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of the relationship between
skin innervation and
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Neuropathic pain is a frequent complication of chemotherapy-induced
peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral
neuropathies may serve as a model to study mechanisms of neuropathic
pain, since several other common causes of peripheral neuropathy like
painful diabetic neuropathy may be due to both neuropathic and
non-neuropathic pain mechanisms like ischemia and inflammation.
Experimental studies are ideally suited to study changes in morphology,
phenotype and electrophysiologic characteristics of primary afferent neurons
that are affected by chemotherapy and to correlate these changes to
behaviors reflective of evoked pain, mainly hyperalgesia and allodynia.
However, hyperalgesia and allodynia may only represent one aspect of
human pain, i.e., the sensory-discriminative component, while patients with
CIPN often describe their pain using words like annoying, tiring and dreadful,
which are affective-emotional descriptors that cannot be tested in
experimental animals. To understand why some patients with CIPN develop
neuropathic pain and others not, and which are the components of
neuropathic pain that they are experiencing, experimental and clinical pain
research should be combined. Emerging evidence suggests that changes in
subsets of primary afferent nerve fibers may contribute to specific aspects of
neuropathic pain in both preclinical models and in patients with CIPN. In
addition, the role of cutaneous neuroimmune interactions is considered.
Since obtaining dorsal root ganglia and peripheral nerves in patients is
problematic, analyses performed on skin biopsies from preclinical models as
well as patients provide an opportunity to study changes in primary afferent
nerve fibers and to associate these changes to human pain. In addition,
other biomarkers of small fiber damage in CIPN, like corneal confocal
microscope and quantitative sensory testing, may be considered.
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Introduction

Neuropathic pain is defined as “pain that arises as a direct

consequence of a lesion or disease affecting the somatosensory

system” (https://www.iasp-pain.org/advocacy/global-year/neuro

pathic-pain/) (1). It is recognized as the most common

neurologic complication in patients treated with cisplatin,

oxaliplatin, taxanes like paclitaxel, vinca-alkaloids, proteasome

inhibitors like bortezomib and immune-modulatory drugs like

thalidomide (2–4). The prevailing hypothesis is that axonal

swellings, containing accumulations of mitochondria, usually

occur early in the course of distal symmetric peripheral

neuropathies, while (epi)dermal nerve fiber loss and degenerative

Schwann cell changes occur as late consequences (5–7). Kroigard

and colleagues (8–10) have described in detail clinical

characteristics and the results from nerve conduction studies

(NCS), quantitative sensory testing (QST) and IENFD

measurements in patients with oxaliplatin or docetaxel-induced

peripheral neuropathy. IENFD measurements using PGP9.5

immunohistochemistry provide a robust, objective and minimally

invasive way to quantify epidermal innervation. It does, however,

suffer from suboptimal sensitivity and lack of scalability/labor

intensiveness, although the latter can potentially be overcome in

the future using automated deep learning algorithms.

QST is a method to detect sensory deficits and evoked

neuropathic pain, which usually includes mechanical, thermal,

or pressure pain threshold. A reduction in different nerve

fiber populations is related to a deficit of specific nerve fibre

sensitivities. In particular, Abeta-fibre loss is associated with

loss of vibration perception, light touch sensation and elevated

mechanical detection thresholds. Heat detection and heat pain

thresholds provide valuable information about C-fibre loss.

Finally, Adelta-fibre loss is linked to decreased pinprick

stimuli, mechanical pain and cold detection (11).

Apart from intraepidermal nerve fiber density and QST,

there are other biomarkers of chemotherapy-induced

peripheral neuropathy (CIPN), like neurofilament light chain

for axonal damage (12–14) and corneal confocal microscopy

(CCM). The latter is a non-invasive ophthalmologic imaging

technique which quantifies small nerve fibre abnormalities in

the sub-basal nerve plexus of the cornea (11).

Diagnostic sensitivity and several associations between the

severity of intraepidermal nerve fiber loss, severity of NCS or

QST abnormalities in oxaliplatin-treated patients vs.

neurpathic pain were studied (8–10). Regarding CCM,

different studies have shown corneal nerve microstructure and

corneal sensitivity changes in patients receiving oxaliplatin

(15). In addition, imaging of the corneal sub basal nerve

plexus was reported as biomarker for nerve regeneration in

CIPN (16). On the other hand, in oxaliplatin- and docetaxel-

induced polyneuropathy changes in QST, but not in CCM,

were reported (17). Neuropathic pain may arise as a

consequence of loss and/or degeneration of nerve fibers, from
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hyperexcitability of spared and sensitized nociceptive afferents

as well as from reinnervation (18).
Innervation of the epidermis and
neuropathic pain

In CIPN nor in other neuropathic pain conditions few studies

have confirmed positive or negative associations between cutaneous

innervation and the severity of neuropathic pain (19, 20), while

many described no consistent correlations (21–24). IENF density

and onset of neuropathic pain behaviors is not consistent across

neuropathic pain models. One reason may be mixed pathology,

for example in painful diabetic neuropathy where ischemic pain

may be superimposed on purely neuropathic pain. Another

reason may be the fact that selective degeneration of subsets of

intraepidermal nociceptive fibers (IENF), which cannot be

detected using the pan axonal marker PGP9.5, may drive

hypersensitivity and has been linked to neuropathic pain.

Although PGP9.5 labeling can be obtained by simple indirect

immunofluorescence and bright-field immunohistochemistry on

free-floating sections for IENF density quantification (25), it is

important to remember that using immunolabeling of PGP 9.5 it

is possible to detect intact free intraepidermal nerve fibers

endings (see Figure 1), but without any distinction in various

subtypes of sensory nerve fibers (27). It is known that the

primary afferent sensory fibers in the epidermis and dermal

layers of the skin can be structurally defined as Aβ, A∂ and C-

fibers (28). In addition to this morphological classification,

neurofilament 200 (NF200) is a typical immunohistochemical

marker of myelinated fibers (29). C-fibers can be further

subdivided using immunohistochemical/molecular markers such

as calcitonin gene related peptide (CGRP), substance P, ion

channels, transient receptor potential (TRP) family receptors (like

the vanilloid receptor 1 TRPV1) and endocannabinoid receptors

(like CB1) (30). These markers define the subclass of peptidergic

nociceptors (named so, because they contain neuropeptides). In

contrast, non-peptidergic nociceptors are C-fibers with free

endings in the epidermis which are often identified by the

binding isolectin B4 (IB4) or through expression of the

purinergic receptor P2X3 (28–31). These subgroups of C-fibers

may convey differential susceptibility to toxic injury, possibly

associated with neuropathic pain. Peptidergic and nonpeptidergic

nerve fibers have different innervation patterns in the epidermis

and dermis (32), in particular there is a much denser innervation

of the epidermis by P2X3-IR fibers in comparison with the

peptidergic or CGRP positive ones (33, 34).
Human pain: the lateral and the medial
pain system

In contrast to experimental animal models of neuropathic

pain, clinical pain research has the advantage to measure
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FIGURE 1

PGP 9.5 immunohistochemical staining free intraepidermal nerve fibers endings. Representative images of skin biopsy from a control (A), higher
magnification in (B) and PTX-treated rats (C) after 4 weeks of treatment (bar A and C = 100 μm, bar B = 50 μm). PGP9.5 immunohistochemical
staining was performed to measure the intraepidermal nerve fibers (IENF) density using a previously published protocol (26). Briefly, glabrous skin
from the plantar hindpaw were fixed, cryoprotected and serially cut in 20 μm-thick sections. Sections were immunostained with rabbit polyclonal
anti-protein gene product 9.5 (PGP 9.5; ProteinTech, Manchester, United Kingdom) using a free-floating protocol. The total number of PGP 9.5-
positive IENF crossing the dermal-epidermal junction was counted under a light microscope at 40× magnification and then the IENF density was
expressed as number IENF/length of epidermis (mm).
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spontaneous pain instead of nociceptive reflexes (8, 9). Besides,

humans have the ability to talk and thus differentiate between

specific neuropathic pain components. Since the epidermis is

predominantly innervated by non-peptidergic nociceptors (35)

and since neuropathic pain is often qualified as both

superficial as well as annoying, tring, dreadful etc., it was

suggested that the predominant fibers in the most superficial

layer of the skin (i.e., epidermal non-peptidergic nerve fibers)

are correlated with the affective component of neuropathic

pain (36). The McGill Pain questionnaire (37, 38) is a reliable

and extensively validated test in many languages that was

specifically designed to discern the sensory-discriminative,

affective and evaluative components of neuropathic pain.

Bechakra and colleagues recently published two papers, one in

a rat-model of nerve-injury induced pain (34) and one in

patients with bortezomib-induced peripheral neuropathy

(BIPN) (39), in which they suggested that selective

degeneration of non-peptidergic nerve fibers may directly or

indirectly (via parasympathetic sprouting) (40), contribute to

the affective and evaluative component of neuropathic pain in

patients with BIPN. Impaired regeneration of peptidergic

nerve fibers on the other hand may contribute to the sensory-

discriminative component of neuropathic pain in BIPN

patients (39). The situation may be different in more chronic

neuropathies like (painful) diabetic neuropathy and chronic

idiopathic axonal polyneuropathy, in which neuropathic pain

intensity appears to be associated with increased (epidermal)

sprouting of CGRP fibers (41, 42). It has been suggested that

separate anatomical pathways exist for these respective
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components (26, 43), the so-called lateral and medial pain

system (44). A schematic presentation of the medial and

lateral and medial pain ascending pathways in chemotherapy-

induced peripheral neurotoxicity is reported in Figure 2

(evidence is presented in the following citations: 34, 39, 43–

50). Since non-peptidergic fibers are overrepresented in the

epidermis, and since the degeneration of these fibers seems to

be associated with the affective component of neuropathic

pain, it is recommended to use a numerical rating scale (NRS)

for pain unpleasantness in addition to an NRS for pain

intensity for patients with CIPN-associated neuropathic pain.
Mechanistic insight into CIPN related
neuropathic pain

There is a wealth of clinical research on CIPN and of

emerging pharmacological strategies for its management,

which is reviewed in numerous citations (4, 50–51). However,

our review focuses on the relationship between skin

innervation and chemotherapy-induced neuropathic pain,

which has been studied less extensively. Many studies report

the loss of IENF density associated with diabetic neuropathy

(52) and CIPN (53, 54), although the relationship with the

development of neuropathic pain is unclear (55–58).

Intraepidermal nerve terminals, arising from unmyelinated

and thinly myelinated somatosensory fibers in the dermis, are

exposed to inflammatory mediators which sensitize those

peripheral sensory neurons (59) and are thus involved in the
frontiersin.org
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FIGURE 2

The lateral and medial pain ascending pathways in chemotherapy-induced peripheral neurotoxicity: afferents of peptidergic and non-peptidergic
C-fibres that form free nerve endings in the skin terminate in the superficial lamina of the spinal dorsal horn. In particular, peptidergic C-fibres
synapse on lamina I and lamina IIo neurons, whereas non-peptidergic C-fibres synapse on lamina IIi (inter)neurons (39). Those second order pain
neurons ascend, directly (lamina I and IIo neurons) (38) or indirectly (lamina IIi neurons, mostly via neurons in lamina V) (36), through the
anterolateral system and project to brainstem and forebrain areas, amongst others the parabrachial nuclei and thalamus for peptidergic input,
versus the amygdala, hypothalamus and striatal nuclei for non-peptidergic input. Functional MRI and PET studies have shown that separate brain
areas process distinctive pain components: sensory-discriminative aspects of pain are processed in the contralateral primary and secondary
sensory cortex, while affective components are processed in the hypothalamus, the contralateral amygdala and bilateral anterior cingulate cortex
and insula (40, 41, 45). It is suggested that the pathway originating from peptidergic primary afferents (also called the lateral pain system-in
green) contributes to the sensory-discriminative aspect of pain, while the pathway originating from non-peptidergic primary afferents (also called
the medial pain system-in yellow) contributes to the affective component of the pain experience (34, 38, 39). In line with the clinical observation
that patients with CIPN more often complain about unpleasant than about intense pain sensations, the non-peptidergic or lateral pain system
may predominate in those patients (27, 32, 42). Abbreviations: K, keratinocytes; S, sympathetic; PS, parasympathetic; DRG, dorsal root ganglion;
P, peptidergic sensory neuron; N-P, non peptidergic sensory neuron; I, lamina I of the dorsal horn; IIo, outer part of lamina II of the dorsal horn;
IIi, inner part of lamina II of the dorsal horn; V, lamina V; ALS, anterolateral system; PB, parabrachial nuclei; Th, thalamus; H, hypothalamus; Str,
striatal nuclei; S1, S2, somatosensory (association) cortex; A, amygdala; ACC, anterior gyrus cinguli; I, insula.
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pathogenesis of neuropathic pain. The hyperexcitability of

sensory neurons induced by the release of the

neurotransmitters from their peripheral endings as well as

alterations in ion-channel expression in those neurons is

subsequently followed by central sensitization via spinal as

well as supraspinal mechanisms, the latter involving ascending

pathways (60). Together, peripheral and central sensitization

mechanisms result in a neuropathic pain phenotype.

Since the pathogenic mechanisms underlying evoked

neuropathic pain associated with CIPN development are still

not fully understood, in vivo animal models may be useful not

only to fill this knowledge gap but also to test promising

pharmacological strategies aimed at preventing the development

of neuropathy and/or neuropathic pain.

Several rodent models have evidenced that loss of nerve fibers

innervating the skin is involved in the initiation and persistence of

neuropathic pain, for example in paclitaxel- (56, 61), oxaliplatin-

(55), vincristine (62), cisplatin- (63) and bortezomib-induced

peripheral neuropathies (4, 64, 65). In the majority of clinical (66)

and preclinical studies, skin biopsies (indicative of small nerve

fibres damaged in the skin) are used to examine IENF density in

the glabrous skin and evaluated by immunostaining using the

pan-axonal marker PGP9.5 (67), whereas electrophysiological

tests or conventional nerve histology can be performed to

examine the pathology in large fiber neuropathies (68). A

significant decline in IENF density appears prior to the onset of

damage in more proximal nerves and sensory ganglia (69). The

immunomodulatory agents minocycline and immunoglobulin,

administered 24 h just before and during chemotherapy, were

able to prevent mechanical hyperesthesia (exaggerated responses

to noxious stimuli)/allodynia (responses to non-noxious stimuli)

associated with a decrease in IENF density induced by paclitaxel

and oxaliplatin (46, 47) and bortezomib (70).
Nerve fiber degeneration and regeneration
in CIPN and neuropathic pain

Patients suffering from CIPN-associated neuropathic pain

experience both spontaneous as well as stimulus-dependent

pain that manifests as hyperalgesia and allodynia (71). Pain-like

behaviours in animal models of CIPN are mainly studied

through tests based on stimulus-evoked responses to define the

onset, severity and duration of mechanical allodynia and/or

thermal hyperalgesia (72). As mentioned earlier, the association

between pain-like behaviours and IENF density is not clear, i.e.,

some studies suggest that neuropathic pain behavior is

associated with increased IENF density, while other studies

suggest an inverse correlation. This may be related to re-

innervation in epidermis and dermis of rats after nerve injury,

selective degeneration of subsets of nociceptors (62, 73) and to

the fact that specific subsets of nociceptors serve specific

aspects of neuropathic pain (34).
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Following a sciatic nerve lesion in rats, peptidergic nerve

fibers demonstrated early and increased nerve sprouting from

uninjured afferents resulting in a faster restoration of

nociception and increased IENF density (74) as compared to

non-peptidergic primary afferents, which took more time to

recover than the peptidergic ones in a chronic constriction

injury model (75). In addition, changes in the interactions

between autonomic fiber types (i.e., sympathetic vs.

parasympathetic) and sensory fibers occur in rat skin after

peripheral nerve injury, suggesting involvement of autonomic

nerve fibers in neuropathic pain mechanisms (76, 77).

Regarding CIPN, it has been shown that paclitaxel induces the

degeneration of CGRP and Substance P positive peptidergic

nerve fiber terminals in the skin, leading to the onset of pain-

like behaviors (73). However, other authors reported that

vincristine induces a reduction of nonpeptidergic IENF density

while it did not affect pepdidergic nerve fibers, resulting in the

development of mechanical allodynia as a consequence of

selective damage of vincristine to nonpeptidergic population

(62). Thus, epidermal nerve fiber denervation and regeneration

are probably not the only factors involved in the pathogenesis

of neuropathic pain. Data from the literature suggest a possible

key role of mitochondrial dysfunction and cutaneous

neuroimmune interactions.
Mitochondria dysfunction in CIPN-related
neuropathic pain

In order to maintain epidermis integrity, IENFs are

continuously subjected to a process of remodelling (78). This

process implicates a high energy demand and may explain the

high vulnerability of IENFs to the mitotoxic effects of

antineoplastic agents (7). In the last few years, several

preclinical studies have shown the effectiveness of

pharmacological strategies aimed to improve mitochondrial

abnormalities in reducing and or preventing CIPN and CIPN-

associated neuropathic pain (79). This evidence led to the

hypothesis that the mitochondrial dysfunction induced by

antineoplastic agents is implicated in the onset and

maintenance of CIPN (7). The prevailing idea is that

chemotherapy can directly or indirectly cause damage to

mitochondria that lead to a reduction in cellular bioenergetic

capacity and an increased release of nitric oxide and

superoxide. Nitro-oxidative stress and mitochondrial

dysfunction can induce IENF degeneration and an increase in

spontaneous discharges of damaged IENFs leading to

neuropathic pain (79). For instance, Ma et al. described a

cisplatin-induced peripheral neurotoxicity mouse model, in

which they demonstrated that loss of IENF is correlated with

bioenergetic deficits in peripheral nerves (80). In addition,

Shim et al. reported cisplatin-induced mechanical

hypersensitivity due to peripheral oxidative stress, sensitizing
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mechanical nociceptors (81). In line with this hypothesis,

pharmacological agents such as pifithrin-µ (82, 83) that prevent

p53 mitochondrial accumulation, as well as HDAC6 inhibitors

(84) like metformin (85) and other compounds acting through

reduction of nitro-oxidative stress (64), have shown to prevent

and/or reduce IENF loss.
The contribution of keratinocytes and
immune cells to CIPN-associated
neuropathic pain

Apart from associations of neuropathic pain intensity with

nerve fiber degeneration or regeneration and mitochondrial

dysfunction, a relationship with epidermal macrophages,

Schwann cells and keratinocytes have been described in

humans with neuropathic pain, although not specifically in

patients with CIPN. Cutaneous cells (i.e., keratinocytes, the

predominant epidermal cell type) and immune cells (i.e.,

macrophages, neutrophils, lymphocyte cells, mast cells and

Langerhans cells) contribute to peripheral sensitization via

their interactions with nociceptors (86).

Involvement of keratinocyte in CIPN
Keratinocytes express several receptors and ion channels like,

for example, TRPV1–4 (87). Similarly, Langerhans cells (88)

express, amongst others, T-type calcium channels, interleukin

receptors, cannabinoid receptors, calcitonin receptor-like

receptor (89–91). As an example of neuro-immune-cutaneous

interactions, Cav3.2 T type calcium -channels are abundantly

expressed within skin nerve endings thus regulating neuronal

excitability and stimulus-evoked pain (92, 93).

Proposed mechanisms by which keratinocytes modulate

neighboring neuronal and immune cells include the production

and release of several neurotransmitters, chemokines (94),

neuropeptides and/or cytokines, both via direct physical

relationship between keratinocytes and cutaneous afferent fibers

as well as via synaptic-like contacts (95) and/or contact with

Schwann cells (96). In complex regional pain syndrome and

post-herpetic neuralgia, increased activity and expression of

voltage-gated sodium channels (Nav) on keratinocytes resulted in

increased epidermal ATP release and excessive activation of P2X

receptors on primary sensory axons (97). Moreover, it was

reported that paclitaxel-induced keratinocyte damage and ectopic

expression of matrix-metalloproteinase 13 (MMP-13) in the skin

of a zebrafish model of CIPN is a fundamental event that

precedes axonal degeneration (98). The inducers of this event

could be mitochondrial damage and reactive oxygen species

formation (99), as mentioned earlier. Not surprisingly, selective

inhibition of MMP-13 improved skin defects and rescued

paclitaxel-induced epithelial damage and neurotoxicity TRPV1 is

expressed in a subpopulation of unmyelinated C and thinly

myelinated A∂ nociceptors that mediate responsiveness to
Frontiers in Pain Research 06
capsaicin and heat (100). Although little is known about the role

of TRPV1 in keratinocytes, a recent study of Pang and

colleagues reported that selective keratinocyte stimulation in a

conditional TRPV1-knockout mice model, in which TRPV1 was

exclusively expressed in keratinocytes, is sufficient to evoke acute

nociceptive-related responses (84). Recently, a study described

the distribution of cannabinoid receptors in the skin and

peripheral nervous system. More specifically, CB1 receptors are

expressed on nociceptive nerve endings and dorsal root ganglion

neurons, whereas CB2 receptors are expressed on immune cells

and keratinocytes (101). Endocannabinoids, such as 2-

arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine

(AEA), are neurotransmitters derived from membrane

phospholipid precursors. Their homeostasis is maintained by

transporters and by the activity of fatty acid amide hydrolase

(FAAH) and monoacylglycerol lipase (MAGL), enzymes that

convert 2-AG to arachidonic acid and glycerol and that convert

AEA to arachidonic acid and ethanolamine respectively (102). It

has been described that chemotherapy induces increased

expression of FAAH and MAGL in the footpads of

experimental animals, which subsequently causes a decrease in

2-AG and AEA levels. As a consequence of decreased CB2

receptor activation, there is an increased sensitivity and response

to nociceptor-stimulation leading to pain-like behaviors in

animal models of CIPN 103). Studies from Ibrahim’s laboratory

tested the hypothesis that CB2 receptor activation stimulates the

release of the endogenous opioid β-endorphin from

keratinocytes, acting on primary afferent neurons via opioid

receptors, thus reducing nociception (103).

Involvement of immune cells in CIPN
Recent evidence suggests that infiltrating immune cells can

facilitate direct neuro-immune interactions (104). Interestingly,

Shepherd et al. demonstrated that activation of the angiotensin

II receptor on skin macrophages and consequent TRPA1

activation on sensory nerves is correlated with mechanical

hypersensitivity and pain sensation (105). In addition, in the

presence of IENF degeneration, activation of the skin’s

resident immune cells, i.e., Langerhans cells, was reported.

Recently, murine models of paclitaxel and vincristine-induced

painful neuropathies have shown a significant degeneration of

IENF concomitant with the activation of PGP 9.5-positive

Langerhans cells 106), suggesting a possible neuroimmune

interaction mediated through an increased synthesis of

proinflammatory cytokines by activated Langerhans cells

(107), which are capable of sensitizing IENF terminals by

evoking ectopic discharges and sensitizing C fibers (108).

Finally, recent evidence has demonstrated that oxaliplatin

induces changes in cutaneous mast cells that are correlated

with the development of mechanical allodynia in mice (109).

In particular, Sakamoto and colleagues reported a significant

increase in total number and number of degranulated mast

cells after oxaliplatin treatment, leading to the release of
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serine protease and activation of proteinase-activated receptor 2

(PAR2) in the skin, which caused mechanical allodynia.

Similarly, release of tryptase from mast cells and activation of

PAR2 in the skin lead to paclitaxel-induced mechanical

allodynia through sensitization of TRPV1, TRPV4, TRPA1

receptors on primary afferent sensory neurons (110).
Conclusion

In summary, degeneration and regeneration of unmyelinated

C-fibers, mitochondrial dysfunction, keratinocytes, Langerhans

cells and other cutaneous immune cells as well as TRP

expressed by keratinocyte and sensory nerves, closely participate

in sensory transduction and eventually contribute to the

development of neuropathic pain in CIPN. In addition, selective

epidermal nerve fiber degeneration and regeneration may affect

two distinctive pain components, i.e., sensory-discriminatory vs.

affective, via the lateral and medial pain systems respectively.

Future studies should focus on the complex neuroimmuno

interactions in the skin to define a strategy for the development

of topical analgesics and neuroprotective drugs.
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