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Millions of people suffer from arthritis worldwide, consistently struggling with
daily activities due to debilitating pain evoked by this disease. Perhaps the
most intensively investigated type of inflammatory arthritis is rheumatoid
arthritis (RA), where, despite considerable advances in research and clinical
management, gaps regarding the neuroimmune interactions that guide
inflammation and chronic pain in this disease remain to be clarified. The pain
and inflammation associated with arthritis are not isolated to the joints, and
inflammatory mechanisms induced by different immune and glial cells in
other tissues may affect the development of chronic pain that results from
the disease. This review aims to provide an overview of the state-of-the-art
research on the roles that innate immune, and glial cells play in the onset
and maintenance of arthritis-associated pain, reviewing nociceptive pathways
from the joint through the dorsal root ganglion, spinal circuits, and different
structures in the brain. We will focus on the cellular mechanisms related to
neuroinflammation and pain, and treatments targeting these mechanisms
from the periphery and the CNS. A comprehensive understanding of the role
these cells play in peripheral inflammation and initiation of pain and the
central pathways in the spinal cord and brain will facilitate identifying new
targets and pathways to aide in developing therapeutic strategies to treat
joint pain associated with RA.
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Introduction

Arthritis is a leading cause of disability worldwide. Every year, the prevalence of this

disease rises, reaching more than 350 million people around the world (https://

globalranetwork.org/project/disease-info/). This growing incidence is tied to an

increase in life expectancy and aging of the population (1), and a lack of accessibility
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to effective therapies (2). Although several types of disease-

related arthralgia affect people, rheumatoid arthritis (RA) joint

pain is a significant cause of disability, affecting daily activities

and increasing the global disease burden (3, 4).

RA is a chronic inflammatory disease, and despite advances that

have remitted inflammation or delayed the progression of bone and

cartilage destruction in patients, chronic pain in RA can persist and

is still the primary symptom for which patients seek medical care

(5–8). As a multifactorial disease, the debilitating chronic pain

phenotype evoked relies on complex neuroimmune interactions

running from the peripheral tissue through the dorsal root

ganglia (DRG), spinal cord, and brain (9–11). Thus, patient

outcome may be improved through a multiple-target approach,

treating disease injury and inflammation at different levels to

relieve the chronic pain state (12–14).

Given the inflammatory component of RA, innate immune

cells such as macrophages and glial cells may have a critical role

in the maintenance of disease phenotype, contributing to the

development of damage signaling responses involved in tissue

degeneration and nociceptive plasticity along the pain

pathway (15–21). Reviewing the known pathophysiology of

these key cell types involved in the onset and progression of

RA and studying how immune and neuroimmune interactions

dictate the degenerative phenotype can help identify

knowledge gaps that warrant further investigation and

potentially identify disease targets.

Thus, the objective of this review is to provide relevant

aspects of macrophage and glial cell participation in arthritis

physiopathology, giving particular focus on the role of these

cells in inflammation and the development of chronic pain.

We give special attention to key tissue/locations along the

nociceptive pathway in arthritis, focusing on the synovium,

dorsal root ganglia, spinal cord, and brain to discuss and

highlight the role of these cells in the influence on the

disease-pain phenotype.
Peripheral nerve innervation of the joint

The sensory perception from joints relies on a strictly

controlled neural network to coordinate the dynamic

interaction of limbs and body movements (22). Joint

innervation spans a broad spectrum, with termini reaching

the capsule, synovium, meniscus, ligaments, fat pad,

subchondral bone, and periosteum (23, 24). Four types of

nerve fibers are thought to conduct sensory information on

the physiological and/or noxious stimuli of the joints: Aβ, Aδ,

C, and sympathetic nerve fibers (23–25).

Corpuscular endings from Ruffini, Golgi, and Pacini types,

originating from Aβ fibers, innervate the capsule, menisci,

ligaments, and adjacent periosteum; whereas Aδ and C fibers

have free nerve endings (non-corpuscular) in capsules, adipose

tissue, ligaments, menisci, periosteum, and synovia, while
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cartilage is devoid of any type of innervation (23, 25–28). In

addition to Aβ, Aδ, and C fibers, sympathetic innervation has a

significant density on ligaments, tendons, and capsules, as well

as blood vessels in the joint compartment (24, 29).

Physical joint mechanics generate shear forces capable of

inducing conformational changes in ion channels present in the

plasma membrane of nerve endings at the joint site, leading to

their opening and, subsequently, membrane depolarization (24,

30–32). After depolarization, action potentials further conduct

sensory information to the central nervous system (CNS) (24,

27). The difference between innocuous and painful stimulation

of joints relies on the physiological tissue working range, where

any pressure (static or dynamic) and movement that exceeds

the basal resistance can be perceived as painful (25, 28, 33).

Along this line, joint noxious stimulation can be triggered by

intense pressure applied to a specific area or harmful

movements such as twisting or sharp rotation (24, 34, 35).

Thus, Aδ and C fibers that innervate the joint will be activated

during high threshold stimulation of joints (typically

nociceptive); in contrast, Aβ fibers will be recruited during low-

threshold stimuli, usually innocuous (23).

RA can affect hands, feet, wrists, elbows, knees, and ankle

joints (36). Additionally, pre-clinical models used to study this

disease use rodents (37, 38), and a significant incidence of

disability in tibiofemoral and metatarsophalangeal joints has

been reported in this species (39). The data from these

preclinical studies suggest that the soma of most sensory

neurons that innervate lower limbs, especially the tibiofemoral

and metatarsophalangeal joints, are present in the DRG from

spinal segments L1–L5 (40–42).

These sensory afferents neurons present in the DRG also

play an active part in inflammatory processes, regulating

immune cell function through the release of neuropeptides

such as substance P and Calcitonin gene-related peptide

(CGRP) that lead to vascular permeabilization and activation

of effector cells from the immune system (43–46). These

peripheral sensory neurons help regulate the local tissue

inflammatory response and maintain the integrity of the

affected limb by augmenting the receptive field for noxious

stimuli (27, 30). However, in RA, this transient receptive

field enhancement might acquire a consolidated state, as

suggested by preclinical studies, where the ongoing

inflammatory process in the affected limb promotes nerve

damage and axonal sprouting, leading to permanent

neuroplasticity, which characterizes the chronic pain

phenotype (46–50).

The switch in the pattern of joint innervation has been

described as one of the main pillars that sustains the chronic

pain phenotype in RA (48–51). Nerve sprouting from both

sensory and sympathetic innervation significantly correlates

with pain severity and tissue injury in some arthritis

experimental models (49). Different genetic or induced animal

models of arthritis have been developed to study
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inflammatory RA and post-traumatic or spontaneous

osteoarthritis (OA) (see Table 1). In several of these rodent

models, chronic inflammation results in an increase in

nociceptive afferent and postganglionic sympathetic axons that

can be seen in the synovium (29, 46). In a murine model of

monoarticular inflammation induced with intra/periarticular

injections of Complete Freund’s Adjuvant (CFA), an increased

density of nociceptive fibers (CGRP+), and sympathetic fibers

(TH+ and VMAT2+) were visualized 25 days after the last

CFA injection (50, 51). Additionally, an increase in TH+ and

CGRP+ fiber density persists in the synovia of mice in the

chronic phase of the K/BxN model, which is associated with

increased glial proliferation in the spinal cord (49).

Furthermore, mice with proteoglycan and CFA-induced

arthritis were treated with guanethidine (to deplete

postganglionic sympathetic terminals) or capsaicin (to destroy

TRPV1+ sensory terminals) had reduced pain behavior,

edema, and arthritis severity (51, 54). This evidence indicates

that sympathetic and capsaicin-sensitive afferents regulate

disease outcomes through local neuroimmune interactions in

the peripheral joint (51, 54).
TABLE 1 Rodent models described in this review.

Type Model Mono/
polyarticular

Species

Mono-articular
inflammation

Complete Freund’s
arthritis (CFA)

Mono Mice/rats CFA is injecte
require repe

Adjuvant Poly Rats Injection of C
arthritis.

Proteo-glycan-induced
arthritis

Poly Mice Induced with
proteoglyca
injections a
3rd injectio
BALB/c mic

RA-like Collagen induced
arthritis (CIA)

Poly Mice/rats Immunization
emulsified i
(CFA) and
IFA. Best in

Collagen antibody
induced arthritis
(CAIA)

Poly Mice Induced by in
monoclonal
an injection
BALB/c mic

K/BxN serum transfer Poly Mice One or two in
transgenic K
arthritis tha
most backg

TNF-Tg Poly Mice Spontaneous a
human tum
transgene.

OA-like Surgically-induced Mono Mice/rats Anterior cruci
(ACLT), pa
medial men

Chemically-induced Mono Mice/rats Injection direc
or enzymat
monoiodoa
papain.
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Macrophages and glial cells in the
peripheral joint and DRG

Macrophage ingress related to
inflammatory phenotype and neural
outcomes

RA susceptibility to autoimmune mechanisms is associated

with genetic risk factors (36, 64). Diagnostic markers reflecting

the autoimmune component in this disease include an increase

in rheumatoid factor (RF; anti-IgG antibodies) and the presence

of anti-citrullinated protein antibodies (ACPAs), which can be

measured in sera years before the onset of symptoms (65).

These serum biomarkers suggest that the pathogenesis of this

disease begins gradually, probably associated with different

environmental factors necessary to trigger inflammatory

responses (36, 65, 66). Such environmental factors include

smoking, aging, western diet, alcohol intake, bacterial and

viral infections (36, 64, 67–69). These injurious stimuli can

lead to the amino acid conversion of arginine to citrulline (a

process called deamination or citrullination) in a range of
Description Glial/macrophage
phenotype

Referencess

d in the knee or ankle and may
ated injections.

↑ Microglial IBA1 reactivity in
brain

(52)

FA induces polyarticular ↑ SGCs in the DRG. Astrocyte
reactivity in SC. ↑Microglial
IBA1 reactivity in SC and
brain.

(21, 53)

4 weekly injections of cartilage
n (PG). The 1st and 4th
re of PG/CFA, and the 2nd and
ns are of PG/IFA. Works best in
e.

(54)

with type II collagen (CII)
n complete Freund’s adjuvant
a boost at 21 days with CII in
DBA/J mice.

↑ Microglial IBA1 and GFAP
reactivity in brain.

(55, 56)

jection of a cocktail of 4
anti-CII antibodies. May need
of LPS at 3–5 days. Best in
e.

↑ SGCs activation in the DRG.
↑ Microglial IBA1 reactivity in

SC.

(18, 57)

jections of sera from arthritic
/BxN mice generates an acute
t later resolves. Penetrant in
round strains.

↑ Pro-inflammatory
macrophages in the DRG.

↑ Microglial IBA1 reactivity in
SC.

(58–60)

rthritis in mice expressing a
or necrosis factor (hTNF)

↑ Region-specific microglial
reactivity in the brain.

(61)

ate ligament transection
rtial or total meniscectomy,
iscal transection

↑ Proinflammatory
macrophages in the DRG.

(62)

tly into the knee joint of a toxic
ic agent like sodium
cetate (MIA), collagenase, or

↑Anti-and pro-inflammatory
macrophages in the DRG.
↑Microgliosis and GFAP in
SC.

(62, 63)
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proteins like histones and tissue matrix proteins (fibronectin,

collagen, and fibrinogen), tagging these proteins with

neoepitopes for autoimmune responses (65, 70–72).

Fibronectin, collagen, and fibrinogen are abundant in joints,

and these proteins, when citrullinated, are targeted by ACPAs,

perpetuating neuroimmune interactions that contribute to the

pathogenesis of joint pain and destruction (10, 55, 73–77).

During the acute phase of RA, ACPAs and other

autoantibodies, together with complement activation, induce

an inflammatory response characterized by cytokine

production, microvascular insult, and synovial vascular

leakage, contributing to the synovial inflammation and

progression of the disease (36). Increased vascular

permeability and chemokines facilitate macrophage

recruitment and ingress along with other inflammatory cells

migrating from the periphery into the joint that initiate

degenerative events resulting in pain and articular dysfunction

(77–79). Macrophages are specialized innate immune cells

that detect, phagocytose, and destroy harmful organisms and

cell debris (80). In addition, they act as antigen-presenting

cells (APC) and initiate inflammatory responses by releasing

chemokines and cytokines that recruit and activate other cell

types (80, 81). These infiltrating macrophages are

quintessential to the innate immune system and are pivotal in

the maintenance of the pain phenotype (77, 82).

In RA, macrophages are activated locally by tissue debris

or inflammatory cytokines produced by synovial cells (78,

83) and can guide the perpetuation of joint inflammation

via paracrine mechanisms with multiple other cells,

including, but not limited to, fibroblast-like synoviocytes

(FLS), T-cells, B-cells, and dendritic cells (77, 79, 84).

Macrophages perpetuate the inflammatory cascade by

releasing pro-inflammatory cytokines such as tumor necrosis

factor (TNF), interleukin (IL)-1β, and IL-6 and by triggering

fibroblasts to release several chemokines such as CXCL1,

CXCL5, CCL2, CCL5, CCL8, and CCL10 that will in turn

act by chemoattracting monocytes, macrophages, and

neutrophils (77, 85). In addition to chemokines, FLS

facilitate macrophage expansion at the injury site releasing

colony-stimulating factors (CSF) such as GM-CSF and M-

CSF (78). Altogether, the macrophage-FLS interaction sets

up a vicious cycle creating a renewing inflammatory process

that perpetuates itself along the disease course (78). In RA,

infiltrating macrophages are affected continuously by

inflammatory stimuli and participate in the development of

chronic synovitis, bone erosion, and cartilage destruction

(79, 86, 87). Even in OA, infiltrating macrophages affect

disease outcomes in patients and in murine models, in

which increased macrophages showing pro-inflammatory

“M1-like” markers have been reported (88).

The deleterious proinflammatory response of the infiltrating

macrophages is counter-regulated by tissue-resident

macrophages (TRMs) that have an immune regulatory
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phenotype that contribute to maintaining or restoring tissue

homeostasis (89). Given the dual roles of macrophages in RA,

understanding macrophage subset identity and location may

help to understand their pathogenic functions through the

course of arthritic disease progression (79, 86). Their location

within the synovial microarchitecture is essential, and the

expression of specific markers is associated with different

functional subtypes (79, 86). Indeed, distinct genetic and

molecular signatures of infiltrated macrophages in the

synovial tissue highlight their diversity (86).

Separate groups have identified at least five different joint-

infiltrating macrophage subtypes in arthritis (86, 90–92). Two

clusters that have been found in higher proportion in

lymphocyte-rich RA synovium compared to OA, which

include a Toll-like receptor (TLR)-activated and IL-1β

producing pro-inflammatory macrophage population and an

interferon (IFN) producing macrophage population (90, 92).

One cluster found in OA synovium seems to be enriched

for gene patterns of non-activated macrophages (91) and a

phagocytic profile. Two additional clusters were not well

characterized by specific markers and not associated with a

specific activation state, thus suggesting the presence of

homeostatic macrophage phenotypes (86, 90, 92).

TRMs, in contrast to monocyte-derived infiltrating

macrophages, support the resolution of inflammation and

restoration of a homeostatic state (89). A CX3CR1+ resident-

like lining macrophage population has been recently

described in mice to have a barrier function that secludes

the inner joint from the synovial cavity, preventing

macrophage infiltration (93). This barrier and the resident

lining macrophages are disrupted in the K/BxN and CIA

mouse models (93). This subset of TRMs encompasses a

similar function to TREM2+ macrophages described in

humans (87). TRMs also express elevated levels of anti-

inflammatory mediators such as IL-1 receptor antagonist

(IL-1RA) and osteoprotegerin (OPG) that act as negative

regulators for pro-inflammatory cytokines and receptor

activator of nuclear factor kappa-B ligand (RANKL),

preventing inflammatory responses and bone loss (83).

TRMs also induce a repair phenotype in FLS (87) and limit

the recruitment and activation of other immune cells (93).

Therefore, loss of the balance between the anti-inflammatory

and barrier-protective phenotypes of TRM and the

proinflammatory responses induced by infiltrated

macrophage subtypes may contribute to the inflammatory

cytokine milieu that is maintained in RA tissue.

A cytokine-rich milieu like in RA synovial tissue can

sensitize nociceptive neurons that express TNF, IL- 1β, and

IL-6 receptors. These cytokines sensitize the peripheral

terminals in part by modulating voltage-gated sodium

channels-tetrodotoxin-resistant (NavTTX-R) and Transient

Receptor Potential (TRP) channels, and neuronal

excitability. IL-1β stimulates the mitogen-activated protein
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https://doi.org/10.3389/fpain.2022.1018800
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Malange et al. 10.3389/fpain.2022.1018800
kinase (MAPK) p38 that further phosphorylates NavTTX-R

channels, triggering an increase in sodium currents (94, 95).

TNF promotes up-regulation of Nav channel isoforms 1.3

and 1.8 on axons and neuronal soma (96). IL-6 receptor

interaction promotes downstream activation of Janus kinase-

protein kinase C (JAK/PKC), leading to further

phosphorylation of TRPV1 and TRPA1 that enhances the

excitability of nociceptive neurons (97). Additionally,

reactive oxygen species (ROS) released by tissue-resident

cells or inflammatory cells, such as nitric oxide (NO), can

potentiate IL-6 actions promoting a feedback loop

stimulating TRPV1/TRPA1 via phospholipase C (PLC) and

PKA (98). All these events, together with the tissue edema

from vascular leak, lead to disruption of mechanobiological

mechanisms and joint dysfunction, which compromises

protective mechanisms for avascular tissues such as cartilage

(99, 100).

Extensive and persistent inflammation results in tissue

remodeling and a thickened growth of synovial tissue as a

pannus (101, 102). The pannus is comprised of proliferative

FLS and is interspersed with clusters of immune and

inflammatory cells. The rheumatoid pannus has significantly

elevated levels of matrix metalloproteinases (MMP) and other

deleterious molecules released by immune/inflammatory joint

cells, which contribute to the degradation of cartilage (101,

102). In addition, the pannus itself can invade the adjacent

subchondral bone (78). Once the subchondral bone is

exposed, sensorial nerve fibers (SNFs) that innervate the bone

are susceptible to chemical (cytokines, prostanoids) and

mechanical injury (28). Exposure of these fibers may lead to

the expression of nerve injury markers in the DRG, such as

ATF-3 (58). Moreover, both mechanical and chemical injury

of SNFs can also lead to mitochondrial injury that is thought

to maintain nociceptor hyperexcitability by ROS release, and

modulating PKC (103, 104).
Dorsal root ganglia—mechanisms:
macrophage ingress, phenotype,
associated cytokines

The DRG functional complexity is exemplified by the

excitability of the afferent input circuitry of the DRG system

(105, 106). In the DRG, the soma of neurons, macrophages,

satellite glial cells, and axons of passage are packed into a

small and dense environment. This tissue is supplied by a

fenestrated vasculature that lies outside the blood-brain

barrier (BBB) and is permeable to large molecular weight

molecules and antibodies (106), which may contribute to the

increased susceptibility of DRG neurons to neurotoxic

agents (107). On the other hand, this vascularization and

permeability represent an advantage to target cells in the

DRG (108). Aside from neurons, recent work has shown
Frontiers in Pain Research 05
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key roles in pain initiation and the maintenance of pain

states (62, 109–111).

The critical contribution of macrophages in the DRG, but

not those at the nerve injury site, to the initiation and

maintenance of the mechanical hypersensitivity which

develops after nerve injury, chemotherapy models, and joint

pathology has been well described by many investigators

(111, 112). As for arthritis, a recent study reported an

increase of macrophages in the DRG in the K/BxN serum

transfer model of arthritis (59). These cells were pro-

inflammatory macrophages showing “M1-like” markers

(CD206−/CD11c+) accompanied by a significant reduction of

specialized pro-resolving lipid mediator Maresin-1 (MaR1)

(59). Another study using the mono-iodoacetate (MIA)-

induced model of OA showed that infiltration of

macrophages with a pro-inflammatory phenotype in the

DRG is associated with the release of inflammatory

cytokines, IL-1β and TNF, contributing to chronic pain

behavior (62). In addition, data from a surgically-induced

OA model also demonstrate an increase in macrophage

ingress to the DRG (62). As in the synovium, TNF, IL-1β,

and IL-6 can also be produced locally in DRG by neurons

or associated cells, such as macrophages and satellite glial

cells (62, 113–116). TNF has been shown to have varied

effects on neuronal excitability that do not require

alterations in gene transcription but are the results of its

action upon ion channels such as voltage-sodium-gated and

TRPV1 channels (96, 117). Moreover, TNF has been

associated with monocyte chemoattractant protein 1 (MCP1)

production, which can induce a spontaneously active profile

at resting potential in the DRG neurons (118).

Anti-inflammatory and homeostatic macrophages can

repair damaged tissue and release anti-inflammatory cytokines

(119, 120). During the resolution of inflammation,

macrophages predominantly adopt an anti-inflammatory

phenotype previously designated as “M2” (119). In the DRG,

these anti-inflammatory tissue-like repair macrophages play a

protective role both in neuropathic and inflammatory pain

(62, 111, 116, 121). Indeed, the adoptive transfer of M2

polarized macrophages can reduce neuropathic pain (121). A

lack of tissue-like repair macrophages was found in the

inflammatory phase of the MIA model of OA (62). Recently,

a mechanistic study of a homeostatic, anti-inflammatory

macrophage population in the DRG expressing CD206 (an

“M2-like” marker), modulation has shown that this

macrophage population is responsible for the transfer of

mitochondria to DRG neurons preventing neuronal damage

and that this is critical for producing analgesia via a sustained

endogenous opioid release (116). Together, these studies show

that the maintenance of pain is associated with an imbalance

of diverse DRG macrophages and cytokine production (62,

110, 111, 122, 123).
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Satellite glial cells

The satellite glial cells (SGCs) in the DRG constitute a

sheath of elongated cells enwrapping each body of sensory

neurons (124). Their nutritional support role in the DRG

microenvironment is already well described (124). However,

in the past few years, SGCs emerged as key cells in the

development of hyperalgesia in diverse painful states,

including in arthritic pain (57, 125). In a rat model of

arthritis induced by intra-articular injection of CFA, an

increased number of SGCs in the DRG was reported, and the

inhibition of these cells was able to attenuate the CFA-evoked

mechanical hyperalgesia (21). Additionally, elevated levels of

glial fibrillary acidic protein (GFAP) expression, a marker of

SGCs reactivity, were detected in L4-L5 DRGs of rats with

monoarthritis induced by collagenase injection (126, 127).

This GFAP overexpression was predominantly found around

injured neurons (ATF3+ cells) (126, 127).

Due to the tight proximity between neurons and SGCs in

the DRG, different mediators are exchanged between them,

leading to neuronal sensitization and nociceptive signal

modulation (125, 128). Previous evidence demonstrated that

SGCs release neurotransmitters in the DRG such as ATP,

glutamate, and pro-inflammatory cytokines (124, 129). These

mediators have been associated with neuronal

hyperexcitability in neuropathic and inflammatory rodent

pain models (113, 128, 130, 131). Recently, a study

demonstrated pronociceptive neurochemical changes in the

DRG in the collagen antibody-induced arthritis (CAIA)

model, which was associated with SGCs activity (57). In the

late phase of CAIA, there was an up-regulation of

lysophosphatidic acid (LPA) in the DRG, which promoted the

activation of the SGC-expressed LPA1 receptor. In response

to this, SGCs produced elevated levels of cytokines and nerve

growth factor (NGF) leading to nociceptor excitability and

prolonged sensitization (57).

Although multiple investigative groups have demonstrated

the involvement of macrophages and satellite glial cells in

several arthritic pain models (Figure 1), the mechanisms

correlating the DRGs cell populations and the inflammation

in the development and maintenance of pain in arthritis

remain ill-defined. Patients reported pain levels often poorly

correlate with signs and measures of inflammation (5, 6, 8),

suggesting that mechanisms other than peripheral

inflammation contribute to chronic pain in RA.
Spinal glial mechanisms in arthritis

Nociceptive signals generated in the peripheral terminals are

introduced into the CNS via the presynaptic terminal into the

spinal dorsal horn where it synapses with second-order

neurons (132). These synapses can be tuned by inflammatory
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cytokines that are produced by glial cells, leading to

sensitization (133). Thus, spinal glial released molecules such

as inflammatory cytokines are now considered important

mediators of persistent pain states (105, 134). While the

pathological spinal mechanisms are still being investigated,

enough evidence suggests that neuroinflammation induced by

glial activation is a crucial factor in the development of RA-

associated pain (135, 136) (Figure 1).

Glia cells in the CNS include non-neuronal cell types: (1)

microglia, (2) astrocytes, and (3) oligodendrocytes (137).

Microglia are tissue-resident macrophages of the CNS

constantly scavenging and pruning plaques, dead cells,

synapses, and pathogens (138). However, chronic activation of

microglia can be detrimental due to a robust secretion of pro-

nociceptive mediators/neuromodulators, including

proinflammatory cytokines, chemokines, reactive oxygen

species (ROS), and proteases (139). Indeed, accumulating

evidence suggests a pivotal role of microglial activation in

various pain conditions, including peripheral nerve injury,

spinal cord injury, inflammation, chemotherapy, and arthritis

(58, 140–145). Nevertheless, new evidence also points to a

beneficial role of spinal microglia in pain resolution during

neuropathic pain (146).
Microglia

Different experimental models of arthritis have

characterized the spinal cords of the experimental animals

with an increase in Ionized calcium binding adaptor molecule

1 (IBA1) as a marker of microgliosis (a response to

pathogenic insults with an increased number of microglial

cells at the lesion site) (147). For instance, the superficial

dorsal horn of mice with K/BxN serum transfer arthritis

displayed increased staining of microglial IBA1 at early and

late time points in the model (58). Microgliosis has also been

described early in the model and at 5 and 10 weeks in an

ankle joint with MIA-induced OA in rats (63, 148). In both

cases, intrathecal inhibition of microglia with minocycline

inhibited mechanical allodynia (63, 148). In addition, in the

murine CAIA model, hypersensitivity was correlated with the

presence of reactive spinal microgliosis (18). In rats subjected

to the collagen-induced arthritis (CIA) model increased levels

of IL-1β in cerebral spinal fluid were found. Like the OA

model, in CIA rats, prolonged intrathecal administration of

microglial inhibitors attenuated the development of

mechanical allodynia, decreased microgliosis, and reduced IL-

1β levels (55).

Microglia can release IL-1β triggered by inflammasome or

TLR signaling after exposure to their endogenous ligands

(149). Extracellular high mobility group box-1 protein

(HMGB1) is an endogenous TLR4 ligand found in spinal

cords (150). Neutralizing HMGB1 with an anti-HMGB1
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FIGURE 1

Central and peripheral mechanisms involving macrophages and glial cells contribute to the development of pain in RA. Imbalance between
homeostatic TRM and infiltrating macrophages with pro-inflammatory profiles to the synovial tissue contribute to the inflammatory milieu
perpetuating inflammation, tissue damage, and bone remodeling affecting nociceptors in the joint. In the DRG, increased proinflammatory
macrophages and reduced anti-inflammatory homeostatic/resident-like macrophages contribute to release of pro-inflammatory cytokines and
together with satellite glia-induced release of neuromodulation molecules there is an increase in DRG neuronal activity. At the spinal cord
increased microglial and astrocyte reactivity also enhance production of pro-inflammatory cytokines and in the brain increased glial reactivity in a
region-specific manner regulating cytokine release and GABA neurotransmitter tone affects pain perception in arthritis. Figure created with
Biorender.com. Mφ, macrophages; TMR, tissue-resident macrophages.
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monoclonal antibody or recombinant HMGB1 A-box peptide,

reversed CAIA-induced mechanical hypersensitivity and

associated microgliosis in a TLR4 dependent manner (150).

This occurred during ongoing joint inflammation as well as

during the post-inflammatory phase, indicating that spinal

HMGB1 and TLR4 have important functions in pain states

that continue even after joint inflammation resolves (150).

Furthermore, increased IL-1β was also found in spinal tissue

of mice from the K/BxN arthritis model, and similar results

were seen in cerebral spinal fluid collected from RA patients,

which also had a significant reduction of IL-1 receptor

antagonist (IL-1RA) and IL-4 (60).

In addition, IL-1β, IL-6 and TNF are significantly increased

in the spinal cords of rats in the adjuvant-induced arthritis

(AIA) model, in which microglia and MHC class II

immunostaining are also enhanced (53). In the CFA

monoarthritis model, the release of IL-1β and TNF in the
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spinal cord led to activation of the NF-κB transcriptional

pathway, increasing cyclo-oxygenase (COX)-2 expression

(151). COX-2 inhibition in this model suppressed chronic

pain-like behaviors (151). Additionally, repressing the

expression of NF- κB/p65 attenuated hyperalgesia, paw

edema, and joint destruction, and reduced the overexpression

of spinal TNF, IL-1β, and COX-2 (152). These findings

indicate that the NF-κB/COX-2 pathway is involved in the

development of the pain following peripheral tissue

inflammation (151, 152).

Targeting microglia in the CAIA model by intrathecal

delivery of specific inhibitors of cathepsin S (catS) and with

antibodies against fractalkine (FKN), after CIA, attenuated

mechanical hypersensitivity and spinal microglial response in

rats (153). This suggests that catS activity and FKN cleavage

are the signaling factors derived from peripheral inflammation

and damage that activate microglia in the CNS (153). In
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addition to resident microglia, transmigration of peripheral

CD11b+ circulating macrophages into the CNS parenchyma,

due to increased vascular permeability to CNS, where they

adopt microglia-like phenotype, can contribute to the

development of chronic pain in inflammatory arthritis (154).
Astrocytes

Astrocytes are the most abundant cell type in the CNS and

are involved in regulating ion homeostasis, recycling

neurotransmitters, preserving the BBB, and supporting

neuronal function (155, 156). Astrocytes can control

nociceptive output, given they are a key component of pain

gating by activating Aβ-fibers (157). Suppression of astrocyte

activation blocks the induction of long-term depression (LTD)

in NK1R+ neurons at the dorsal horn and thus controls the

pain inhibition exerted by Aβ-fiber stimulation (157). In

addition, astroglia activation has been associated with TRPV1

activation, which contributes to increased nociceptive input

from primary sensory nerves to dorsal horn neurons in

inflammatory pain models (158, 159). Conversely, decreasing

activation of astrocytes leads to reduced expression of this

channel in the spinal tissue, which is correlated to inhibition

of pain behavior in the adjuvant-induced arthritis model

(160). Nevertheless, astrocytes, as microglia, also produce

cytokines and chemokines, resulting in neuroinflammation

that contributes to nociceptive signaling (161).

The immunomodulatory effect of astrocytes in experimental

models of arthritis has different components. Astrocytes can

crosstalk with T cells that infiltrate the spinal cord after CFA-

induced monoarthritis and regulate the ability of infiltrating T

cells to produce IFN-γ. Blockade of IFN-γ attenuates CFA-

induced pain and reduces astroglia activation; however, T cell-

deficient (Rag1−/−) mice can also develop mechanical allodynia

and an increase in astrocyte reactivity (162). The activation of

astrocytes has been detected by increased immunoreactivity of

Translocator protein (TSPO) in astrocytes (163), and it has

been implicated in CFA-induced monoarthritis models in rat

spinal tissue (164). TSPO is a mitochondrial outer membrane

protein important for steroidogenesis, cholesterol transport,

immunomodulation, cell survival, and proliferation (164). In

CFA-injected rats, a TSPO agonist prevents the development of

mechanical allodynia and thermal hyperalgesia, providing

evidence that spinal TSPO is involved in the development and

maintenance of inflammatory pain behaviors in rats (164).

However, TPSO is also expressed in microglia and neuronal

cells, and its use as a specific astrocyte activation marker

should be cautiously considered.

The reactivity of astrocytes in the spinal tissue of mice in

arthritis models has been demonstrated specifically using glial

fibrillary acidic protein (GFAP) staining as a biomarker. For

instance, ipsilateral spinal GFAP immunofluorescence was
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observed and significantly increased on day 28, but not at

earlier time points, in the MIA (mono-iodoacetate) OA model

(63). Repeated oral dosing with nimesulide, which attenuates

microglia and astrocyte activation, significantly reduced distal

allodynia and GFAP immunofluorescence in MIA model of

OA pain (63). Moreover, in an adjuvant-induced arthritis

model, astrocytes expressing GFAP were increased in number

and immunostaining intensity in the spinal cord and were

associated with increased levels of cytokines such as IL-1β, IL-

6, and TNF (53).

Furthermore, Huang et al. (165) described a mechanism by

which IL-33 controls the expression of the above-mentioned

proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF), and the

activation of extracellular signal-regulated kinase (ERK) and NF-

κB in the spinal cord confirming findings in different pain

states (166, 167). In the study, blocking IL-33 in the spinal cord

significantly alleviated hyperalgesia, paw swelling, and joint

destruction, suggesting a role for IL-33 in the central

inflammation mediated by astrocytes in arthritis animal models

(165). In addition, IL-17, which has a role in autoimmune

diseases and is involved in arthritic tissues (168–170), has been

found to be expressed by astrocytes and be up-regulated in

CFA-induced arthritis model (171). Blocking of IL-17

significantly increased paw withdrawal thresholds and decreased

NMDA receptor phosphorylation in rats injected with CFA or

IL-17, suggesting astrocytic IL-17 facilitates pain (162, 171).

More evidence of astrocyte-specific mechanisms in spinal

circuits in models other than the monoarthritis CFA model is

needed to understand better the role of these cells in persistent

pain states associated with arthritis. Furthermore, most CNS

glial mechanisms studied to understand central components of

arthritic pain and neuroinflammation are focused on the

spinal cord even though brain and spinal glial cells are

heterogeneous and can adopt region-specific phenotypes in

these tissues (145, 159). In the following section, we explore

the role of glial cells in the brain in the context of arthritis.
“Arthritic brain” and pain—the role of
glia cells

Around 40% of RA patients present chronic pain, which is

linked to depression and anxiety as comorbidities (172, 173).

Although the CNS is, to some extent, isolated from peripheral

inflammatory signals by the BBB, there is evident crosstalk

between the peripheral inflammatory process and the brain

(173). The propagation of peripheral inflammatory signals to

the brain occurs through the interaction of the peripheral

immune system with the CNS myeloid cells, which include

microglia and perivascular macrophages (173, 174). Among

the pro-inflammatory cytokines that appear to be involved in

the crosstalk between peripheral signals and the brain, IL-6

seems to be a key messenger (175, 176).
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Additionally, IL-1β may play a role in brain

neuroinflammation and pain perception. Increased IL-1β

concentrations in cerebral spinal fluid compared to serum

were found in RA patients, indicating local production of this

cytokine in the CNS (60). Changes in microglial phenotype,

induced by the interaction with the peripheral immune

system, that can modulate neuronal activity were observed in

different brain regions related to the pain experience. For

instance, CIA mice showed increased density of IBA1+

microglia and in situ production of IL-1β in the hippocampus

(56). Additionally, increased immunoreactivity of IBA1 in the

pre-frontal cortex accompanied by an increment of brain-

derived nerve factor (BDNF) expression in the hippocampus

of CFA mice was reported (52). Furthermore, an increase in

microglial density with a reactive and phagocytic profile

(expressing CD68) was reported in the hippocampus during

CIA (56). The neuroinflammation observed in the CIA mouse

regulated the IGF1R signaling in the brain and neurological

symptoms in RA (56). On the other hand, in a TNF mouse

model of RA, a brain region-specific microglial response was

observed in the cortex, striatum, and thalamus (61). The same

region-specific pattern was observed in the postmortem brain

of RA patients (61). Microglia modulates neuronal activity by

releasing soluble factors, which include cytokines and

neurotrophic factors (177). Thus, it is plausible that changes

in microglia phenotype might alter the neuronal function in

brain regions related to pain facilitating chronic pain

development. Accordingly, it has been reported that activated

microglia are involved in shaping the neuroplasticity

underlying chronic pain (178) and pain-associated affective

disorders (179).

This evidence supports the notion that peripheral

inflammation, such as that in arthritis, is associated with

immunological activation in the CNS in both humans and

mice. However, as microglia, astrocytes also contribute to

chronic pain development. Accordingly, it has been shown

that reactive astrocytes in cortical regions associated with

emotion regulation are involved in both chronic pain and

chronic pain-induced emotional dysfunction (180). For

instance, in the CIA model induced in mice by collagen

immunization increased GFAP+ cells were observed in the

hippocampus (56).

Additionally, astrocyte activation can cause dysregulation of

glutamate and Gamma-aminobutyric acid (GABA) (181). This

leads to an imbalance of excitatory and inhibitory neuronal

inputs, which in turn enhances pain signals (180). Won et al.

showed that cognitive impairment in the CIA animal model

of RA is dependent on the astrocyte GABA-producing

enzyme, monoamine oxidase-B (MAO-B) (182). The

hippocampal astrocytic GABA was increased in the brains of

CIA mice (182). Conversely, inhibition of MAO-B decreased

hippocampal astrocytic GABA in CIA, rescued cognitive

impairment, and alleviated joint swelling in CIA mice (183).
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This same group has shown that inhibiting MAO-B has an

analgesic effect reversing mechanical allodynia present in

neuropathic pain (184).

Astrocytic reactivity was observed in the medial pre-frontal

cortex (mPFC), the primary somatosensory cortex (S1), anterior

cingulate cortex (ACC), amygdala, thalamus, and hippocampus

in several models of chronic pain (185–193). In addition,

activated astrocytes in the periaqueductal grey, a well-known

region involved with pain modulation, have been shown in

different rodent models of chronic pain (194–197). Moreover,

in different brain regions—including S1, mPFC, and ACC—

astrocyte activation can lead to a dysregulation of glutamate

and GABA, causing, in turn, an imbalance of excitatory and

inhibitory neuronal inputs, which enhances pain signals (190,

193). Thus, since astrocytes also participate in

neuromodulation (198–200), altered astrocytes may contribute

to long-term neuroplasticity in nociceptive pathways in

chronic pain states.

Studies in humans have demonstrated that glial reactivity is

critical in chronic pain. Imaging studies using the radioligand

11C-PBR28, showed an increase in brain levels of the

translocator protein (TSPO), a marker of glial activation, in

people with low back pain and fibromyalgia (201, 202). The

same tracer was used to detect glial activation in RA patients;

however, no significant changes compared to healthy

individuals were detected (203).

Although evidence suggests a link between chronic

peripheral inflammation in arthritis to an induced activation

of glial cells in the CNS, the role of spinal and supraspinal

glial cells in the development or maintenance of chronic pain

in arthritic conditions needs further elucidation. Considering

chronic pain, few studies evaluate the role of astrocytes and

microglia, and rather focus on the role of neurons and

neuronal connections. It is noteworthy to highlight that there

is bidirectional glia-neuron communication. Thus, glial cells

can contribute to neuroplasticity in different pain-related

brain areas, and, in turn, neurons can induce phenotypical

changes in glial cells and modulate their response (204).

Studies focusing on glial cells and glia-neuron interactions in

the arthritic brain to either rule out or support their

participation in chronic pain development and maintenance

are warranted.
Treatments targeting macrophages
and glial mechanisms in peripheral
and central nervous system

Peripheral

As described in previous sections, macrophages and glia

produce effector molecules that participate in the

pathophysiology of RA, and several of those pathways and
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proteins are now targeted for therapeutic purposes (205). These

interventions are capable of modulating macrophage and glial

cell activity involved in ongoing pain perception and have a

significant impact on disease outcome, given the role of these

cells in the disease pathology (Figure 2).

Pharmacological therapies such as NSAIDs, glucocorticoids,

and disease-modifying anti-rheumatic drugs (DMARDs) have

been shown to regulate macrophage activity. Low doses of the

NSAID Naproxen, for example, when added to macrophages,

both pre-and post-activation with LPS or hyaluronan

fragments, significantly reduced NF-kB activity, and

prostaglandin E2 (PGE2) release (206). In contrast,

acetaminophen (APAP), another over-the-counter pain relief

drug, can increase the release of pro-inflammatory cytokines

IL-1β and TNF by macrophages treated in-vitro via CYP1
FIGURE 2

Treatments that target peripheral and central mechanisms involving macropha
In The periphery, targeting TNF with antibodies such as ADA and anti-inflam
pro-inflammatory cytokines and reduce polarization of macrophages in the s
anti-inflammatory M2 profile. Different inhibitors of JAK kinases and trea
inflammatory Omega-3 and PUFAs and reduce cytokine release and infla
articular joint movement and environment can affect glial reactivity as well a
Pro-resolving lipids and lipid-lowering agents have been shown to inhibit gl
And in models different from arthritis, DMARDs have been shown to have
for these cells in the spinal cords and brains of mice models of arthritis. F
joint movement; EE, environment enrichment; Mar1, maresin-1; DHA, docos
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cytochrome and p38, ERK and JNK MAPK pathways (207).

On the other hand, the sustained release of Ibuprofen through

nanoparticles locally decreased the edema and the

concentration of IL-6 and TNF in CFA-induced arthritis

(208). Although NSAIDs are able to improve active RA

symptoms, DMARD agents have been shown to alter the

disease course (209, 210), providing overall physical health

benefits and increased pain control.

Kinases mediate the induction of cytokine production in

different inflammatory responses reported in RA (211). In

addition to MAPKs, the Janus kinase (JAK)-STAT pathway is

a common signaling pathway that regulates biological

processes induced by macrophages, including cytokine release

(212–214). Yet, inhibition of the JAK-STAT pathway by

inhibitors, such as Ruxolitinib and Tofacitinib, increases TNF,
ges and glial cells for the control of neuroinflammation and pain in RA.
matory cytokine administration like IL-10 have reduced the release of
ynovium to an M1 phenotype and, in contrast favor polarization to the
tments with IL-37 and IL-38 have been reported to increase anti-
mmatory response. Centrally, evidence in arthritic models suggests
s alpha 2-AR agonist, gabapentin, propofol, and electroacupuncture.
ial increased reactivity inflammatory response and produce analgesia.
an effect in microglia, targeting inflammatory mechanisms described
igure created with Biorender.com. ADA, adalimumab; AJM, articular
ahexaenoic acid.
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IL-6, and IL-12 secretion in mouse bone marrow-derived

macrophages (BMDM) stimulated with LPS (215). On the

other hand, a translational study showed that JAK1-mediated

interferon and IL-6 release play key roles in the synovial

response and described how targeting this mechanism with

Tofacitinib reduced MMPs and interferon-regulated gene

expression in the synovium resulting in clinical improvement

(212). Furthermore, treatment with JAK inhibitors

demonstrated improvement in pain (inflammatory and of

other types) and physical function in RA studies (216). The

pain reduction effect of JAK inhibitors has been linked to

increased levels of omega-3 fatty acids and DHA in patients

treated with JAK inhibitors (217), and studies revealed that

omega-3 PUFAs and DHA might be effective in reducing

pain in RA patients (218).

TNF is produced locally in RA joints by synovial

macrophages and is a critical cytokine that mediates joint

damage and destruction (219–221). Biologic agents that target

TNF are widely used in the treatment of RA (205, 222) and

different constructs have been engineered (205, 222). TNF

inhibitors include: (i) Etanercept (ETA), a soluble TNF

receptor-Fc immunoglobulin fusion construct; (ii) infliximab,

adalimumab, and golimumab, monoclonal antibodies; and (iii)

certolizumab pegol, an anti-TNF binding domain with a

polyethylene glycol moeity (222). Although etanercept and

adalimumab (ADA) both block soluble TNF, the monoclonal

anti-TNF agents have broader clinical efficacy. Both ETA and

ADA act through similar mechanisms: ETA and ADA bind to

soluble and receptor-bound TNF molecules. However, ADA

blocks soluble TNF and membrane bound TNF trimers

simultaneously, which allows the blockade of multimeric

complexes while ETA seems to bind only to a soluble TNF

(222–224). Thus, the structural differences between ADA and

ETA may implicate different outcomes (75). Interestingly,

evidence shows that RA patients treated with ETA for 6 and

12 weeks had an up-regulation of IFN-γ and TNF production

from CD4+ and CD8 (225). Given the constantly renewed

inflammatory pathology in RA, the suppression of TNF

signaling promoted by ADA might induce more effective

management for certain disease manifestations, reflecting

better clinical outcomes in comparison with ETA.

RA patients had enhanced TNF mRNA expression in

monocytes and macrophages, defects in differentiation into

M2-phenotype induced by M-CSF, and a propensity for

preferential maturation toward M1-like macrophages that may

contribute to synovial inflammation (219). Moreover, this

defect correlated with TNF mRNA transcript levels and

microRNA 155 (miR-155) expression and was partially

reversed by ADA (221). In this same study, monocytes

collected from healthy donors transfected with mir-155

showed a decrease in M2-like markers, and transfection of RA

monocytes with antagomir-155 allowed restoration of M2-like

polarization (221).
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Furthermore, a longitudinal study (221) showed that ADA,

but not ETA, restored the impaired M2-like polarization in

circulating monocytes induced in RA. Additionally, RNA-

sequencing analysis revealed that RA patients have ERK/

MAPK, PI3K/AKT, STAT3, and GM-CSF signaling

significantly up-regulated as well as pro-inflammatory

cytokines or transcription factors involved in macrophage

polarization, such as TNF-IFN-γ/α/β -IL-1β-IRF5-TP53-

STAT1-ERK-p38MAPK-NFkB, and a decrease of IL-10 and

SOCS-1 (221). On the contrary, in patients receiving ADA,

this macrophage pro-inflammatory response was decreased,

and the transcriptomic signature of M2-related transcripts

such as SOCS-1, IL-10, CEBPβ, and c-MYC was restored

(221). Despite these promising data, TNF inhibitors are more

effective in patients with short-term disease and have less

effect on pain in patients with chronic diseases (226–228).

Tocilizumab is a humanized monoclonal antibody that acts

as an IL-6 receptor antagonist and is used as monotherapy or in

combination with conventional synthetic DMARDs

(csDMARDs) in adults with moderate to severe RA (229).

Tocilizumab has been used for treatment in patients with

inadequate responses to TNF inhibitors and has resulted in

rapid and sustained improvements in pain and other patient-

reported outcomes (228, 230).

A therapeutic alternative to blocking inflammatory cascades

in RA might be the delivery of interleukins which have shown

promising results in regulating macrophage function (231–

237). Alginate nanoparticles carrying plasmid DNA encoding

IL-10 were successful in reprogramming macrophage

phenotype balance of synovial macrophages in CFA—arthritic

rats. The treatment with IL-10 also reduced systemic and joint

tissue pro-inflammatory cytokines (TNF, IL-1 β, and IL-6)

expression and prevented the progression of inflammation

and joint damage (231). The potential for IL-34 and IL-35

has also been described. While IL-34 favors monocyte

survival, proliferation, and differentiation of macrophages, IL-

35 promotes TNF-induced apoptosis of FLS and an anti-

inflammatory M2-like macrophage, inhibiting inflammation in

the murine model of CIA (232–234). Additionally, there is

substantial evidence for the roles of IL-37 and IL-38 in

counteracting immune responses in RA (235, 236). IL-37

alleviated joint inflammation in RA patients (170).

Complementary, CIA mice developed robust levels of IL-17

and marked joint inflammation, which was dramatically

reduced by systemic delivery of IL-37, indicating a pivotal role

of IL-37 in reducing IL-17 mediated joint inflammation (170).

In the work of Boutet et al. (237), clinical inflammatory

scores were significantly decreased after IL-38 injection in

joints of mice with CIA, accompanied by reduced macrophage

infiltration and lower expression of IL-17, IL-23, and TNF.

Conditioned media from an M1 macrophage line that

overexpressed IL-38 reduced the inflammatory profile in FLS

and macrophages from RA patients. Despite these anti-
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inflammatory effects, IL-38 overexpression in the CIA model

had no effect on cartilage or bone destruction (237) (Figure 2).
Central

Proinflammatory cytokines released by glial cells in the CNS

that lead to activation of major pain pathways, from the dorsal

horn and supra-spinal pathways to the somatosensory and other

higher cortical centers, are targets for intervention with anti-

inflammatory agents. For instance, brain-penetrating

corticosteroids (e.g., prednisolone, triamcinolone, and others)

have been hypothesized to exert an analgesic effect by

downregulating neuroimmune processes underlying chronic

pain (238, 239). This central effect is supported by mounting

in vitro data indicating that glucocorticoid treatment reduces

the production of inflammatory cytokines by microglial cells

(240, 241). Regulatory effects of steroids are also observed in

acute and chronic exposure of astrocytes to cortisol. Chronic

cortisol exposure in mice regulates mRNAs in multiple brain

regions that are also regulated by glucocorticoids in astrocytes

in vitro and by acute cortisol exposure in vivo, including

mRNAs associated with known astrocyte function, such as

glutamate reuptake and metabolism and gap junction

connectivity (242, 243). However, deletion of

mineralocorticoid receptors in myeloid cells in vivo has been

shown to attenuate reactive microglia in the CNS and instead

induce an anti-inflammatory phenotype, and ameliorated

neuroinflammation. This suggests a detrimental effect of the

use of corticoids (244), which can contribute to and explain

the adverse effects of corticosteroids. Thus, they are not

regarded as an appropriate long-term option for the treatment

of chronic arthritic pain (239).

Few DMARDS have been described to control microglia

inflammatory responses but in other disease contexts. For

instance, Iguratimod which was originally reported to be a

selective inhibitor of COX-2 that inhibits the synthesis of pro-

inflammatory prostaglandins (PGs) (245, 246) also acts as an

immunomodulatory agent and suppresses the production of

pro-inflammatory cytokines, such as interleukin IL-1β, IL-6,

IL-8, and TNF, by activated monocytes/macrophages in vitro

(247). In a model of Experimental autoimmune

encephalomyelitis (EAE), Iguratimod reduced infiltration of

immune cells into the spinal cord and suppressed macrophage

and microglia activation in the parenchyma at the acute and

chronic stages of EAE. In this study, therapeutic

administration of Iguratimod after the onset of clinical

symptoms ameliorated the clinical severity of chronic EAE

and reduced microglial activation, NF-κB p65, and COX-2

expression in the spinal cord (248).

Additionally, the TNF inhibitor adalimumab (ADA)

significantly reduced microglial activation and reversed pro-

inflammatory IL-1β, IL-6, IL-12, INF and TNF cytokine levels
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in a model of vascular dementia in rats (249). Additionally,

adalimumab treatment suppressed NF-κB, activity and

ameliorated memory impairments (249). This suggests that

the effects of biologics, deemed to be peripheral due to poor

BBB penetration, could also modify central glial inflammatory

responses and thus contribute to the control of central aspects

of arthritic pain development.

Preclinical data also show that controlling microglia itself

can alleviate arthritic pain. For instance, intrathecal delivery of

microglial inhibitors, such as a catS inhibitor, or an FKN

neutralizing antibody, attenuated mechanical hypersensitivity

and spinal microglial response in rats with CIA (153).

Furthermore, different strategies have been proven to reduce

arthritis pain in rats subjected to the CFA-monoarthritis

model, by targeting microglia and astrocytes reactivity (250–

253). These preclinical studies show evidence that blocking

spinal glial activation is involved in the analgesic action of

dexmedetomidine [a highly selective α(2) -adrenoceptor (α(2)

-AR) agonist], gabapentin, propofol, and electroacupuncture.

In these studies, reduced spinal astrocyte and microglial

marker reactivity were accompanied by suppressed

proinflammatory cytokines, IL-1β, IL-6, and TNF in spinal

tissue (251–253). Propofol inhibited CFA-induced microglia

activation and neuroinflammation (TNF, IL-6, and IL-1β

expression) via activation of ERK1/2/NF-κB signaling

pathways (250).

Additionally, analgesic effects with articular joint movement

(AJM) treatment have been reported in a model of persistent

inflammation. AJM did not altered cytokine levels at the

inflammatory site, but centrally, AJM reduced the levels of

pro-inflammatory cytokines IL-1β and TNF in the spinal

cord, which suggests a central neuro-immunomodulatory

effect (254). This data corroborates other pre-clinical studies

showing that non-pharmacological interventions such as

environmental enrichment (EE) can modulate the nociceptive

and inflammatory responses in arthritis models. For instance,

in the mouse model of arthritis induced by CFA, EE

diminished the IBA1 immunopositivity in the pre-frontal

cortex, and reduced, to some degree, GFAP+ reactive

astrocytes in hippocampus (52).

Moreover, lipid mediators exert different effects on

macrophages, and pro-resolving lipid mediators have been

described to have an antinociceptive effect mediated by

reduced inflammation (255, 256). For example, in addition to

the peripheral effect induced by pro–resolving Maresin-1

(MaR1) to control macrophage numbers in the DRG in the

K/BxN serum transfer model, MaR1 reduced microglial cell

activation, NF-κB activation, IL-1β, and TNF production in

the spinal cord, all of which were correlated to the analgesic

effect (257). Additionally, lipid-lowering agents also exert

analgesic effects in CFA-monoarthritis in mice. Probucol, a

synthetic polyphenolic compound, inhibited CFA-induced

hyperalgesia by attenuating NF-κB pathway and reducing
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microglia and astrocyte activation in the spinal cord (258). In

addition, disruption of spinal microglial lipid rafts and TLR4

signaling by cholesterol efflux mechanism induced by apoA1

binding protein (AIBP), reduced the pro-inflammatory gene

profile in microglia and cytokine levels in the spinal tissue

alleviating neuropathic pain (259). This mechanism may well

be targeting spinal microglia in arthritis (Figure 2).
Future directions and perspectives

This review highlights the importance of the macrophage

phenotype in the peripheral nervous system and the emerging

roles of these phenotypes in the synovium and DRG. The

review of glial cells in the CNS additionally shows there is a

clear need to expand the pre-clinical and clinical studies

aiming to understand and target spinal glial cells and central

pathways given the data suggesting their critical contribution

to neuroinflammation and pain in arthritis. We want to

emphasize several issues for future direction and in conclusion.

Although not highlighted in the text, aging is a critical factor

for arthritis onset. Several works support the premise that age-

related senescence of the innate immune system is a major

mechanistic pillar responsible for the malfunctioning of cell

damage sensors and their induced response feedback (260–262).

Immunosenescence creates a vulnerability scenario where

chronic low-grade inflammation (characterized by increased

serum levels of inflammatory cytokines such as TNF, and IL-6)

leads to a systematic tissue injury and joint degeneration

that may accelerate RA development and morbidity (260, 263).

Moreover, it has been described that microglia can adopt a

pro-inflammatory phenotype with age that aggravates

neurodegeneration (264). However, if the phenotype of microglia

or other glial cells and macrophages changes with aging during

the curse of arthritis is not clear and deserves its own review.

The evidence gathered here represented, in large part studies

from male subjects. However, substantial evidence shows that

women and men diverge on pain regulatory mechanisms

linked with several pathological conditions (265) including

arthritis (266). In this sense, multiple studies indicate that a

sexually dimorphic immune response might contribute to the

pain phenotype in many pre-clinical models (267). These

differences have been attributed to different cell types and

cytokine mediators (268). For example (268), showed that IL-

23-induced pain behavior in female mice is promoted by

estrogen but suppressed by androgen, suggesting the

involvement of sex hormones in IL-23-induced pain. However,

IL-23 acts indirectly and requires IL-17A release from

macrophages to evoke mechanical pain in females (268).

Estrogen receptor mediation of the pain phenotype evoked by

IL-23 and IL-17 may be a hint for the different pathological

outcomes observed in women and men regarding arthritis. In

addition, despite data suggesting differential macrophage
Frontiers in Pain Research 13
expansion between sexes in different pain models (112), and

the well-described role of estrogen in macrophage polarization

(269, 270), the role of these sex differences in macrophage

imbalance in arthritis remains unknown. Studies to fill this gap

are warranted and will be beneficial in leading to effective

therapies for arthritis pain for all patients.

While the bulk of this review has focused on the non-

neuronal cell populations, the observation that innate immune

receptors, such as TLR4, are present on DRG nociceptive

neurons implies that immune mechanisms and activation by

TLR4 agonists could directly enhance neuronal excitability

(271–273). Future work characterizing the nature of the

interaction between TLR4, and other receptors within the

lipid rafts on spinal microglia, DRG macrophages, and DRG

nociceptors will likely prove interesting in defining the

contribution of their interaction in generating the arthritic

pain phenotype.

Mechanisms reviewed here described the role of

macrophages and glial cells in the peripheral terminal and

central processing. However, we want to highlight the

relevance of macrophages and glial effects on the DRG, given

the changes in the input/output function of the afferent traffic

generated by injury and inflammation at this site. Notably, the

DRG is outside of the blood-brain barrier, and circulating

factors, such as immune complexes, can directly influence the

excitability of this system (106–108). Conversely, this access

provides a preferred route for therapeutic interventions.

The perception of pain reflects upon the role played by

higher order systems, e.g., pain is in the brain (274, 275).

However, it is equally clear that the pain response mediated at

higher centers is driven by the input that it receives from the

afferent limb of the somatosensory system (274, 276, 277).

This review emphasizes the robust mechanisms that can

regulate the input generated by inflamed or injured peripheral

structures. Regulating the content of the message received by

the brain serves to diminish the response organized at the

supraspinal level (e.g., the pain state).

In conclusion, pain control in RA, as its pathophysiology, is

complex and multifactorial. Strategies that focus on the

phenotype of innate immune cells in the periphery and along

the neuraxis may prove relevant. A need for a deeper

understanding of spinal and supraspinal glial mechanisms will

also contribute to the discovery and validation of new targets

for pain treatment in this disease.
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