NJ, Herren SS, Mina M, Bellile E. Women recipients of IADR distinguished scientist awards. Adv Dent Res. (2019) 30(3):85-94. doi: 10.1177/0022034519877390
- 11. Ioannidis JPA, Baas J, Klavans R, Boyack KW. A standardized citation metrics author database annotated for scientific field. *PLoS Biol.* (2019) 17(8):e3000384. doi: 10.1371/journal.pbio.3000384
- 12. Ioannidis JPA, Baas J, Boyack KW. Updated science-wide author databases of standardized citation indicators. *PLoS Biol.* (2020) 18(10):e3000918. doi: 10.1371/journal.pbio.3000918
- 13. Kuc-Czarnecka M, Saltelli A. Ranking the rankers. An analysis of science-wide author databases of standardised citation indicators. *Scientometrics*. (2025) 130(3):1497–517. doi: 10.1007/s11192-025-05253-x
- 14. Vishwakarma R, Banerjee S. Billions at stake: how self-citation adjusted metrics can transform equitable research funding. *arXiv* [Preprint]. arXiv: arXiv:2504.20081 (2025). Available online at: https://doi.org/10.48550/arXiv.2504.20081
- 15. Ioannidis JPA, Pezzullo AM, Cristiano A, Boccia S, Baas J. Linking citation and retraction data reveals the demographics of scientific retractions among highly cited authors. *PLoS Biol.* (2025) 23(1):e3002999. doi: 10.1371/journal.pbio. 3002999
- 16. Abdalla BA, Mustafa AM, Fattah FH, Kakamad FH, Omar SS, Salih AM, et al. Self-citation pattern among world's top 2% of the scientists. *Heliyon*. (2025) 11(3): e42471. doi: 10.1016/j.heliyon.2025.e42471
- 17. Frietsch R, Gruber S, Bornmann L. The definition of highly cited researchers: the effect of different approaches on the empirical outcome. *Scientometrics*. (2025) 130(2):881–907. doi: 10.1007/s11192-024-05158-1
- 18. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Peteresen I, et al. The REporting of studies conducted using observational routinely-collected health data (RECORD) statement. *PLoS Med.* (2015) 12(10):e1001885. doi: 10.1371/journal.pmed.1001885
- 19. Ioannidis JPA. Data from: August 2024 data-update for "updated science-wide author databases of standardized citation indicators". *Elsevier Data Repository*. (2024) 7. doi: 10.17632/btchxktzyw.7
- 20. The World Bank. *World Bank Open Data*. Washington DC: World Bank (WB) (2025). Available online at: https://databank.worldbank.org/home.aspx (Accessed January 15, 2025).
- 21. Institute for Health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx). VizHub. Seattle, WA: Institute for Health Metrics and Evaluation (IHME) (2025). Available online at: https://vizhub.healthdata.org/gbd-results/ (Accessed January 15, 2025).
- 22. United Nations Development Programme (UNDP). Human Development Index (HDI). Data Center. New York City: United Nations Development Programme (UNDP) (2025). Available online at: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (Accessed April 14, 2025).
- 23. The World Bank. World Bank Data Help Desk. World Bank Country and Lending Groups. Washington DC: World Bank (WB) (2025). Available online at: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (Accessed April 14, 2025).
- 24. Central Intelligence Agency (CIA). Explore All Countries. The World Factbook. Langley, VA: Central Intelligence Agency (CIA) (2025). Available online at: https://www.cia.gov/the-world-factbook/countries/ (Accessed January 15, 2025).
- 26. Times Higher Education (THE). Rankings. World University Rankings. London: Times Higher Education (THE) (2025). Available online at: https://www.timeshighereducation.com/world-university-rankings/latest/world-ranking (Accessed April 14, 2025).
- 27. Shanghai Ranking Consultancy. *Ranking*. Academic Ranking of World Universities (ARWU). Shanghai: Shanghai Ranking Consultancy (2025). Available online at: https://www.shanghairanking.com/rankings/arwu/2024 (Accessed April 14, 2025).
- 28. DataCamp. GenderizeR: Gender Prediction Based on First Names. RDocumentation. Roskilde: Demografix ApS. Available online at: https://www.

- $rdocumentation.org/packages/genderizeR/versions/1.0.0/topics/genderizeR \ (Accessed April 14, 2025).$
- 29. Vanhelene AD, Khatri I, Hilton CB, Mishra S, Gamsiz Uzun ED, Warner JL, et al. Inferring gender from first names: comparing the accuracy of genderize, gender API, and the gender R package on authors of diverse nationality. *PLoS Digit Health*. (2024) 3(10):e0000456. doi: 10.1371/journal.pdig.0000456
- 30. Anthropic. Claude 3.7 Sonnet. Claude. San Francisco, California: Anthropic AI. Available online at: https://www.anthropic.com/claude/sonnet (Accessed April 14, 2025).
- 31. Richards ND. Dentistry in England in the 1840s: the first indications of a movement towards professionalization. *Med Hist.* (1968) 12(2):137–52. doi: 10.1017/S0025727300013028
- 32. Gutmann JL. The evolution of America's scientific advancements in dentistry in the past 150 years. J Am Dent Assoc. (2009) 140(Suppl 1):8S–15. doi: 10.14219/jada. archive.2009.0354
- 33. McIntosh A, Tancock C. *The Lasting Language of Publication?* Amsterdam: Elsevier. (2023). Available online at: https://www.elsevier.com/connect/the-lasting-language-of-publication (Accessed June 6, 2025).
- 34. Tardy C. The role of English in scientific communication: lingua franca or tyrannosaurus rex? *J Engl Acad Purp.* (2004) 3(3):247–69. doi: 10.1016/j.jeap.2003. 10.001
- 35. Snijder R, Kingsley D, Snijder R, Kingsley D. Research assessment systems and the effects of publication language: manifestations in the directory of open access books. *J Electron Publ.* (2024) 27(1):283–308. doi: 10.3998/jep.4847
- 36. González-Dambrauskas S, Ibrain J, Salluh F, Ribeiro Machado F, Rotta AT. Science over language: a plea to consider language bias in scientific publishing. *Critic Care Sci.* (2024) 36(1):e20240084en. doi: 10.62675/2965-2774.20240084-en
- 37. Shamash R. (Re)production of the contemporary elite through higher education: a review of critical scholarship. *Berkeley Rev Educ.* (2018) 8(1):5–12. doi: 10.5070/B88134482
- 38. Demeter M. The dynamics behind the problem of inequality: the world-system of global inequality in knowledge production. In: Demeter M, editor. Academic Knowledge Production and the Global South: Questioning Inequality and Under-Representation. Cham: Springer International Publishing (2020). p. 63–84. doi: 10. 1007/978-3-030-52701-3_3
- 39. Oprisko RL, DiGrazia J, Vaught N, Malik N, Trinkle K, Georgetown Public Policy Review. *Pushing Up Ivies: Institutional Prestige and the Academic Caste System.* Georgetown Public Policy Review. Washington DC: McCourt School of Public Policy (2013). Available online at: https://gppreview.com/2013/08/21/pushing-up-ivies-institutional-prestige-and-the-academic-caste-system/ (Accessed June 6. 2025).
- 40. Rahman M, Fukui T. Biomedical research productivity: factors across the countries. *Int J Technol Assess Health Care.* (2003) 19(1):249–52. doi: 10.1017/S0266462303000229
- 41. Lerman TT, Fishman B, Reitblat O, Reitblat T, Goldberg E, Krause I. Global academic productivity in the field of internal medicine and its correlation to national economic indicators: a bibliometric analysis of 24 years. *Am J Med Sci.* (2021) 362(5):480–5. doi: 10.1016/j.amjms.2021.05.015
- 42. Tutarel O. Geographical distribution of publications in the field of medical education. $BMC\ Med\ Educ.\ (2002)\ 2(1):1-7.\ doi:\ 10.1186/1472-6920-2-3$
- 43. Madsen J, Minniti A, Venturini F. Declining research productivity and income inequality: a centenary perspective. *J Econ Dyn Control.* (2024) 167:104924. doi: 10. 1016/j.jedc.2024.104924
- 44. Mayta-Tovalino F, Quispe-Vicuña C, Cabanillas-Lazo M, Munive-Degregori A, Guerrero ME, Mendoza R. A bibliometric analysis of the international dental journal (2011–2020). *Int Dent J.* (2023) 73(1):157–62. doi: 10.1016/j.identj.2022.05.003
- 45. Barreto ML. Health research in developing countries. Br Med J. (2009) 339: b4846. doi: $10.1136/\mathrm{bmj}.\mathrm{b4846}$
- 46. Masood M, Newton T, Kharbanda OP, Masood Y, Feine J, Gussy M, et al. Building oral health research capacity in India: identifying barriers and enablers using mixed methods. *JDR Clin Trans Res.* (2017) 2(2):106–8. doi: 10.1177/2380084417691722?download=true
- 47. Kanmodi KK, Amzat J, Achilles Nnyanzi L. A scopus-based bibliometric review of dental research productivity of universities in north east of England: policy implications. *J Med Libr Inform Sci.* (2023) 4:1–11. doi: 10.22037/jmlis.v4i. 39647
- 48. Celeste RK, Muniz FWMG, Ardenghi TM, Collares FM, Rösing CK. Brazilian dentistry research productivity: state level socioeconomic, educational and structural factors. *Braz J Oral Sci.* 2020 19:1–12. doi: 10.20396/bjos.v19i0.8656977
- 49. Lăzăroiu G. Developments in publication metrics. *Geopolit Hist Int Relat.* (2012) 4(1):143–9. Available online at: https://www.ceeol.com/search/article-detail?id=175729 (Accessed June 7, 2025).
- 50. Kaur J, Ferrara E, Menczer F, Flammini A, Radicchi F. Quality versus quantity in scientific impact. *J Informetr.* (2015) 9(4):800–8. doi: 10.1016/j.joi.2015.07.008

- 51. Singh HP. Alternative research bibliometrics: it's about quality and not quantity. Shoulder Elbow. (2022) 14(2):121-2. doi: 10.1177/17585732211058453
- 52. Lalloo R, Borrell LN. Gender and geographic equity in the international association for dental research awards. *JDR Clin Trans Res.* (2024) 10(3):800–8. doi: 10.1177/23800844241296829
- 53. José Arana-Barbier P, Daniel Alomía Robles J. The relationship between scientific production and economic growth through R&D investment: a bibliometric approach. *J Scientometric Res.* (2023) 12(3):596–602. doi: 10.5530/jscires.12.3.057
- 54. Lepori B, Geuna A, Mira A. Scientific output scales with resources. A comparison of US and European universities. *PLoS One.* (2019) 14(10):e0223415. doi: 10.1371/journal.pone.0223415
- 55. Adeola HA, Adefuye A, Soyele O, Butali A. The dentist-scientist career pathway in Africa: opportunities and obstacles. *Korean J Med Educ.* (2018) 30(3):189. doi: 10. 3946/kjme.2018.93
- 56. Foláyan MO, Bhayat A, Mikhail SS, Ndembi N, El Tantawi M. Resources for oral health in Africa. Front Oral Health. (2025) 6:1540944. doi: 10.1177/0022034521992011
- 57. Hugo FN, Kassebaum NJ, Marcenes W, Bernabé E. Role of dentistry in global health: challenges and research priorities. *J Dent Res.* (2021) 100(7):681–5. doi: 10. 1177/00/20345/1992011
- 58. Fox M, Hanlon SM. Barriers to open access uptake for researchers in Africa. Online Inf Rev. (2015) 39(5):698–716. doi: 10.1108/OIR-05-2015-0147
- 59. Conradie A, Duys R, Forget P, Biccard BM. Barriers to clinical research in Africa: a quantitative and qualitative survey of clinical researchers in 27 African countries. *Br J Anaesth*. (2018) 121(4):813–21. doi: 10.1016/j.bja.2018.06.013
- 60. Merton RK. The Matthew effect in science. *Science* (1979). (1968) 159(3810):56-62. doi: 10.1126/science.159.3810.56?download=true
- 61. Kulal A, ANAbhishek N, Shareena P, Dinesh S. Unmasking favoritism and bias in academic publishing: an empirical study on editorial practices. *Public Integr.* (2025). p. 1–22. doi: 10.1080/10999922.2024.2448875
- 62. Hassan A. Who has the capital on knowledge production? Reflections on the sharp white background of academia and anti-racist scholarship. *Stolen Tools*. (2023) 1(1):25–31. doi: 10.59745/st.v1i1.18
- 63. Katz Y, Matter U. On the biomedical elite: inequality and stasis in scientific knowledge production. SSRN [Preprint]. (2017). doi: 10.2139/ssrn.3000628
- 64. Lee E, Clauset A, Larremore DB. The dynamics of faculty hiring networks. *EPJ Data Sci.* (2021) 10(1):1–25. doi: 10.1140/epjds/s13688-021-00303-9
- 65. Bueno-Aguilera F, Jiménez-Contreras E, Lucena-Martín C, Pulgar-Encinas R. Dental research in Spain. A bibliometric analysis on subjects, authors and institutions (1993–2012). *Med Oral Patol Oral Cir Bucal*. (2016) 21(2):e142. doi: 10.4317/medoral.20756
- 66. Haq IU, AI Fouzan K. Research in dentistry at Saudi Arabia: analysis of citation impact. *Libr Phil Pract.* (2019):2765. Available online at: https://digitalcommons.unl.edu/libphilprac/2765 (Accessed June 7, 2025).
- 67. University of Louisville (UL). From Rarity to Majority: Exploring the Growth of Women in Dentistry. News. Louisville, KY: University of Louisville (UL) (2023) Available online at: https://louisville.edu/dentistry/news/exploring-growth-of-women-in-dentistry (Accessed June 7, 2025).
- 68. American Dental Association (ADA). U.S. Dental School Grads by Gender. Health Policy Institute. Chicago, IL: American Dental Association (ADA). Available online at: https://www.ada.org/resources/research/health-policy-institute/dental-school-grads-gender-2021-2022 (Accessed June 7, 2025).
- 69. Furtinger VB, Alyeva R, Maximovskaya LN. Is European dentistry becoming a female profession? *Acta Stomatol Croat.* (2013) 47(1):51–7. doi: 10.15644/asc47/1/8
- 70. Campus G, Maclennan A, von Hoyningen-Huene J, Wolf TG, Aerden M, Benyahya I, et al. The presence of women in the dental profession: a global survey. *Int Dent J.* (2024) 74(1):110–8. doi: 10.1016/j.identj.2023.07.010
- 71. Gallagher JE, Scambler S. Reaching a female majority: a silent transition for dentistry in the United Kingdom. *Prim Dent J.* (2021) 10(2):41–6. doi: 10.1177/20501684211013165
- 72. Lalloo R. "You can't be what you can't see": equity, diversity and inclusivity of editorial teams of dental journals. Br Dent J. (2022) 1–4. doi: 10.1038/s41415-022-5078-9
- 73. Lalloo R. Gender and geographic diversity of global oral health organisations. Br Dent J. (2024) 1–6. doi: 10.1038/s41415-024-7176-3
- 74. Moreno LB, Franco MC, Karam SA, van de Sande FH, Montagner AF. Persistent gender disparity in leading dental publications across 4 decades: an observational study. *J Clin Epidemiol.* (2024) 171:111386. doi: 10.1016/j.jclinepi.2024.111386
- 75. Haag DG, Schuch HS, Nath S, Baker SR, Celeste RK, Thomson WM, et al. Gender inequities in dental research publications: findings from 20 years. Community Dent Oral Epidemiol. (2023) 51(5):1045–55. doi: 10.1111/cdoe.12831

- 76. Folayan MO, Tantawi ME, Shamsoddin E, Martínez-Pérez GZ. Gender differences in dentistry and oral sciences research productivity by researchers in Nigeria. *Front Oral Health.* (2023) 4:1059023. doi: 10.3389/froh.2023.1059023
- 77. Simon L, Candamo F, He P, Karhade DS, Pirooz Y, Spinella MK, et al. Gender differences in academic productivity and advancement among dental school faculty. *J Womens Health*. (2019) 28(10):1350–4. doi: 10.1089/jwh.2018.7619?download=true
- 78. Karhade DS, Middleton J, Simon L. Gender differences in academic productivity and advancement among pediatric dental faculty. *Pediatr Dent.* (2019) 41(6):451–4.
- 79. Garcia MN, Tiano JP, Contreras O, Hildebolt CF, Horsford J, Stewart D. Trends in academic dentistry and oral health research funding by gender. *JDR Clin Trans Res.* (2020) 5(2):176–84. doi: 10.1177/2380084419868183
- 80. Jones JE, Jones WP, Preusz GC. Relationship between career age and research productivity for academic dentists. *Psychol Rep.* (1991) 69(1):331–5. doi: 10.2466/pr0. 1991.69.1.331?download=true
- 81. Mannella R, Rossi P. On the time dependence of the h-index. *J Informetr*. (2013) 7(1):176–82. doi: 10.1016/j.joi.2012.10.003
- 82. Liao CH. Reopening the black box of career age and research performance. In: Zhou J, Salvendy G, editors. *Human Aspects of IT for the Aged Population. Applications, Services and Contexts. ITAP 2017. Lecture Notes in Computer Science.* Cham: Springer (2017) 10298:516–25. doi: 10.1007/978-3-319-58536-9_41
- 83. Munkácsy G, Herman P, Győrffy B. Comparison of scientometric achievements at PhD and scientific output ten years later for 4,790 academic researchers. *PLoS One.* (2022) 17(7):e0271218. doi: 10.1371/journal.pone.0271218
- 84. Goulas S, Karamitros G. Association between surgical disease burden and research productivity in surgery across the globe: a big data comparative analysis using artificial intelligence. *Br J Surg.* (2023) 110(9):1226–8. doi: 10.1093/bjs/znad225
- 85. Mondia MWL, Espiritu AI, Jamora RDG. Primary brain tumor research productivity in Southeast Asia and its association with socioeconomic determinants and burden of disease. Front Oncol. (2020) 10:607777. doi: 10.3389/fonc.2020.607777
- 86. Sy MCC, Espiritu AI, Sy MSC, Jamora RDG, Anlacan VMM. Dementia research productivity and associations with socioeconomic factors and burden of disease in Southeast Asia. *J Alzheimer's Dis.* (2020) 76(3):1151–60. doi: 10.3233/JAD-200355? download=true
- 87. Furuse Y. Analysis of research intensity on infectious disease by disease burden reveals which infectious diseases are neglected by researchers. *Proc Natl Acad Sci U S A.* (2019) 116(2):478–83. doi: 10.1073/pnas.1814484116? download=true
- 88. Ghanbarzadegan A, Ivanovski S, Sloan AJ, Spallek H. Oral health research funding in relation to disease burden in Australia. Aust $Dent\ J.\ (2023)\ 68(1):42-7.$ doi: 10.1111/adj.12949
- 89. GBD 2021 Oral Disorders Collaborators. Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: a systematic analysis for the global burden of disease study 2021. *Lancet.* (2025) 405(10482):897–910. doi: 10.1016/S0140-6736(24)02811-3
- 90. Poomkottayil D, Bornstein MM, Sendi P. Lost in translation: the impact of publication language on citation frequency in the scientific dental literature. Swiss Med Wkly. (2011) 141(0304):w13148. doi: 10.4414/smw.2011. 13148
- 91. Aleksić-Hajduković I. The role of English as a Lingua Franca in 21st century dentistry. *Proceedings of 36th Symposium on Health Education in Dentistry.* (2022) 64–5. Available online at: https://smile.stomf.bg.ac.rs/bitstream/id/8755/bitstream_8755.pdf (Accessed June 9, 2025).
- 92. Riad A, Elsheikh L, Domnori S, Doris Fratila A, Carter C, Kaya DD, et al. Career aspirations of dental students: insights from a multinational study using social cognitive career theory (SCCT). Front Oral Health. (2025) 6:1577870. doi: 10.3389/froh.2025.1577870
- 93. Harzing AW, Alakangas S, Adams D. hIa: an individual annual h-index to accommodate disciplinary and career length differences. *Scientometrics*. (2014) 99(3):811–21. doi: 10.1007/s11192-013-1208-0
- 94. Hu Y, Hu C, Tran T, Kasturi T, Joseph E, Gillingham M. What's in a name? Gender classification of names with character based machine learning models. *Data Min Knowl Discov.* (2021) 35(4):1537–63. doi: 10.1007/s10618-021-00748-6
- 95. González-Salmón E, Robinson-Garcia N. A call for transparency in gender assignment approaches. *Scientometrics*. (2024) 129(4):2451-4. doi: 10.1007/s11192-024-04995-4
- 96. Kwiek M, Roszka W. Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems. *Scientometrics*. (2022) 127(6):3543–75. doi: 10.1007/s11192-022-04363-0