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Chronic neuropathic pain is a major unmet clinical need affecting 10% of the world

population, the majority of whom suffer from co-morbid mood disorders. Sex differences

have been reported in pain prevalence, perception and response to analgesics. However,

sexual dimorphism in chronic neuropathic pain and the associated neurobiology, are

still poorly understood. The lack of efficacy and the adverse effects associated with

current pharmacological treatments, further underline the need for new therapeutic

targets. The endocannabinoid system (ECS) is a lipid signalling system which regulates

a large number of physiological processes, including pain. The aim of this study was to

investigate sexual dimorphism in pain-, anxiety- and depression-related behaviours, and

concomitant alterations in supraspinal and spinal endocannabinoid levels in the spared

nerve injury (SNI) animal model of peripheral neuropathic pain. Sham or SNI surgery was

performed in adult male and female Sprague-Dawley rats. Mechanical and cold allodynia

was tested weekly using von Frey and acetone drop tests, respectively. Development

of depression-related behaviours was analysed using sucrose splash and sucrose

preference tests. Locomotor activity and anxiety-related behaviours were assessed with

open field and elevated plus maze tests. Levels of endocannabinoid ligands and related

N-acylethanolamines in supraspinal regions of the descending inhibitory pain pathway,

and spinal cord, were analysed 42 days post-surgery. SNI surgery induced allodynia

in rats of both sexes. Female-SNI rats exhibited earlier onset and greater sensitivity to

cold and mechanical allodynia than their male counterparts. In male rats, SNI induced a

significant reduction of rearing, compared to sham controls. Trends for depressive-like

behaviours in females and for anxiety-like behaviours in males were observed after

SNI surgery but did not reach statistical significance. No concomitant alterations

in levels of endogenous cannabinoid ligands and related N-acylethanolamines were

observed in the regions analysed. Our results demonstrate differential development of

SNI-induced nociceptive behaviour between male and female rats suggesting important

sexually dimorphic modifications in pain pathways. SNI had no effect on depression- or
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anxiety-related behaviours in animals of either sex, or on levels of endocannabinoid

ligands and related N-acylethanolamines across the regions involved in the descending

modulation of nociception at the time points investigated.

Keywords: sexual dimorphism, chronic neuropathic pain, spared nerve injury, depression, anxiety, endogenous

cannabinoid ligands

INTRODUCTION

Pain, as defined by the International Association for the Study of
Pain (IASP) is considered “an unpleasant sensory and emotional
experience associated with, or resembling that associated with,
actual or potential tissue damage” (1). Pain can be classified
as acute or chronic, dependent on its duration. Chronic pain,
pain persisting over 3 months, can be classified as inflammatory,
idiopathic or neuropathic (2).

Neuropathic pain, caused by a lesion or disease affecting the
somatosensory system, has a prevalence of 10% in the total
world population (3), and is one of the major unmet clinical
needs. Despite its higher prevalence in women, females are
still underrepresented in pre-clinical studies relevant to chronic
neuropathic pain, with <20% of pre-clinical/animal studies
including sex as a factor (4). This situation leaves a gap in the
understanding of pain neurobiology.

In addition, several clinical reports indicate that chronic
pain and mood disorders, such as anxiety and depression, are
highly comorbid (5). Higher prevalence of neuropathic pain
disorders, tolerance to analgesics, and severe pain perception
have been described in patients with anxiety or depression
(6). Furthermore, mood disorders have been reported to be
more than twice as prevalent in females than males (7–
9). Current pharmacotherapies for chronic pain disorders,
including antidepressants, anticonvulsants, local anaesthetics,
non-steroidal anti-inflammatory drugs, or opioids, are limited in
terms of their efficacy and adverse effect profiles (10, 11). Thus,
there is a need to identify new analgesic targets.

The endogenous cannabinoid system (ECS) is a complex
signalling system comprised of cannabinoid type 1 (CB1)
and cannabinoid type 2 (CB2) receptors; endocannabinoid
ligands: anandamide (AEA) and 2-arachidonoylglycerol; and
catabolizing enzymes: fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL). Several other related biogenic
lipids, including N-acylethanolamines: oleoylethanolamine
(OEA) and palmitoylethanolamine (PEA), are involved in the
regulation of common endocannabinoid-mediated phenomena
(12–14) and thus are recognised as endocannabinoid-related
compounds. The ECS is involved in numerous physiological
processes, including memory, mood and pain (15, 16). The
signalling machinery of the ECS is expressed at neuronal
synapses throughout the pain circuitry and regulates
nociceptive processing and perception (17). Activation of
cannabinoid receptors on presynaptic nerve terminals inhibits
neurotransmission, resulting in antinociception. The majority
of cannabinoid receptors expressed within the central nervous
system, are type 1 (CB1) and localised in dorsal horn and
supraspinal regions involved in the descending inhibition of

nociception: prefrontal cortex (PFC), periaqueductal grey (PAG),
amygdala, and rostral ventromedial medulla (RVM); which
also play important roles in anxiety and depression circuitries
(18, 19).

Sexual dimorphism has been demonstrated in the ECS,
from pre-clinical animal models to humans. Sex differences
have been described in the expression and activity of CB1
receptors in PFC and amygdala (20, 21). Sex-dependent efficacy
of phytocannabinoid- and CB2-mediated nociception after nerve
injury has been found in humans (22, 23) and animal models of
neuropathic pain (24–27). Differences in the density and affinity
of brain endocannabinoid receptors and ligands have also been
observed at different stages of the hormonal cycle (28, 29). It is
possible therefore, that sex-dependant alterations within the ECS
may contribute to sexual dimorphism in neuropathic pain.

The aim of this study was to investigate sexual dimorphism
in pain-, anxiety- and depression-related behaviours,
and concomitant alterations in supraspinal and spinal
endocannabinoid levels in the spared nerve injury (SNI)
animal model of peripheral neuropathic pain.

MATERIALS AND METHODS

Animals
Adult (8–9 weeks old) male (∼250 g) and female (∼200 g)
Sprague-Dawley rats were purchased from Charles River
UK (Margate, United Kingdom). Animals were pair-housed
with water and food (14% Harlan Teklad 2014 Maintenance
Diet, Envigo, Huntingdon, Cambridgeshire, United Kingdom)
available ad libitum. Animal holding room was maintained at a
constant temperature of 21 ± 2◦C and intervals of 45–55% of
humidity. All the procedures were performed during the light
phase (8:00–20:00) of the standard lighting conditions 12:12 h.

The experimental procedures were approved by the Animal
Care and Research Ethics Committee, National University of
Ireland Galway. The present experiment was performed in
accordance with the ARRIVE guidelines (30); under licence from
the Health Products Regulatory Authority in the Republic of
Ireland and in accordance with EU Directive 2010/63.

Surgery
Animals were randomly assigned to surgery groups, Sham or
SNI, according to sex (n = 10/group, 4 experimental groups).
A vaginal swab for the investigation of the oestrus cycle stage
was taken from Sham/SNI female groups prior to the surgery.
Peripheral sensitisation was induced using the Spare Nerve
Injury surgery (SNI), described by Decostered and Woolf (31).
The SNI surgery comprises of ligation and axotomy of two of
the three branches of the sciatic nerve: the common peroneal
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and tibial nerves, keeping the third branch, the sural nerve,
completely intact. The fur was shaved on the lateral surface
of the left hind paw and the area was disinfected with iodine
solution ensuring aseptic conditions. A longitudinal incision
following the femoral line was made directly through the biceps,
exposing mentioned branches of the sciatic nerve. The common
peroneal and the tibial nerves were ligated and transected with
two different knots at opposite ends of the stump, using 5-0
mersilk sutures. Individual sutures were used to close the muscle
incision while intradermal sutures were used to close the skin,
avoiding the reopening of the wound by biting. Anaesthesia
was monitored and maintained using 2–4% isoflurane in 0.8
L/min O2 during the surgical procedure. Respiratory rate and
pedal withdrawal reflexes were also monitored every 5min. After
the surgical procedure, rats were singly housed and monitored
during a recovery period of 30min before returning them to
their home cages. Enrofloxacin (10 mg/kg) was administrated
via subcutaneous (s.c.) injection once a day, prior to surgery
and for 5 consecutive days post-surgery, to prevent post-surgical
infection. Body weight was monitored once a week. General
health and well-being were monitored daily during the total time
of the experiment.

Behavioural Testing
All behavioural tests were conducted at least 7 days post-
surgery. Each test was consistently performed in the same
room under similar environment conditions. EthoVision XT
software (Noldus Information Technology, Wageningen, The
Netherlands), which allows for continuous event recording and
posterior scoring, was used for the analysis of Sucrose Splash test
(SS), Open Field test (OF) and Elevated Plus Maze test (EPM).
A trained researcher, blind to the experimental conditions, rated
sucrose consumption in sucrose preference test, depression-
related behaviour in the SS test and anxiety-related behaviours
in the OF and EPM tests.

Mechanical Allodynia
Von Frey testing was performed to assess mechanical allodynia
7, 14, 21, 28, and 42 days after surgery. Rats were placed
in an elevated metal wire grid, divided into six individual
compartments (14 × 20 × 25 cm3), permitting the stimulation
of the lateral plantar surface of the hind paw. Animals were
habituated to the arena for 15min prior to testing. The test
was performed following the up-and-down method described
by Dixon (32). Each animal received a maximum of 9 nylon
von Frey filament stimulations (Touch Test Sensory Evaluator
58011, Stoelting, IL, USA) per hind paw, starting with the
2 g filament. Each filament was applied once, perpendicular
to the lateral plantar surface of the hind paw, the area
innervated by the intact sural nerve. The mechanical withdrawal
threshold (g) for each paw was calculated using the formula:
10[log(last filament)+k∗0.3], where the constant k was determined by
the response-pattern (32).

Cold Allodynia
Acetone Drop testing was performed to assess cold allodynia.
Animals rested in the arena for 10min after the von Frey test.

The test was performed following the method described by Choi
et al. (33) The animals received a total of 3 acetone stimulations
per hind paw. A drop of acetone was applied to the lateral plantar
surface of the contralateral or ipsilateral hind paw, using a blunt
needle connected to a 1ml syringe, avoiding touching the skin.
During the 1min stimulation, the latency to the first response and
the total number of responses were scored.

Depression-Related Behaviours

Sucrose Splash Test
The sucrose splash (SS) test was performed to assess self-
grooming behaviour, which is an ethologically relevant behaviour
in rodents (34). A decrease in self-grooming behaviour is
indicative of reduced self-care and motivation in rodents, and
potentially reflective of anhedonia-like behaviour (35). At post-
surgery day 34, animals were placed in a clear Plexiglass box
(30 × 30 × 40 cm3) with 30 lux light conditions for 10min
habituation period. After the initial habituation to the arena, 10%
sucrose solution was squirted twice, using a spray bottle, on the
dorsal fur of the rat. The animal was immediately returned to the
arena and observed for another 10min. A video camera located
underneath the arena recorded the test session permitting the
scoring of frequency and latency to grooming during the sucrose
splash test.

Sucrose Preference Test
The sucrose preference (SP) test assessed the development
of anhedonia, categorised as a measure of depression-related
behaviours (36). Animals were trained for 4 days prior to testing
(37). The sucrose preference test was performed in home-cages
with no additional testing occurring during this period. Each
home cage was fitted with space for two drinking bottles in
opposite sides (right-left). During the first and second day
of training, rats were allowed to drink 1% sucrose solution,
instead of water, ad libitum during 24 h. During the third and
fourth day of training, rats were allowed to drink water ad
libitum for 24 h. The position of the drinking bottle changed
from the right to the left on the second and fourth training
days. The training period acclimatised the rats to drink from
both sides of the cage. On the test day, at post-surgery day
28, a bottle with 1% sucrose solution was fitted on the right
position, and a bottle with water was fitted on the left position.
After 12 h, the position of the drinking bottles was swapped
to avoid side preference. The test finished 12 h after the swap
when bottles were removed, and animals returned to their
drinking regime. During the training and test periods, bottles
were weighted before and after any human manipulation. The
preference for sucrose solution was calculated and presented as
% Sucrose Preference = Sucrose intake

Total intake
× 100.

Anxiety-Related Behaviours

Open Field Test
The Open Field (OF) test was performed for the assessment
of locomotor activity and anxiety-related behaviours. Significant
reductions in the distance moved and velocity were considered
possible alterations in the locomotor activity due to spared
nerve injury. In addition, a decrease in frequency or time
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of rearing activity, or a decrease in the number of entries
and duration in the centre zone (45 cm of diameter), were
assessed as deficits of exploratory behaviour thus indicative of
anxiety-related behaviours (38). The test was performed at post-
surgery day 35 in a circular arena consisted of a reflective
aluminium floor of 75 cm diameter and reflective aluminium
wall of 40 cm height. Animals were placed in the centre of the
novel open environment, illuminated with 100 lux. A video
camera positioned above the floor of the arena was used to
record the behaviours for 5min, which were scored later on using
EthoVision XT.

Elevated Plus Maze Test
The Elevated Plus Maze (EPM) test was performed to assess
anxiety-related behaviours, based on the natural avoidance of
rodents to height and open spaces (39). The frequency and
number of entries into the open arms is thought to be indicative
of anxiety-like behaviours (39). The arena was elevated 50 cm
above the floor of the testing room and consisted of a white plus-
shaped wooden maze with two arms enclosed by walls (30 cm
high) and two open arms with no enclosure. Each arm was 50 cm
in length and 10 cm in width. A central platform (10 × 10cm2)
connected the four arms. The light levels were fixed at 45 lux in
the open arms and 15 lux in the closed arms. Immediately after
the exposure toOF, rats were placed in the centre zone of the EPM
arena with the head facing the open arm and allowed to explore
for 5min. The behaviours were recorded with a video camera
located above the arena and scored later on using EthoVision XT.

Tissue Collection
Animals were euthanized by live decapitation on post-
surgery day 42, after mechanical and cold allodynia
behavioural testing. A vaginal swab for the investigation
of the oestrus cycle stage was taken from female rats post-
euthanasia. The following brain regions: prefrontal cortex
(PFC), periaqueductal grey (PAG), ipsilateral/contralateral
amygdala and rostro ventromedial medulla (RVM) were
gross-dissected on ice-cold metal dissection plates and snap-
frozen for post-mortem analysis. Spinal cord was extracted
by laminectomy; the dorsal lumbar area was differentiated in
ipsilateral and contralateral, and snap-frozen on dry ice for
later analysis.

Measurement of Endocannabinoids and
Related N-acylethanolamines by Liquid
Chromatography Coupled to Tandem Mass
Spectrometry (LC-MS/MS)
Quantification of endocannabinoids (AEA, 2-AG) and related
N-acylethanolamines (PEA, OEA) levels in brain and spinal
cord tissue was carried out following a lipid extraction method
described previously (40, 41). Two hundred microlitres of
100% acetonitrile containing deuterated internal standard
for endogenous cannabinoid ligands (2.5 ng d8-AEA, 50 ng
d8-2-AG, 2.5 ng d4-PEA, 2.5ng d4-OEA; Cayman Chemicals,
Biosciences, UK) and 75 µl of 100% pure acetonitrile were
added to the samples. The tissue was homogenised for

∼6 s using an ultrasonic homogeniser (Mason, Dublin,
Ireland). Immediately after homogenization, samples were
centrifuged at 14,000×g for 15min at 4◦C (Hettich R© centrifuge
Mikro 22R, Hettich, Germany). Samples were immediately
placed on ice. A standard curve 1/4 dilution was prepared
where the highest standard (Standard 10) was made up
by adding 25 µl of 100% acetonitrile containing a known
fixed amount of non-deuterated internal standard (25 ng
AEA, PEA, OEA and 250 ng 2-AG) to 75 µl of 100% pure
acetonitrile solution. Finally, 200 µl of 100% acetonitrile
containing known fixed amount of deuterated internal
standard was added to each standard. Forty microlitres
of each sample and standard curve point were added to
HPLC vials.

Mobile phases comprised of Solution A (HPLC-grade water
with 0.1% (v/v) formic acid) and Solution B (100% acetonitrile
with 0.1% (v/v) formic acid) with a flow rate of 0.2 ml/min,
onto a Waters Atlantis T3 HPLC column (3µm particle size
dimension, 100mm length, 2.1mm diameter; Waters, UK).
Reversed-phase gradient elution was initiated at 2% acetonitrile
for the first 3min, set to 65% acetonitrile at 3.1min for 1min
and then ramped linearly up to 100% acetonitrile at 8min
and held at 100% acetonitrile until 16min. At 16.1min, the
gradient returned to initial conditions for a further 12min
re-equilibrating the column before the next injection. Analyte
detection was carried out in electrospray-positive ionisation
mode on an Agilent 1100 HPLC system coupled to a triple
quadrupole 6460 mass spectrometer (Agilent Technologies,
Cork, Ireland). Ratiometric quantification was calculated using
Agilent Mass-Hunter Quantitative Analysis Software (Agilent
Technologies, Cork, Ireland). The amount of analyte in unknown
samples was calculated from the analyte/internal standard
peak area response ratio using a 10-point calibration curve
constructed from a range of concentrations of the non-deuterated
form of each analyte and a fixed amount of deuterated
internal standard.

Statistical Analysis
IBM SPSS Statistics 26.0 statistical software (Chicago, USA)
was used for the statistical analysis of data. Normality
and homogeneity were assessed by Kolmogorov-Smirnov
comparisons and Levene’s test, respectively. Parametric statistical
analysis was performed in normally distributed datasets, using
two-way ANOVA (factors: sex and surgery) followed by Tukey
HSD (Honest Significant Difference) post-hoc test for pairwise
comparisons. Three-way ANOVA (factors: sex, surgery and side)
was used to analyse levels of endogenous cannabinoid ligands
in lateralised regions of the central nervous system: amygdala
and spinal cord. Non-parametric datasets were analysed using
Kruskal-Wallis test followed by Mann-Whitney U post-hoc test
with Bonferroni-Holm corrections. The influence of oestrus cycle
on mechanical and cold allodynia, was analysed as categorical
binary variable (high-low) using a binomial logistic regression
with surgery and stage of the oestrus cycle as independent
variables. All data are expressed as group means ± standard
error of the mean (± SEM) for presentation/readability purposes
and considered significant when p < 0.05.
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FIGURE 1 | Von Frey test. Investigation of mechanical allodynia in male and female rats following Sham or Spared Nerve Injury surgery. Ipsilateral (A) and contralateral

(B) paw withdrawal thresholds at the following time points: baseline pre-surgery (Bs), post-surgery days 7, 14, 21, 28, and 42. Data expressed as mean ± SEM

(n = 10 per group). Kruskal Wallis test followed by Mann-Whitney U post-hoc test with Bonferroni-Holm corrections (P < 0.05) *Males-Sham vs. Males-SNI,

# Females-Sham vs. Female-SNI, + Males-SNI vs. Females-SNI.

RESULTS

Spared Nerve Injury Induced
Sexual-Dimorphic Development of
Mechanical Allodynia in Sprague-Dawley
Rats
Significant differences between experimental groups were
observed for mechanical allodynia, measured as paw withdrawal
thresholds (PWT), of the ipsilateral hind paw (Figure 1A),
at all the time-points tested [Kruskal-Wallis: PSD7: H(3) =

8.161, p < 0.01; PSD14: H(3)=11.019, p < 0.05; PSD21: H(3)
= 12.110, p<0.01; PSD28: H(3) = 12.057, p < 0.01; PSD42:
H(3) = 20.199, p < 0.001]. Post-hoc analysis revealed that SNI
induced a robust decrease of PWT in the ipsilateral hind paw
of male and female animals at post-surgery day 42 (Figure 1A).
Interestingly, female-SNI rats showed lower ipsilateral PWT
compared to their male counterparts from post-surgery day
14 (Figure 1A). This sex-dependent effect on mechanical
hypersensitivity was also observed in the contralateral PWT
of SNI rats (Figure 1B), however, no significant reduction
of the contralateral PWT was observed in SNI groups
compared to their Sham counterparts (Figure 1B). No significant
effect of the oestrus cycle was observed within female
experimental groups.

Spared Nerve Injury Induced
Sexual-Dimorphic Development of Cold
Allodynia in Sprague-Dawley Rats
The analysis of the latency to first response of the ipsilateral
hind paw in the acetone drop test revealed significant differences
between experimental groups at all time-points tested [Kruskal-
Wallis: PSD7: H(3) = 9.788, p < 0.05; PSD14: H(3) = 19.185,
p < 0.001; PSD21: H(3) = 23.621, p < 0.001; PSD28: H(3) =
17.213, p < 0.001; PSD42: H(3) = 23.698, p < 0.001]. The data

show a reduction of the latency to the first response in male-
and female-SNI animals, compared to Sham counterparts. In
addition, we observed a robust reduction of the latency to the
first response in female-SNI compared to male-SNI groups from
PSD21 (Figure 2A), suggesting higher nociceptive sensitivity in
female compared to male animals following SNI. No significant
differences were observed in following analysis of data for the
contralateral hind paw (Figure 2B).

Significant differences between experimental groups were also
observed in the number of responses to acetone stimulation
in the ipsilateral hind paw of male and female rats [Kruskal-
Wallis: PSD7: H(3) = 14.007, p < 0.001; PSD14: H(3) = 14.108,
p < 0.01; PSD21: H(3) = 24.448, p < 0.001; PSD28: H(3) =

19.381, p < 0.001; PSD42: H(3)=29.058, p < 0.001]. Further
analysis revealed an increase of this parameter in SNI male and
female groups (Figure 2C). In addition, an increased number of
responses in female-SNI rats was observed at PSD7, an effect
not observed in male-SNI groups until post-surgery day PSD21
(Figure 2C), suggesting earlier onset of cold allodynia in female-
SNI groups. As previously observed, female-SNI rats exhibited
a higher number of responses than male-SNI rats from PSD21.
No significant differences were observed in the contralateral hind
paw (Figure 2D).

The oestrus cycle did not alter the latency to the first response
or the frequency of responses within the female groups.

Spared Nerve Injury Did Not Induce
Depression-Related Behaviours in
Sprague-Dawley Rats of Either Sex
No main effects were observed in the frequency (Figure 3A)
or duration (Figure 3B) of grooming behaviour, during sucrose
splash test. Moreover, preference for 1% sucrose solution did not
differ between groups on post-surgery day 34 (Figure 3C).
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FIGURE 2 | Acetone drop test. Investigation of cold allodynia in male and female rats following Sham or Spared Nerve Injury surgery. Ipsilateral (A) and contralateral

(B) latency to the first response after acetone stimulation; number of responses in 60 s after acetone stimulation of the ipsilateral (C) and contralateral (D) hind paw,

represented at the following time points: baseline pre-surgery (Bs), post-surgery days 7, 14, 21, 28, and 42. Data expressed as mean ± SEM (n = 10 per group).

Kruskal Wallis followed by Mann-Whitney U post-hoc test with Bonferroni-Holm corrections (P < 0.05) *Males-Sham vs. Males-SNI, # Females-Sham vs. Female-SNI,

+ Males-SNI vs. Females-SNI.

Spared Nerve Injury Did Not Induce
Anxiety-Related Behaviours but Decreased
Vertical Activity in Male Sprague-Dawley
Rats
In the open field, no main effects were observed in the horizontal
locomotor activity, distance moved (Figure 4A) and velocity
(Figure 4B), or in the anxiety-related behaviours, number of
entries (Figure 4C) and time (Figure 4D) in the centre zone.
Interestingly, vertical activity analysis revealed significant main
effects of sex [rearing frequency: F(1,34) = 15.490; p < 0.001);
and duration: F(1,34) = 10.660; p < 0.05)] and sex∗surgery
interactions [rearing frequency: F(1,34) = 12.359; p < 0.001; and
duration: F(1,34) = 10.933; p < 0.01]. Further analysis revealed
lower vertical activity in male-SNI rats compared with Sham
counterparts (Figures 4E,F), an effect that was not observed in
female animals.

A significant main effect of sex was observed in the frequency
of entries [F(1,37) = 9.312; p< 0.05] and duration [F(1,37) = 7.345;
p < 0.05] in the open arms of the elevated plus maze without
altering the frequency of entries in closed arms (Figure 5).
Although male-SNI rats exhibited a trend for reduced frequency
and duration in the open arms, post-hoc analyses did not reveal
any significant differences.

Spared Nerve Injury Did Not Alter
Endogenous Cannabinoid Ligand Levels
Within Regions Involved in the Descending
Modulation of Nociception in Male or
Female Sprague-Dawley Rats
Statistical analysis revealed no main effects on the levels
of endocannabinoids (AEA and 2-AG) and related N-
acylethanolamines (PEA and OEA) in the PFC (Figures 6A–D),
PAG (Figures 6E–H), or RVM (Figures 6I–L). In the
amygdala (Figures 6M–P), a main effect of side was
observed [F(1,64) =7.247; p < 0.01] for 2-AG (Figure 6N),
but subsequent post-hoc analysis did not reveal any significant
between-group differences.

Spinal cord levels of AEA, 2-AG, PEA or OEA did not differ
between groups (Figure 7).

DISCUSSION

Despite the high incidence of neuropathic pain in the world
population, the neurobiology underlying chronic neuropathic
pain is still poorly understood. The higher incidence of
neuropathies in women compared to men, focus the attention on
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FIGURE 3 | Sucrose Splash and Sucrose preference tests. Investigation of depression-related behaviours following Sham or Spared Nerve Injury surgery in male and

female rats. Frequency of grooming (A) and cumulative time of grooming (s) (B) after sucrose splash exposure, at post-surgery day 28. All the behaviours were

analysed during the first 10min of trial. Percentage of sucrose consumption (C) at post-surgery day 34. Percentage of sucrose preference was calculated in each

pair-housed cage as: [sucrose intake (g)/total intake (g)] × 100 (see section Sucrose preference Test in Material and Methods for further information). Data expressed

as mean ± SEM (sucrose splash test: n = 10 per group; sucrose preference test: n = 5 per group).

sex as a crucial factor for the understanding of the mechanisms
associated with this disease. Nevertheless, more than 80% of pre-
clinical investigations exclude females as subjects, leaving “sex”
out of the pain research equation (4).

The study presented herein compares long-term development
of mechanical and cold allodynia, following peripheral nerve
injury, between sexes. The development of these nociceptive
behaviours is common in animal models of neuropathic pain
(42, 43) and are well-known features of neuropathic pain
symptomatology in patients following peripheral nerve damage,
independently of the origin of the lesion (44, 45). Spared Nerve
Injury induced mechanical and cold allodynia in adult male
and female Sprague-Dawley rats. Decreases in the ipsilateral
paw withdrawal threshold, for mechanical allodynia, was
progressively observed from post-surgery day 7. Unexpectedly,
a delay in the development of significant mechanical allodynia
was observed in rats of both sexes. Use of antibiotics immediately
after the surgery may be responsible for this altered nociceptive
perception through selective actions and disruption of gut
bacteria (46). Several animal models with altered motility and
nociceptive perception, have provided evidence of gut microbiota
and enteric neurons communication (47). The enteric nervous
system plays a key role in nociceptive processes, as it comprises
primary afferent neurons projecting to the dorsal horn in the
spinal cord (48). Therefore, administration of enrofloxacin (5
mg/kg) to avoid infections during the surgical procedure, and the
following 5 days, may be contributing to the observed delay in
the development of allodynia. Nevertheless, robust sensitivity to
mechanical stimuli was described in male- and female-SNI rats at
day 42 post-surgery.

Changes were also observed in sham sensitivity to mechanical
stimulation compared to baseline; an effect previously reported
in sham controls for different peripheral nerve injury models
(49–51). Changes observed in Sham groups may be related to
the possible sensitisation of the hind paws to testing over time.
As previously described, repetitive low-intensity stimulation with

von Frey filaments of the hind paw in non-operated rats was
associated with progressive decrease in mechanical withdrawal
thresholds (52).

A robust cold allodynia response was detected in female-
SNI groups 1 week after surgery, an effect not observed in
male-SNI groups; suggesting an earlier onset of this pain-related
behaviour in female rats. The sensitivity to mechanical and cold
allodynia was significantly greater in male- and female-SNI rats
compared to their Sham controls, confirming that peripheral
nerve injury induced the expected pain-related phenotype.
Furthermore, female-SNI groups not only experienced an earlier
onset but a greater sensitivity to mechanical and cold stimuli
than their corresponding male counterparts, supporting the
presence of sexual dimorphism in nociceptive behaviour. Studies
on sex differences during nociceptive processing have focused
their attention on receptor and ion channel alterations at
neural membranes, disruption of nociceptive signal transmission
within the nervous system or pathological synapse formation
between neighbouring neurons (53). In addition, the molecular
and behavioural variations induced by the oestrous cycle has
progressed from being considered as a reason for not using
female rodents in research, to focus the attention for the better
understanding of sexual dimorphism in the field of pain research
(54–56). In fact, it has been demonstrated that variations between
stages of the oestrus cycle can affect nociceptive perception
in females (55, 56). In the present study, a binomial logistic
regression was used to analyse if the stage of the oestrus cycle
was a predictor of the nociceptive behaviour exhibited by females.
However, no significant correlation was found, suggesting that
the stage of the oestrus cycle did not influence pain-related
behaviours in the current study.

SNI has been proven useful to model co-morbid mood
disorders that have been described in more than the 50%
of patients suffering from chronic pain (57–61). A recent
study from Wang and colleagues has demonstrated long-
term SNI-induced depression-related behaviours (14 and
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FIGURE 4 | Open Field test. Investigation of locomotor activity and anxiety-related behaviours in male and female rats following Sham or Spared Nerve Injury surgery.

Distance moved (cm) (A), velocity (cm/s) (B), number of entries in the centre zone of the arena (C), duration in the centre zone (s) (D), frequency of rearing (E),

duration of rearing (s) (F) at post-surgery day 35. All the behaviours were analysed during the 5min trial. Data expressed as mean ± SEM (n = 10 per group). Two-way

ANOVA followed by Tukey HSD post-hoc (P < 0.05). *Males-Sham vs. Males-SNI.

FIGURE 5 | Elevated plus maze. Investigation of anxiety-related behaviours in male and female rats following Sham and Spared Nerve Injury surgery. Frequency of

open arms exploration (A), duration of open arms exploration (s) (B), frequency of closed arms exploration (C) at post-surgery day 35. All the behaviours were

analysed during the 5min trial. Data expressed as mean ± SEM (n = 10 rats per group).
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FIGURE 6 | Investigation of endocannabinoid ligand and N-acylethanolamine levels (nmol/g of tissue) in male and female rats on day 42 following Sham and Spared

Nerve Injury surgery. Levels of AEA, 2-AG, PEA and OEA within brain regions implicated in the modulation of the nociceptive response in the descending pain

pathway: prefrontal cortex (PFC; A–D), periaqueductal grey substance (PAG; E–H); rostral ventromedial medulla (RVM; I–L) and contralateral and ipsilateral amygdala

(M–P). Data expressed as mean ± SEM (n = 10 rats per group).

FIGURE 7 | Investigation of endocannabinoid ligand and N-acylethanolamine levels (nmol/g of tissue) in dorsal lumbar spinal cord of male and female rats on day 42

following Sham and Spared Nerve Injury surgery. Levels of AEA (A), 2-AG (B), PEA (C) and OEA (D) were measured by liquid chromatography coupled to tandem

mass spectrometry. Data expressed as mean ± SEM (n = 10 rats per group).

56 days following SNI surgery) in the sucrose preference
and the forced swim tests (62). In the current experiment,
SNI did not induce depression-related behaviours in either

male or female animals 28 and 34 days after the surgery.
A non-significant reduction of the preference for sucrose
consumption was observed in female-SNI groups (Figure 3A),
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although further investigation at later time points may
be warranted.

Impairments of locomotor activity were not observed in either
male or female rats following SNI surgery on the ipsilateral limb.
Animal weight was a factor considered during the investigation
of this parameter, with no further implication in either sex.

SNI altered exploratory behaviour during the open field
test. Male-SNI groups exhibited a significant reduction of
frequency and duration of rearing activity, compared to Sham
control groups. This effect was not observed in female-SNI
rats, suggesting differential effects of SNI on this pain-related
behaviour between the sexes.

SNI did not affect the performance of either male or
female rats in the elevated plus maze test. Some pre-clinical
studies have observed anxiety-related behaviours following
peripheral neuropathy, with the majority only showing positive
manifestations at least 4 weeks after neuropathy induction (43,
63, 64). The analyses of depression- and anxiety-associated
behaviours, within this study, were conducted at early post-
neuropathy induction stages in which nociceptive chronicity
may not yet be well-established. This finding corroborates the
importance of time for the detection of emotional disorders
following chronic pain, previously observed in the literature
(15, 43, 65).

The expression of the ECS throughout the descending pain
pathway (66) and its role in the modulation of glutamatergic and
GABAergic neurotransmission during nociceptive processing
(67) is well-established. Activation of CB1 receptors activates the
descending inhibitory pathway through the inhibition of GABA
release in the periaqueductal grey and rostral ventromedial
medulla (17, 68), which bidirectionally modulate spinal cord
dorsal horn excitability for nociceptive transmission. Despite the
reported evidence of the ECS in the modulation of nociceptive
processing (66, 69) and the presence of sex differences within
the ECS (23, 70), we did not observe changes in the levels
of endocannabinoid ligands in the descending pain pathway.
However, our results are not sufficient to discard the possibility
of alterations in endocannabinoid tone at other time points
following SNI-surgery. Evidence suggests that longer periods
post-SNI induction may be needed for the establishment of
endocannabinoid alterations associated with a more robust
nociceptive phenotype (71). For instance, Petrosino et al. (72)
only observed an increase of AEA and 2-AG levels in the PAG,
RVM and spinal cord following chronic constriction injury in
male animals, when they expressed high levels of hyperalgesia
and mechanical allodynia (72). Considering our behavioural
results, it is conceivable that a later time point is required to
observe the highest levels of mechanical and cold allodynia and
associated increases in AEA and 2-AG levels.

It is also possible, that chronic neuropathic pain induced
alterations of the levels of endocannabinoid ligands in specific
small sub-nuclei of the descending pain pathway. It has
been previously observed that subregions of the same brain

area can play distinctive roles in pain neurotransmission and
related emotional modulation (18). However, the use of gross-
dissected tissue would not have allowed us to observe these
subnuclei-dependent effects. Furthermore, as different models
of chronic pain have shown, the antinociceptive effects of
the endocannabinoid system seem to rely on the activation
of both CB1 and CB2 receptors in females, but only on
the activation of CB1 receptor in males (70) highlighting the
importance of receptormechanisms in addition to considerations
of endogenous ligand levels.

In conclusion, the current study describes sexual dimorphism
in the development of mechanical and cold allodynia following
peripheral nerve injury. Females exhibited an earlier onset and a
greater sensitivity to mechanical and cold allodynia than males,
following SNI; suggesting sex differences in the mechanisms
underlying nociceptive processing. These results, together with
the clinical evidence of a higher incidence of neuropathies
in women compared to men, further point to the need to
consider “sex” as a crucial factor to improve the understanding
of pain neurobiology. Although the sex differences in nociceptive
perception observed were not associated with alterations in the
levels of endogenous cannabinoid ligands in spinal cord or the
supraspinal regions involved in the descending inhibitory pain
pathway at the time points tested, further studies are required to
investigate the plasticity and potential involvement of the ECS
in the sexual dimorphism associated with peripheral neuropathy
over longer periods post-injury.
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