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A normal functioning lymphatic pump mechanism and unimpaired venous drainage

are required for the body to remove inflammatory mediators from the extracellular

compartment. Impaired vascular perfusion and/or lymphatic drainage may result in

the accumulation of inflammatory substances in the interstitium, creating continuous

nociceptor activation and related pathophysiological states including central sensitization

and neuroinflammation. We hypothesize that following trauma and/or immune

responses, inflammatory mediators may become entrapped in the recently discovered

interstitial, pre-lymphatic pathways and/or initial lymphatic vessels. The ensuing interstitial

inflammatory stasis is a pathophysiological state, created by specific pro-inflammatory

cytokine secretion including tumor necrosis factor alpha, interleukin 6, and interleukin

1b. These cytokines can disable the local lymphatic pump mechanism, impair vascular

perfusion via sympathetic activation and, following transforming growth factor beta

1 expression, may lead to additional stasis through direct fascial compression of

pre-lymphatic pathways. These mechanisms, when combined with other known

pathophysiological processes, enable us to describe a persistent feed-forward loop

capable of creating and maintaining chronic pain syndromes. The potential for

concomitant visceral and/or vascular dysfunction, initiated and maintained by the same

feed-forward inflammatory mechanism, is also described.

Keywords: interstitial inflammatory stasis, cytokines, lymphatic dysfunction, counterstrain techniques, myofascial

pain and dysfunction, idiopathic diseases, fascia

INTRODUCTION

Chronic pain is the leading cause of disability with up to 49% of the population experiencing pain
<3 months duration. The estimated cost of chronic pain and associated opioid use disorder in the
USA is currently between $560 and 635 billion annually (1). Chronic pain is positively correlated
with age (2) and, given the rapidly aging demographic, the burden of chronic pain will continue to
impose significant challenges to our healthcare system.
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Myofascial pain syndrome (MPS) is among themost common,
yet least understood forms of chronic musculoskeletal pain, and
is a frequent cause of primary care physician and pain clinic
visitation (1, 2). Few people live without experiencing muscle
pain following injury, overuse, strain, or trauma. Although pain
associated with MPS frequently resolves in a few weeks, in
some cases it can persist long after the inciting event and/or
spread to distant, uninjured tissues (3, 4). Although MPS
is typically characterized by the expression of pain localized
to myofascial tissues, it is also associated with a broad and
growing profile of non-musculoskeletal symptoms including
fatigue, sleep disturbance, and visceral pain syndromes (5). These
associations suggest a shared pathophysiology between MPS
and several common idiopathic conditions (e.g., visceral pain
syndromes). The pathophysiological mechanisms underlying this
association, however, are not fully understood and remain largely
undescribed.

It is well-established that persistent, peripheral nociceptive
sources can initiate, maintain, and perpetuate chronic pain states.
This occurs, in part, through central mechanisms including
retrograde inflammation produced by dorsal root reflexes (6),
and/or areas of secondary hyperalgesia produced by glial cell
neuroinflammation (3). However, in idiopathic peripherally
generated chronic pain, our understanding of the pathological
processes that generate and maintain ongoing nociceptive input
is limited. Examples include whiplash associated disorders
which present with pain, proprioceptive and autonomic-
linked symptoms despite a lack of correlative pathological
evidence on computer tomography and/or magnetic resonance
imaging [for review see (7–10)]. Additionally, existing pain
hypotheses are limited in their ability to address many of the
pathophysiological findings common to both chronic pain and
idiopathic visceral/vascular syndromes. This includes elevated
levels of plasma and interstitial pro-inflammatory cytokines
in myofascial (11, 12) and visceral pain syndromes (13), and
evidence of sympathetic nerve activation (SNA) in MPS (14–
16), visceral disease (17, 18), and vascular disorders (19).
Microvascular disturbances and impaired lymphatic function
have also been identified in both MPS (20) and visceral disease
(21), supporting the concept of a shared pathophysiology.

Considering the limitations in current understanding, we
hypothesize that elevated pro-inflammatory cytokine levels,
through specific pathophysiological mechanisms, adversely
impact vascular hemodynamics and lymphatic function in the
extracellular compartment. Impaired venous and lymphatic
drainage can create a state of inflammatory interstitial stasis (IIS),
which results in ongoing nociceptive bombardment of the dorsal
horn (central sensitization). Recent anatomical discovery and
advances in pre-clinical and clinical research, enable us to further
elucidate the potential pathophysiological factors involved in
this process. This includes contraction of fascial myofibroblasts
following local TGF-b1 expression (22) which we hypothesize can
cause pre-lymphatic/lymphatic vessel contraction and/or fibrosis.
And the effect of specific pro-inflammatory cytokines including
tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6) and
interleukin (IL-1b) in cessation of the normal lymphatic pump
mechanism (23), the development of chronic pain states (24) and

the creation of long-term microvascular disturbance following
stimulation of segmentally linked somato/visceral-sympathetic
reflexes (23, 24).

These concepts, including others critical to our IIS hypothesis,
will be described in the sections to follow and presented
schematically in flowchart format. Figure 1 (flowchart 1)
specifically highlights the fascial, sympathetic, and lymphatic
pathophysiological mechanisms related to IIS. Figure 2 is a
comprehensive flowchart which incorporates the concepts in
Figure 1 and additional, previously documented mechanisms,
that may contribute to the development of IIS.

Pro-Inflammatory Mediators and
Peripheral Afferent Nociceptors
Tissue injury and/or inflammation leads to the local release of
algogenic substances including glutamate, serotonin, bradykinin,
adenosine triphosphate, protons (low pH), Substance P, nerve
growth factor (NGF), and norepinephrine (NE) all of which
are transmitted to the central nervous system by primary
afferent nociceptors (nociceptors) [for review see Willard (25)].
Nociceptors have unmyelinated free nerve endings that terminate
peripherally in the extracellular matrix (ECM), and respond to
both inflammatory and mechanical stimuli (26, 27). Virtually
all tissues are innervated by nociceptors including fascia (28),
tendons (29), blood vessels (30, 31), nerve sheaths (32),
ligaments, menisci, synovium, bone (33), visceral tissues or
capsules in the case of solid organs (34), vertebral discz (35)
and meninges (36). Primary afferent nociceptors enter the
dorsal root segmentally, where they trifurcate forming ascending,
descending and segmental level fibers. Thus, these small caliber
fibers can influence the segmental level of entry and several
segments above and below (37). This anatomical structure
enables singular activated nociceptors to have heterosegmental
nociceptive and reflexive impact. Research specifically highlights
the role of visceral afferents in pain production as their activity
is synaptically transmitted deep in the dorsal horn to convergent
viscero-somatic neurons, which receive nociceptive input from
the skin and deep somatic tissues of the corresponding
dermatomes, myotomes and sclerotomes (38). Additionally,
injury and/or immune responses will result in the production
of pro-inflammatory cytokines from various cells, including
endothelial cells, macrophages, dendritic cells, and fibroblasts.
These substances lower nociceptor activation thresholds in
the periphery (25) and, if persistent, can create structural
and/or functional changes in the spinal cord including central
sensitization (39). Thus, clinical consideration must be given to
viral, infectious, traumatic, post-surgical and/or overuse histories
as each can facilitate the cellular release of pro-inflammatory
cytokines that result in nociceptor activation.

Neurogenic Inflammation
Persistent nociceptive bombardment of the dorsal horn
leads to primary afferent depolarization of convergent
somatosensory pathways (40) and dorsal root reflexes which
result in neurogenic inflammation or the retrograde release
of proinflammatory neuropeptides including substance P and
calcitonin gene-related peptide CGRP, into peripheral tissues (6).
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FIGURE 1 | Trauma and/ or immune responses lead to PC production, most notably IL-1β, IL-6 and TNF-α. PANs of multiple tissues embedded in the ECM are

stimulated, transporting these substances to the DRG and DH where glial cells are stimulated leading to central and peripheral neuroinflammation/sensitization.

Nociceptive bombardment stimulates somato/visceral-sympathetic reflexes causing the release of NE, resulting in peripheral vasoconstriction (including fascial

vasculature) while the cytokines IL-1β, IL-6, TNF-α which deactivate the local lymphatic pump mechanism and simultaneously stimulate fibroblasts to differentiate into

myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, causes contraction of fascial tissues compressing pre-lymphatic pathways. Impaired hemodynamics

from vasoconstriction, deactivation of the lymphatic pump mechanism and compression of pre-lymphatic pathways create areas of hypoxia and IIS. Continued PAN

stimulation results in a pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and sympathetic activation which manifests in chronic pain,

sub-threshold action potentials and idiopathic visceral/vascular dysfunction.
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FIGURE 2 | Nociceptive bombardment (various sources) produces PCs including IL-1β, IL-6, TNF-α etc. PANs of multiple tissues embedded in the ECM are

stimulated, transporting these substances to the DRG, causing antidromic release of neuropeptides from the DRG into the injured and neurosegmentally linked

tissues, exacerbating the response beyond the region of primary hyperalgesia. Glial cells in the DH are stimulated leading to central and peripheral

neuroinflammation/sensitization. PAN entry into the DH at multiple levels alters the activity of alpha and gamma motor neurons, creating multi-segmental muscle

guarding reflexes, and myofascial compression of pre-lymphatic pathways. Simultaneously, somato/visceral-sympathetic reflexes are stimulated, causing the release

(Continued)
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FIGURE 2 | of NE, resulting in peripheral vasoconstriction (including fascial vasculature) while cytokines IL-1β, IL-6, TNF-α deactivate local lymphatic propulsion and

stimulate fibroblasts to differentiate into myofibroblasts. TGF-b1 released by fibroblasts & myofibroblasts, creates local fascial contraction, perimysial stiffness (gamma

motor activation) and compression of pre-lymphatic pathways. Due to the combined mechanisms, areas of hypoxia and inflammatory stasis develop which

continuously stimulate local PANs. A pathophysiological feed-forward loop of lymphatic stasis, nociceptor stimulation and SNA manifests in chronic pain,

sub-threshold action potentials and idiopathic visceral/vascular dysfunction.

In support of this concept, IL-1β injections into the dorsal root
ganglia (DRG) and dorsal horn are able to induce secondary
hyperalgesia, via retrograde inflammation, in the intraperitoneal,
intracerebroventricular and intra-plantar tissues of rats (41, 42).
This central to peripheral mechanism is a separate phenomenon
from spinal glial cell neuroinflammation and expands the
inflammatory process into contiguous, non-injured peripheral
tissues, creating regions of secondary hyperalgesia (pain
experienced outside the original injury site) (3). Glial cell
neuroinflammation occurs from nociceptive signals derived
from muscle (43), joint (44) and/or visceral (45) tissues and can
initiate the transition from acute to chronic pain states following
central sensitization (46).

Pro-inflammatory cytokines generated by trauma or immune
responses can also be transported from the periphery, via
axonal or non-axonal mechanisms, to the DRG and dorsal
horn, facilitating the induction of central sensitization (47),
which has important implications to the concept of IIS.
Additionally, Xie 2006, demonstrated that, once inflamed, the
DRG not only produces pro-inflammatory cytokines but also
decreases its production of anti-inflammatory cytokines (48),
which further exacerbates the peripheral inflammatory process.
Importantly, studies indicate that specific pro-inflammatory
cytokines including IL-1β, IL-6, and TNF-α, are particularly
associated with glial cell neuroinflammation and chronic pain
states (49).

The Role of Muscle Guarding Reflexes in
the Pathophysiology of Trigger Points
Muscle guarding reflexes are the body’s protective, involuntary
motor responses to reduce nociception (50). Stimulation
of sensitized dorsal horn nociceptive neurons is known
to alter the activity of the alpha motor neuron pool, thus
creating one type of the muscle guarding reflex (51, 52). For
example, stimulation of the kidney, ureter, or colon in rabbits
induces variable, paravertebral muscle responses depending
on the organ stimulated (53). Additionally, biochemical
stimulation of nociceptors via bradykinin, and serotonin,
can activate the gamma motor neuron system (54), which
excites segmental stretch reflexes, limits muscle flexibility,
and can contribute to formation/perpetuation of myofascial
trigger points (MTrPs) (55). MTrPs, the hallmark of MPS, are
defined as hyperirritable nodules in a taut band of skeletal
muscle. They are the principal cause of musculoskeletal pain
and are characterized as either active or latent (56). Active
MTrPs are known to produce spontaneous local and or
referred pain at rest, whereas latent MTrPs do not. Latent
MTrPs are typically considered the “dormant,” subthreshold
state, of the active MTrP (57). Tender points (TPs) on the

other hand, are described as areas of tenderness occurring in
muscle, the muscle-tendon junction, bursa, or fat pad, and are
typically considered characteristic of fibromyalgia syndrome
(58). Although it is to be emphasized that MTrP and TP
are separate entities, recent research utilizing intramuscular
electromyographic registration of spontaneous electrical activity,
has demonstrated that most fibromyalgia TP sites are located
inside the local and or neurological referred pain patterns of
active MTrPs (59) and almost all fibromyalgia TP sites, as
specified by the American College of Rheumatology criteria
are known MTrP locations (60). This clinically observed
overlap in referred pain patterns suggests some degree of
shared pathophysiology.

It is important to note that tissue texture abnormalities
including MTrPs are not always confined to a single
segmental level as activated nociceptors can also expand
receptive fields to non-contiguous areas, contributing to the
development of MTrPs in distant locations (4). Neurogenic
inflammation, muscle guarding reflexes and the potential
impact of MTrPs on central sensitization are important
concepts in the pathogenesis of MPS according to existing
pain hypotheses.

RECENT MYOFASCIAL PAIN HYPOTHESES

The Integrated Hypothesis
Included among the three most prevailing MPS models, is
an expansion of Simons’ Integrated Hypothesis described
by Gerwin et al. in 2004. It proposes that MTrPs are
initiated by local acute or chronic myotendinous injuries
including unaccustomed eccentric exercise and or sustained
work-related strain (61). Sustained muscle contraction, if
persistent, theoretically leads to hypoxia “possibly by the
development of high pressures within the contracting muscles”
which may explain the significant elevation of vasoactive,
inflammatory, and algogenic substances demonstrated in active
MTrPs (62). Lowered tissue pH, which inhibits the activity of
acetylcholinesterase, combined with the release of calcitonin
gene-related peptide (causing increased acetylcholine release),
would theoretically contribute to the observed increase in
motor end plate activity and focal hypertonicity associated
with MTrPs (63). This cycle, if combined with “other
factors that predispose to focal hypoperfusion” including
“sympathetic nervous system involvement” could be self-
sustaining, and unless interrupted, could lead to the initiation
and perpetuation of active MTrPs. For multiple reasons,
including those discussed in the next section, the integrated
hypothesis is no longer considered well-supported by the
existing literature.
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The Neurogenic Hypothesis
Theoretical and clinical limitations related to the integrated
hypothesis led to the development of the Neurogenic Hypothesis
in 2010 (63). Srbely also published a second paper (62)
contrasting the Neurogenic Hypothesis with the Integrated
Hypothesis as it relates to MPS. Srbely noted that MTrPs are
linked to non-musculoskeletal conditions and exist in the absence
of precipitating mechanical injury. This includes urogenital
syndromes (64), and a documented case of herpes zoster infection
in which the MTrP resolved following antibiotic therapy (65).
Additionally, infectious, psychogenic, and endocrine causes have
been attributed to MTrP formation (66), which cannot be
adequately explained by the persistent release of acetylcholine
or increased motor endplate activity that follows mechanical
injury. He hypothesized that MTrPs are neurogenic expressions
of central sensitization, potentially evoked and maintained by
an underlying primary pathology (e.g., osteoarthritis or visceral
disease) located within the common neurologic segment of the
MTrP. The local, anatomic, and physiologic changes observed
at MTrP sites, he argued, are due to neurogenic inflammation,
triggered by segmentally linked, central sensitization. Srbely
states that these neurogenic and inflammatorymechanisms could
also account for some of the biochemical changes documented in
MTrPs during interstitial sampling studies, including decreased
pH and increased concentrations of SP (67). The autonomic
effects related to MTrPs, he postulated, may also be attributed
to central sensitization (68). Subsequently, the Neurogenic
Hypothesis expanded the potential causes of MPS to include
pathological non-muscular tissues (e.g., degenerative joints)
and visceral structures owing to the anatomic convergence of
sensory pathways in the dorsal horn. The importance of chronic
primary pathologies in driving this pathophysiologic process
highlights the need to understand the mechanisms and origins of
potential nociceptive sources that contribute to the maintenance
of an ongoing state of central sensitization. Although the
Neurogenic Hypothesis integrates well-established physiologic
mechanisms (central sensitization and neurogenic inflammation)
to characterize the pathophysiology of chronic inflammatory
muscle disease, it currently lacks sufficient supporting evidence
in human models.

The Neuro-Fasciagenic Model of Somatic
Dysfunction
Fascia has also been implicated in the formation andmaintenance
of chronic pain states. For example, Tozzi, in 2014 published
an article describing the structural, functional, and neurological
properties of fascia arguing that a purely fascial-based rationale
could be developed to explain the palpable features (tissue
texture changes, asymmetry, restriction of motion, and
tenderness) associated with somatic dysfunction (69). He
reviewed the existing literature describing over 50 fascial-based
factors including neuromuscular, structural, mechanical, fluid,
electromagnetic and hormonal influences that may combine
“through various types of interactions” to create somatic
dysfunction. This manuscript highlighted the considerable body
of research which suggests that fascia may be involved in the

development of somatic dysfunction and chronic pain states.
However, the specific mechanism by which fascia contributes to
the creation of an ongoing nociceptive source, was not described
by Tozzi.

INTERSTITIAL INFLAMMATORY STASIS
HYPOTHESIS

Somatosympathetic Reflexes
For our IIS hypothesis it is important to recognize the
role the sympathetic nervous system (SNS) plays in the
generation andmaintenance of chronic pain states and idiopathic
visceral/vascular dysfunction. Stimulation of A delta and
C small fiber, unmyelinated nociceptors from virtually all
tissue types, reach lamina I and deep into the dorsal horn
where they can produce varying degrees of pre and post-
ganglionic sympathetic responses termed somato-sympathetic
and/or visceral-sympathetic reflexes (70). Activation of these
reflexes results in the release of NE from postganglionic
neurons, which generally elicits peripheral vasoconstriction
responses (23), which have been shown to reduce local muscle
blood flow (perfusion) by up to 25% (24). These reflexes are
the neurological link between peripheral nociceptors and the
SNS, and involve segmental, medullary, and/or supramedullary
structures (70–72). Experimental evidence supporting SNS
involvement in chronic pain states includes reduced muscle
perfusion demonstrated in chronic myalgia patients (14), and
decreased (improved) spontaneous electromyographic activity
recorded from MTrPs, after local injection of a sympathetic
antagonist (15). Additionally, the electrical activity in a MTrP
locus was shown to increase after emotional stress and was
also successfully abolished following local, alpha-adrenergic
blockade (16).

It is known that muscle tissue receives both vasoconstrictive
and vasodilatory innervation; however, neurogenic vasodilation
has not been demonstrated in resting human muscle tissue [for
review see (7, 73)]. Therefore, following nociceptor stimulation
and NE exposure (from somato/visceral-sympathetic reflex
activity), peripheral vasoconstriction will override the effects
of any local vasodilatory neuropeptides (e.g., from neurogenic
inflammation). The resultant sympathetic nerve activation (SNA)
may lead to disturbances in arterial and venous microcirculation
which have been documented in myalgia patients (74, 75) with
observed morphological changes including swollen endothelial
cells and the local destruction of myofilaments (76). These
microcirculatory disturbances have also been identified in MPS
patients, within the MTrP locus (77) and are specifically
characterized by local muscle hypoxia and reduced washout
of inflammatory substances (7). Additional confirmation of
vasoconstriction at active MTrP sites was documented utilizing
diagnostic ultrasound to analyze the vascular environment
surrounding MTrPs. The study concluded that active MTrPs
have a constricted vascular bed including an enlarged overall
vascular volume indicating venous stasis (20). In this state of
impaired venous return, peripheral pro-inflammatory cytokine
concentrations can reach the threshold necessary to further

Frontiers in Pain Research | www.frontiersin.org 6 August 2021 | Volume 2 | Article 691740

https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/pain-research#articles


Tuckey et al. Interstitial Inflammatory Stasis Model

stimulate local, chemosensitive nociceptors, establishing a
vicious feed-forward cycle which facilitates MTrP formation
via nociceptor/DRG sensitization, and continued activation
of somato-sympathetic reflexes. The mechanism described is
a reflexive, segmental phenomenon that does not require
supraspinal sympathetic activation and can act as a primary factor
in the development of IIS.

In addition to local SNA from somato/visceral-sympathetic
reflexes, psychological considerations are also critical to the
development of an accurate and comprehensive pain model
(Figure 2) as chronic stress may lead to increased peripheral
inflammation and NE production. Transient activation of the
hypothalamus-pituitary-adrenal axis (HPA) is the body’s normal
response to an acutely stressful or traumatic event. However,
a chronic trauma/stress related disorder like post-traumatic
stress disorder is associated with dysregulation of the HPA
with resultant elevations of plasma NE (78), cerebral spinal
fluid IL-6 levels (79), and cerebral spinal fluid substance P
levels (80). The additional long term physiological effects of
chronic stress include decreased cortisol production with a
subsequent elevation of plasma IL-6 levels (81, 82), which may
increase the risk of developing cardiovascular disease and or
autoimmune disorders (83–85). Elevated levels of IL-6, IL-
17A and a dysregulated HPA have also been observed in
fibromyalgia patients demonstrating additional overlap between
chronic pain states and idiopathic organ/endocrine dysfunction
(11, 86). Taken together, these findings highlight the potential
contribution of psychological factors in the development of
systemic inflammation. In the context of this manuscript, the
known correlation between chronic pain and post-traumatic
stress disorder may be of significance as elevated levels of IL-6
(inflammation) and NE (vasoconstriction) would create the ideal
interstitial environment for the development of IIS.

Sampling Studies of Chronic Myofascial
Pain Patients
In direct support of the IIS concept, sampling studies of
interstitial fluid have identified catecholamines and various
algesic substances in MPS patients. Microdialysis sampling of
interstitial fluid in the locus of active MTrPs has demonstrated
lower pH levels and elevated levels of inflammatory mediators
including bradykinin, substance P, TNF-a, IL-1b, IL-6,
interleukin-8, serotonin, andNEwhen compared to latentMTrPs
and/or controls (12). Elevated NE levels are direct evidence of
SNA and local vasoconstriction in active MTrPs. With regards
to fibromyalgia, a review of 25 selected studies revealed higher
serum levels of IL-6 vs. controls (11). Neuropeptides have also
been identified in cerebrospinal fluid (CSF) in response to
noxious stimuli. For example, elevated levels of substance P were
observed within the CSF of fibromyalgia patients (87) at levels up
to three-times greater than healthy controls (88). Additionally,
fibromyalgia patients have been found to have significantly
increased CSF concentrations of NGF (89), interleukin-8 (90)
and intrathecal glutamate (91). Sensitization of the dorsal horn
due to nociceptor activation following IIS can result in glial
cell activation, and subsequent release of pro-inflammatory

mediators in the CSF, mediating the transition from acute local
pain to chronic widespread pain. For example, the potential
contribution of IIS to CSF inflammation specifically offers a
pathophysiological rationale for post-traumatic fibromyalgia
syndrome (92). We emphasize that the theoretical contribution
of IIS to CSF inflammation in fibromyalgia patients does
not preclude additional sources of CNS inflammation in
fibromyalgia including neuroendocrine contributions. The
potential relationship between IIS and elevated levels of NGF
in fibromyalgia patients will also be covered in the subthreshold
endplate potential section to follow.

Newly Identified Interstitial Pre-Lymphatic
Pathways
In 2018 (93), researchers utilizing confocal laser endomicroscopy,
identified previously undescribed interstitial, pre-lymphatic
sinuses or pathways in the dermis, vascular adventitia,
submucosa of the viscera, bronchi, adipose tissue and in all fascial
tissues of the musculoskeletal system. These macroscopically
visible, fluid-filled spaces were confined by thick, well-organized,
collagen bundles and have no previously described anatomical
correlate. It was further described as a “compressible and
distensible” interstitial space in which interstitial fluid or
pre-lymphatic fluid accumulates and flows. Interestingly, the
pathways were primarily associated with tissues involved in
frequent movement such as the musculoskeletal system, lungs,
and/or digestive tract. The peristaltic nature of these tissues
would ostensibly augment the normal movement of interstitial
flow created by the circulatory system. Notably, the authors
stated that these pre-lymphatic pathways would have important
implications in tissue function and pathology including
edema, metastasis, disease, and fibrosis. They cited specific
examples of impaired interstitial flow, the pathophysiology of
which could be explained by occlusion of these pre-lymphatic
channels including, characteristic duct edema present in
acute bile duct obstruction, and the enlarged extracellular
spaces noted in keloid scarring (94). With regards to our
hypothesis, if lymphatic pathways are impeded by scarring
or tissue contraction (discussed in sections to follow), areas
inflammatory stasis, may be created capable of continuously
stimulating chemosensitive nociceptors (e.g., visceral, vascular,
musculoskeletal), and thus act as an ongoing nociceptive source
to the CNS.

The Lymphatic Pump (Intrinsic) Mechanism
and Interstitial Inflammatory Stasis
In the lymphatic system, pre-lymphatic channels connect to
initial lymphatics vessels which are composed of a thin layer
of endothelial cells, although completely lack muscle cells
(95). They are physically tethered to the surrounding tissue
structure through anchoring filaments (96) thus can be impacted
by tensions in the surrounding extracellular compartment.
More proximally, lymph fluid empties into collecting lymphatic
vessels which contain smooth muscle cells and contain
unidirectional valves to prevent retrograde flow. The primary
mechanism of lymphatic propulsion is provided by lymphangions
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which are the specialized, contractile segments of lymphatic
collecting vessels. Therefore, lymphatic fluid is independently
and actively driven by rhythmic, phasic, heart-like contractions
of successive lymphangions (defined as the muscle segment
between successive valves) eventually emptying into the venous
circulation (97). Lymphatic vessels are critically modulated by
fluid pressure and inflammatory mediators. As such, lymphatic
vessels act to resolve the inflammatory process by increasing
lymphangion contractile frequency in response to inflammation
(98). This lymphatic, homeostatic, clearing mechanism, has
been demonstrated in response to multiple inflammatory
mediators including substance P, CGRP, neuropeptide Y,
vasoactive intestinal polypeptide, prostaglandins, IL-1b and
TNF-a (99–101).

Despite the action of this intrinsic anti-inflammatory
mechanism, pathophysiological disruption of normal lymphatic
propulsion is known to occur, leading to excess inflammation
in the extracellular compartment. For example, lymphatic
dysfunction has been identified in human patients suffering from
inflammatory bowel disease (e.g., Crohn’s and ulcerative colitis)
as evidenced by lymphatic vessel obstruction, dilation, and
submucosal edema (21). Notably, surgical resection of diseased
areas, returns the morphological appearance of lymphatic vessels
to normal supporting the concept of a functional lymphatic
disturbance (102). Recent research has shed light on this
phenomenon as it is now known that specific cytokines, namely
IL-1b, IL-6 and TNF-a, can actually disable the normal lymphatic
pump mechanism during acute inflammatory events, creating
a “dramatic, rapid reduction in lymphatic propulsive flow
and frequency (22).” This may occur to prevent the spread
of infectious and/or inflammatory agents beyond the region
needed for a localized immune response; however, it results
in lymphatic stasis. The importance of this research to our
IIS hypothesis will become apparent in the following sections
as these specific cytokines, trapped in the interstitium, may
facilitate the transition from acute to chronic pain by long-term
impairment of the local lymphatic pump mechanism.

Fascial Contractility
The Foundation of Osteopathic Research and Clinical
Endorsement or FORCE group has recently written several
articles intended to develop a modern definition of fascia.
“The fascia is any tissue that contains features capable of
responding to mechanical stimuli. The fascial continuum is the
result of the evolution of the perfect synergy among different
tissues, liquids, and solids, capable of supporting, dividing,
penetrating, feeding, and connecting all the districts of the
body: epidermis, dermis, fat, blood, lymph, blood and lymphatic
vessels, the tissue covering the nervous filaments (endoneurium,
perineurium, epineurium), voluntary striated muscle fibers and
the tissue covering and permeating it (epimysium, perimysium,
endomysium), ligaments, tendons, aponeurosis, cartilage, bones,
meninges, involuntary striated musculature and involuntary
smooth muscle (all viscera derived from the mesoderm)” (103).
Fascia is composed of cells including macrophages and mast
cells (104); however, its foundational cell is the fibroblast which
is the principal cell responsible for production of the ECM. As

cited previously, virtually all fascial tissues (viscera, ligaments,
nerves, disc tissue etc.) contain unmyelinated nociceptors,
and thus have the potential to become primary nociceptive
sources. Cytokines, including the IL-6, TGF-β1, and IL-1β
have a significant impact on fibroblasts, stimulating them to
differentiate into myofibroblasts, a contractile form expressing
α-smooth muscle actin. These contractile cells are associated
with pathological conditions including palmar fibromatosis
and hypertrophic scarring (105). Importantly, myofibroblasts
have also been identified in normal, non-pathological tissues
including the fascia cruris (106), ligaments (107), tendons (108),
bronchial connective tissues (109), organ capsules (110), and
several other collagenous connective tissues (111). Following
inflammatory exposure, myofibroblasts are known to secrete
additional cytokines including TGF-β1, IL-1β, etc. which may
increase the rate of ECM synthesis, creating fibrosis (112).
The production of the cytokine TGF-β1 by fibroblasts takes on
additional clinical significance as normal (non-pathological)
fascia samples were recently demonstrated to contract following
TGF-β1 exposure. Both rat and human samples of the lumbar
fascia, plantar fascia, and sections of the fascia lata were analyzed
and found to contain significant numbers of myofibroblasts.
Following application of TGF-β1 to the lumbar fascia, tissue
contractions were measured and calculated to be at an estimated
force of 2.63N (113). The potential clinical impact of this
contraction is below the threshold for mechanical spinal
stability; however, is above the threshold for mechanosensory
stimulation impacting gamma motor neuron activity and
therefore musculoskeletal function (114). Adding additional
support to this concept, Schleip found a strong positive
correlation between myofibroblast cell density and contractile
response, with a generalized increase in myofibroblast density in
perimysial tissues (where most spindle capsules are embedded)
(113). This corresponds with previous research demonstrating
perimysial changes in myofascial pathologies (115) and supports
the hypothesis of Stecco et. al. that MPS could be influenced
by abnormal perimysial fascial stiffness (116). Important to
our hypothesis, the fascia-myofibroblast contractile responses
measured following TGF-b1 expression may be capable of
partially or fully occluding pre-lymphatic flow through initial
lymphatic vessels and/or “compressible” interstitial pathways
as described previously by Benias et al. (93). This process may
act as an independent, purely fascial-based mechanism, capable
of disrupting interstitial lymphatic drainage, creating localized
regions of IIS.

Inflammatory Stasis and Fibrosis
Fibrosis or scar tissue formation is defined as thickening of
the ECM that is preceded by inflammation or physical tissue
injury. Since the same pro-inflammatory cytokines (IL-6, TGF-
β1 etc.) involved in our proposed interstitial stasis model are
also the exact cytokines described in the process of excessive,
non-physiological scar tissue formation (fibrosis), it is plausible
there is a shared pathophysiology. Increased ECM synthesis
by fibroblasts in response to inflammation is known to cause
fibrosis but may also cause the formation of fibrotic clusters
called fibrotic foci (117) which are associated with idiopathic
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lung fibrosis. The overproduction of collagen I bymyofibroblasts,
severely impairs regional tissue architecture and is considered
the key component in all types of organ fibrosis (118). In fact,
a similar mechanism (to our described hypothesis) has been
previously observed in the scarring process citing excessive
neuroinflammatory stimuli, prolonged production of growth
factor TGF-b1 and overproduction of the ECM (119–121). Since
chronic inflammation is the driving force behind myofibroblast
proliferation, interruption of the inflammatory process can
resolve the fibrotic process (118). For example, viral clearance
by interferon, prevents associated liver fibrosis in viral hepatitis
patients. Unfortunately, many forms of fibrosis following injury
and/or infection are idiopathic (e.g., idiopathic pulmonary
fibrosis and/or kidney fibrosis) and intractable as the source of
chronic inflammation is unknown. Recognition and resolution
of the feed forward, multi-tissue, hypothetical IIS mechanism we
describe, by manipulative or pharmacological interventions, may
help resolve the symptoms associated with non-physiological
scarring and potentially interrupt the process of idiopathic
organ fibrosis.

The Role of Inflammatory Interstitial Stasis
in the Generation of Subthreshold
Potentials
Subthreshold action potentials (SAPs) generated from areas of
IIS may also play a significant role in the process of central
sensitization, chronic pain, and the development of latent
MTrPs. Pro-inflammatory cytokines (including IL-1b and TNF-
a), released in response to tissue stressors and/or immune
responses, strongly induce nerve growth factor (NGF) synthesis
(122). NGF receptor activation and signaling alters nociception
via direct nociceptor sensitization at the site of injury and
can change gene expression in the DRG, which collectively
increases nociceptive signaling from the periphery to the CNS
(123). Considering that NGF production is related to peripheral
cytokine exposure, NGF production would logically be more
likely to occur in zones of IIS. Elevated pro-inflammatory
cytokines concentrations would induce NFG production in
dorsal horn glial cells, creating SAPs (124). This may have clinical
significance as elevated levels of NGF have been identified in
the CSF of fibromyalgia patients (89). Therefore, latent MTrPs
may be clinical manifestations of sub threshold pro-inflammatory
cytokine concentrations in areas of IIS. Although latent MTrPs
are not associated with spontaneous pain, they can cause local
and even referred pain upon deep palpation. Mense hypothesized
that latent MTrPs send nociceptive, subthreshold signals toward
the dorsal horn of the spinal cord (125), which would effectively
cause central sensitization without the perception of pain. He
emphasized that latent MTrPs may be of particular importance
in chronic myalgia as pathological changes in muscle tissue are
typically associated with subthreshold input and low frequency
activation of nociceptors (125).

To summarize, latentMTrPsmay be related to SAPs generated
in response to low level pro-inflammatory cytokine exposure in
lesser areas of IIS. These nociceptive signals could both initiate
and/or maintain central sensitization. The involved tissues and

neuromeric fields would logically be prone to injury and or may
become symptomatic (suprathreshold) following any additional
trauma and/or inflammatory insult.

Hypothesis Summary (Interstitial
Inflammatory Stasis)
Based on the research presented, a novel lymphatic and
fascial-based hypothetical mechanism can be described, having
major implications in chronic pain states and idiopathic organ
syndromes. Tissue injury and/or inflammation from immune
responses causes the release of cytokines into neighboring
tissues. This inflammatory reaction triggers fibroblasts to release
additional cytokines including IL-1b, IL-6 and TGF-β1 thereby
exacerbating the local nociceptive and inflammatory processes.
These specific cytokines simultaneously disable the local,
lymphatic pump mechanism. If interstitial concentrations of IL-
1b, IL-6 and or TNF-a reach the threshold necessary to cause
significant, local expression of TGFb-1, lymphatic propulsion
may become impaired due to fascial (myofibroblast) contraction
and or vessel fibrosis. These specific algogenic cytokines,
now trapped locally in the interstitium, may continuously
stimulate chemosensitive nociceptors and facilitate the transition
from acute to chronic pain by long-term impairment of the
local lymphatic pump mechanism. This is despite eventual
recovery of the systemic lymphatic pump. The resultant cytokine
exposure will also activate local somato/visceral-sympathetic
reflexes, impairing regional vascular perfusion. Therefore, this
hypothetical, pathophysiological hemodynamic process is due
to a combination of impaired vascular perfusion and long-term
disruption of the local lymphatic pump mechanism. The areas
of interstitial stasis generated may exist in any one of the newly
identified musculoskeletal, visceral, adventitial and/or dermal
interstitial pathways. The resultant stasis and elevated interstitial
cytokine concentrations may create a feed-forward nociceptive
loop, which results in continuous stimulation of musculoskeletal
and or non-musculoskeletal nociceptors, maintaining the
process. The hypothesis is not selectively dependent on pathology
and or any specific source of inflammation, as multiple tissue
nociceptors are capable of initiating and maintaining IIS.

Applying the IIS hypothesis to musculoskeletal pain research,
the cytokines (IL-1b, IL-6, TNF-a) shown to disable the lymphatic
pump mechanism are the exact cytokines found to be primarily
involved in the perception of pain (24), fascial contraction
following TGF-b1 production (22, 105), and were also among
those elevated in active MTrP sampling studies (11, 12).
Additional experimental support for the IIS hypothesis is the
fact that long-term, impaired lymphatic drainage was recently
identified in the pathogenesis of lymphedema. Histological
examination of lymphatic vessels in 29 secondary lymphedema
patients demonstrated “contracted-type” and “sclerotic-type”
collecting vessels in areas of lymphatic stasis. These vessels
were found to have occluded lumens causing impairment of the
normal lymphatic-pumpmechanism.Most significantly, many of
the contractile cells responsible for impairing lymphatic drainage
were identified as myofibroblasts, not vascular smooth muscle
cells, and were characterized by increased ECM synthesis (126).
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Also in support of the IIS hypothesis is a finding of Asano et al.
who demonstrated increased levels of inflammatory cytokines,
namely TNF-a and IL-1b, in the walls of dysfunctional lymphatic
collecting vessels (127). This lead Carthy to suggest that the
transformation into myofibroblasts may have been triggered by
local inflammation (128). Considered collectively, these recent
research findings from the field of lymphedema, lend support to
the hypothesis that ongoing impairment of the normal lymphatic
pump mechanism (IIS) being involved in the generation and
maintenance of chronic pain states.

Using irritable bowel syndrome as a non-musculoskeletal
example, compelling evidence exists that increased inflammation
in the enteric mucosa or neural plexuses may initiate the
development of IBS-like symptoms (129). In a recent
study of acute gastroenteritis infection patients, 23% were
found to develop IBS-like symptoms within 3 months after
infection. Altered gut physiology including evidence of chronic
inflammation was still present at 3 months in both the
symptomatic and asymptomatic groups, implicating post-
infectious peripheral inflammation as a contributing factor.
When the symptomatic and asymptomatic patients were
compared based on psychosocial factors, elevated stress profiles
(potentially, HPA dysregulation) were strongly associated
with those who would eventually develop IBS-like symptoms
(13). In this example, elevated sympathetic drive from stress
would feed into the peripheral stasis mechanism we describe.
As the associated elevation in NE and IL-6 levels (related to
chronic stress) may induce vasoconstriction, reduce lymphatic
propulsion, increase fibroblast to myofibroblast differentiation
and create nociception. This emphasizes the fact that both
peripheral and central factors must be considered in idiopathic
pain states.

Based on the findings presented, we propose the following
feed-forward pathophysiological hypothesis for MPS, and
certain idiopathic visceral/vascular conditions. Figure 1 is a
simplified view of our IIS hypothesis including only biochemical,
sympathetic, fascial, and lymphatic influences. Figure 2 is a
comprehensive pain model detailing multiple factors (including
those described in Figure 1) related to the development of IIS and
the subsequent pathophysiological outcomes.

DISCUSSION

Our proposed hypothesis expands existing pain models by
highlighting the mechanisms by which IIS may be initiated
and act as an ongoing peripheral nociceptive source. Via
this mechanism, fascial, visceral, vascular and or neural pre-
lymphatic pathways may entrap inflammatory mediators, which
would continually stimulate local nociceptors, contributing to
central sensitization, chronic pain, and sympathetic activation.
Importantly, algesic substances trapped in the interstitium
(not blood stream), have the potential to create a state
of recalcitrant, non-healing pain, that may be resistant to
pharmacological intervention.

As Figure 2 demonstrates, the precipitating factors and
pathophysiological mechanisms behind each patient’s symptoms
are unique and may often occur in combination within the
same neuromeric field. Therefore, the neurological concepts
of temporal and spatial summation would have important
implications in the proposed model as pain can be initiated
by a single repeated stimulus over time (temporal summation)
or by multiple different pain generating mechanisms converging
onto the dorsal horn (spatial summation). Even in cases of
known pathology, patients may be asymptomatic (e.g., the single
nociceptive source fails to override the inhibitory pain system)
or may become asymptomatic following successful treatment
of convergent, non-pathological, nociceptive sources. Therefore,
assessment and treatment of all potential pain-producing tissues
and mechanisms, as suggested by the proposed model, improves
the likelihood of a patient reaching the goal of pain free function.
Additionally, an argument could also be made for the treatment
of latent MTrPs which would reduce central sensitization related
to SAPs, helping to maintain pain-free function.

As stated previously, the proposed model is not exclusive
to peripherally generated chronic pain as IIS may also offer
a physiological rationale for idiopathic visceral and vascular
dysfunction. Neurovascular bundles from all spinal segments
also innervate vertebral and spinal cord vessels, making
them capable of inducing spinal vasospasm by activating
SNA (130, 131). Vasoconstriction of spinal arteries and veins
may contribute to the pathophysiology of common disorders
including radiculopathies, myopathies, idiopathic neuropathies,
degenerative disc disease and/or degenerative joint disease.
Theoretically, SAPs (produced by NGF) may also induce
segmentally linked vasoconstriction following sympathetic
activation which could serve as a possible explanation for the
high incidence of spinal degenerative changes in asymptomatic
individuals (over 73% of subjects tested) (132, 133). Specifically,
subthreshold nociceptive signals generated by IIS could create
vasoconstriction of segmental arteries that supply the vertebrae,
leading to asymptomatic or silent spinal degeneration over time.

Persistent nociceptive input from IIS may also directly
impact cranial tissues innervated by the spinal trigeminal
nucleus which receives afferent input from the upper 3 cervical
segments. In support of this concept, nociceptive inputs into the
spinal trigeminal nucleus, including those produced by MTrPs,
have been implicated in tension-type headache (19) and may
logically, via SNA, contribute to other idiopathic cranial disorders
including post-concussion syndrome. Additionally, second order
nociceptive neurons projecting to higher centers through
the dorsal column, can activate the “brain-gut axis” which
links the autonomic nervous system to the neuroendocrine,
immune, and enteric nervous systems (134). This could
interfere with the normal efferent innervation of the viscera
causing abnormal hormonal secretion and/or disruption of
gastrointestinal motility (17). Collectively, these findings suggest
that alleviating ongoing nociceptive sources related to interstitial
stasis may be able to resolve the underlying pathophysiological
mechanism responsible for idiopathic spinal, digestive, endocrine
and cranial disorders.
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Potential Non-pharmacological
Interventions (Related to the Proposed
Model)
The need for effective non-pharmacological interventions for
pain is increasing with efforts to reduce opioid addiction.
One promising intervention purported to deactivate nociceptors
and alleviate tissue inflammation is Counterstrain (previously
called Strain and Counterstrain) (135). Counterstrain utilizes
cutaneous TPs/MTrPs to diagnose and treat MPS and idiopathic
conditions. Once a TP is located, the body is gently placed
into specific positions of ease that have been clinically identified
to alleviate TP tension and tenderness. Tissue decompression
(through positioning or local tissue manipulation) is believed to
silence activated nociceptors, reducing the afferent barrage to the
dorsal horn. Reduced nociception, deactivates segmental muscle
guarding reflexes, reducing myofascial tension and capillary
pressure. The treatment position is thenmaintained for up to 90 s
to allow regional inflammation (interstitial pro-inflammatory
cytokines) to gradually dissipate. Based on our hypothetical
model, the associated reduction in interstitial NE concentrations
during the release would also deactivate somato/visceral-
sympathetic reflexes, helping to restore arterial and venous
perfusion. Simultaneous reductions in IL-1b, IL-6 and TGF-
b1 concentrations would normalize lymphatic propulsion
and reduce myofibroblast (facial) contraction blocking pre-
lymphatic pathways.

The impact of Counterstrain on inflammation has been
investigated at the cellular level, demonstrating improvements
in tissue morphology. Researchers repetitively strained human
fibroblasts for 8 h in a two-dimensional tissue matrix while
measuring the effects on fibroblasts, including cytokine
production. A 60-second Counterstrain (or indirect osteopathic
manipulative treatment) was then applied which produced
beneficial effects on fibroblast morphology, reversing the
inflammatory effects (46% reduction in fibroblast IL-6
production after 24 h) when compared to control (136).
Recently Counterstrain has been renamed Fascial Counterstrain
and expanded to include over 800 anatomically named
structures, treatments, and diagnostic TPs. This pain-free,
non-invasive treatment warrants further investigation as it may
have the capacity to alleviate microvascular stasis in all tissues,
breaking the feed-forward cycle that creates myofascial pain and
potentially idiopathic visceral/vascular syndromes.

Acupuncture, unlike Counterstrain, does not directly target
peripheral inflammation (IIS) but is purported to work by
dampening nociceptive input to the dorsal horn. Melzack and
Wall’s gate theory (137) proposes that the superficial dorsal
horn of the spinal cord can be excited or opened by nociceptors
and closed by stimulation of large A-beta nerve fibers. Since
electroacupuncture is known to stimulate A-beta fibers (138)
it is presumed that acupuncture works by activating this
pain-gating mechanism. Alternatively, manual acupuncture is
known to stimulate A-delta fibers (139) that synapse directly
with inhibitory interneurons within the dorsal horn and can
inhibit central pain transmission through enkephalin-dependent
mechanisms (140). Recent studies of a similar intervention,

termed dry needling, have demonstrated antinociceptive effects
when treatments were targeted segmentally to discrete MTrP
locations as compared to non-MTrP sites (141, 142). Dry
needling may also be effective in reducing nociception generated
by IIS.

Although the underlying mechanisms driving these
interventions remain unclear, it is likely that local and
segmentally targeted therapies will be of value in the treatment
of chronic pain states generated peripherally by IIS.

Experimental Validation of the Proposed
Model
A central tenet to this hypothesis is the development of a
functional disturbance in the lymphatic pump mechanism.
The current gold standard for quantifying lymphatic flow
includes lymphangiography and lymphoscintigraphy, which have
been previously employed to investigate disturbances in the
lymphatic pump mechanism including blockage of lymphatic
flow (143). More recent technologies, including near-infrared
fluorescent optical imaging and/or transit-time ultrasound
technique, provide real-time quantitative measures of lymphatic
flow which could also be employed to identify functional
lymphatic disturbances in somatic and/or visceral tissues.

Initial cross-sectional studies comparing clinical cohorts to
healthy controls may also be useful in highlighting differences in
lymphatic propulsion in support of our hypothesized reduction
in lymphatic flow in chronic MPS. We would expect to
observe decreased lymphatic flow localized within the region
of hyperirritable MTrPs, in contrast to normal tissue. The
role of fascial contractures in this mechanism may be further
studied by examining for evidence of fibroblast activation
biopsied from muscle tissue of fibromyalgia patients (specifically
in tissues found to have lowered pain-pressure thresholds).
This includes excess TGF-β1 expression, elevated levels of
inflammatory mediators, increased myofibroblast concentrations
and/or evidence of excess ECM secretion.

These human studies could be followed by controlled
animal injury studies to investigate the causal relationships
between cytokine accumulation and altered lymphatic flow.
Previous animal models have been developed to assess the
effect of lipopolysaccharide (LPS) induced production of TNF-
a, IL-6 and IL-b (144). These could be used to assess
lymphatic stasis utilizing near-infrared fluorescent optical
imaging. Immunohistochemistry can be employed to detect
TGF-b1 expression (145), which would introduce the potential
for fascial contraction and/or fibrosis related to the production
of the specific cytokines theoretically associated with IIS.
Histological analyses of the fascial tissues could be performed to
confirm the presence of fibrotic changes and fascial contractions.
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