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Body movement as a biomarker
for use in chronic pain
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analysis of an RCT of a virtual
reality solution for adults with
chronic pain
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Toni Sarapohja1, Carina Stenfors1 and Christopher Eccleston3,4,5

1R&D, Orion Corporation Orion Pharma, Turku, Finland, 2Estimates PLC, Turku, Finland, 3Centre for
Pain Research, The University of Bath, Bath, United Kingdom, 4Department of Clinical and Health
Psychology, University of Ghent, Ghent, Belgium, 5Department of Psychology, University of Helsinki,
Helsinki, Finland

Introduction: Chronic low back pain (CLBP) is a major public health problem.
Reliably measuring the effects of chronic pain on movement and activity, and
any changes due to treatment, is a healthcare challenge. A recently published
paper demonstrated that a novel digital therapeutic (DTxP) was efficacious in
reducing fear of movement and increasing the quality of life of adult patients
with moderate to severe CLBP. In this paper, we report a study of how data
from wearable devices collected in this study could be used as a digital
measure for use in studies of chronic low back pain.
Methods: Movement, electrodermal recording, general activity and clinical
assessment data were collected in a clinical trial of a novel digital therapeutic
intervention (DTxP) by using the sensors in commercial Garmin Vivosmart 4,
Empatica Embrace2 and Oculus Quest wearables. Wearable data were
collected during and between the study interventions (frequent treatment
sessions of DTxP). Data were analyzed using exploratory statistical analysis.
Results: A pattern of increased longitudinal velocity in the movement data
collected with right-hand, left-hand, and head sensors was observed in the
study population. Correlations were observed with the changes in clinical
scales (Tampa Scale of Kinesiophobia, EQ5D Overall health VAS, and EQ5D
QoL score). The strongest correlation was observed with the increased
velocity of head and right-hand sensors (Spearman correlation with
increasing head sensor velocity and Tampa Scale of Kinesiophobia −0.45,
Overall health VAS +0.67 and EQ5D QoL score −0.66). The sample size
limited interpretation of electrodermal and general activity data.
Discussion/Conclusion: We found a novel digital signal for use in monitoring
the efficacy of a digital therapeutics (DTxP) in adults with CLBP. We discuss
the potential use of such movement based digital markers as surrogate or
additional endpoints in studies of chronic musculoskeletal pain.
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1. Introduction

Data from external sensors provide opportunities for the

monitoring of disease and response to treatments within both

clinical trials and observatory studies (1–3).

The measurement of pain and its deleterious effects on

multiple domains of life is a clinical and research challenge

(4). Pain is a private mental event unobservable except by the

sufferer (5). There is no objective measure of a subjective

experience, but there can be objectively defined correlates of

that experience, measured physiologically (6–8), through

observation (9), or by the capture of alterations in gross or

fine movement of body or limbs (10, 11).

Advances in technology have increased the clinical use cases as

sensors become more usable and able to accurately measure

various signals (12). From vital signs (over time) to movement

(fine and gross body and limb position in space), geolocation,

steps, and physiological activity such as heart rate, heart rate

variability, skin conductance and sleep (6, 7, 13, 14). In

neurology, cognitive function has also been explored, often with

gamification, for its potential to provide clinically valid digital

signals (15–17).

Digital biomarkers in chronic pain can usefully focus on

the cognitive, emotional, relational, or physical domains.

Chronic low back pain is often characterized by the

avoidance of movements believed to put one at risk of

further pain or re-injury (18). Capturing the extent of

movement restriction, and its potential restoration in

treatment, is a valid mechanistic target for a clinical

endpoint in both trials and clinical practice.

In this study, we made use of a pilot clinical trial of a novel

digital therapeutic intervention (DTxP) tested on adults with

chronic low back pain and high levels of disability and fear of

movement and re-injury, known as the VIRPI trial. The study

was conducted fully remotely in 2020 and 2021. The Virtual

Reality (VR) intervention was effective in reducing fear of

movement, and in improving subjectively reported quality of life

when compared to a sham VR comparator and treatment as

usual (19). Important here is that adults experienced about 30

daily sessions of treatment. This repetitive exposure to

movement in a trial environment gave a unique opportunity to

explore movement data collected by VR devices and two

wearables. Our first goal was exploratory: to establish routines

and protocols for managing multiple data sources from different

devices over a long rehabilitation intervention with repetitive
02
movements. More specifically, our second goal was to identify

movement behaviors that correlate with clinical data and

consider their use as digital endpoints. We had no a-priori

hypotheses as to which specific movement(s) might emerge as

important, and so adopted a data-driven approach.
2. Materials and methods

2.1. Procedure

The VIRPI study was registered on ClinicalTrials.gov

(NCT04225884). The study design was a double blind three-arm

prospective, double-blind, randomized controlled trial comparing

a digital therapeutics software solution for chronic pain (DTxP),

a Sham placebo comparator, both against standard care (19).

Adults with chronic low back pain were recruited from the

community between January 2020 to October 2020, screened and

then randomly allocated to one of the study arms. Participants

and study personnel were blind to allocation.

The DTxP was a fully immersive VR experience with 24

modules (= individual days of intervention) over 6–8 weeks. It

took place in a lakeshore environment, and had e.g., behavior

change content provided by a virtual disembodied mentor,

and physiotherapeutically designed gamified tasks (19). The

Sham placebo comparator was the same VR environment as

in the DTxP arm however it contained no behavior change

content (19). These participants were advised to relax while in

the same virtual environment as with DTxP. The sham

intervention controls for non-specific influences such as

expectations of treatment and aspects of delivery such as

duration of exposure, environment, immersion, etc. (20). We

assessed that the immersion itself will have an intrinsic effect

on the outcome. As the participants in both VR arms were

using the same device and the immersive environment, the

actual therapeutic content being the only difference, and

neither the study participants nor the personnel knew which

arm the participants belonged to, we believe the term Sham

placebo is justified here.

DTxP (n = 12) and Sham placebo (n = 17) participants

received Oculus Quest VR head mounted device (HMD) and

two handheld controllers (HHC). 10 participants were allocated

to the standard care control. All (n = 39) received Empatica

Embrace2 and Garmin Vivosmart4 wearables, and a mobile
frontiersin.org

https://clinicaltrials.gov/ct2/show/NCT04225884?cond=NCT04225884&amp;draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT04225884?cond=NCT04225884&amp;draw=2&amp;rank=1
https://doi.org/10.3389/fpain.2022.1085791
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Liikkanen et al. 10.3389/fpain.2022.1085791
phone for data collection. Participants received written user

instructions and were trained by study personnel. All were

unable to see any results from the wearables (configured not to

show data). Those who had their own wearable health or

activity monitoring devices were allowed to continue their use.

In the data analysis we used the data from different arms as

follows:

- Movement data: DTxP (n = 12)

- EDA: DTxP and Sham Placebo (n = 29)

- Activity data: DTxP, Sham Placebo and Standard Care (n = 39).

2.2. Participants

39 participants were randomized to the treatment arms.

They were 34 women and 5 men, all adults with an average

age of 54.7 years, with 30 out of 39 having more than 5 years

of low back pain, and a mean pain intensity (on a scale of 0–

5) at the start of trial of 2.8. They reported high levels of

disability on the Oswestry Disability Index (ODI), with a

mean of 36.1 (range 18–60), and a strong belief that

movement would lead to further pain and reinjury as

measured by the Tampa Scale of Kinesiophobia (TSK), with a

mean of 41.8 (range 29–55).
2.3. Devices and data

2.3.1. Movement data
The accelerometer data from the Oculus HMD and HHC

devices in DTxP arm were collected when using the DTxP

(sampling rate of 30 Hz). We used data from DTxP arm only,

as that was the only arm where the movements related to the

therapeutic content were done. The Sham placebo arm was

assessed to contain a limited amount of relevant movement

data, as the participants were instructed to relax in the VR

environment. The software to pull the movement data from

HMD and hand controllers was developed for this purpose

using Unity development framework version 2019.4.18f1. The

movement data were sent to backend server via RESTful API

calls. Data from the backend server were exported in JSON

format for analysis, which were transformed into CSV files by

using SAS software, for analysis using R software. The use of

DTxP included various activities and tasks. All intervention

days began by entering a specifically designed VR

environment, which after two additional virtual spaces were

used to facilitate psychological and physical exercises. Some

days contained psychological content, while the others

contained gamified physical, psychological, and cognitive

exercises, specifically designed to promote fine and gross

motor movements, typically avoided by low back pain patients.

Eleven participants experienced more than 30 days in

treatment, and one less than 10 days. Data from the
Frontiers in Pain Research 03
participant with missing study days was kept in the dataset to

analyze robustness and bias, the correlation results are

presented both with and without this participant. There were

over one million lines of data per participant, with x, y, z

coordinates of three accelerometers each, resulting in over 10

million individual data-points for each participant. The data

included some non-natural movement patterns, such as

dropping a controller. Furthermore, some data segments did

not end as expected, possibly due to suddenly turning off the

VR system, or system malfunction.

Data were segmented according to VR software’s metadata

tags (labels explaining what sequence of program was run).

However, the exact task (e.g., grabbing a virtual object) was

not known and tags were just to indicate the beginning and

the end of a sequence. As the movements were recorded

regardless of whether the participant was given a task or not,

these segments were classified as action and no-action.

Furthermore, no-action segments were classified as “start of

day”, “between” and “end of day”, depending on the relation

to the action segments.
2.3.2. Electrodermal data
Empatica Embrace 2 electrodermal activity (EDA) data were

collected throughout the study (sampling rate 4 Hz). Raw and

aggregated data were downloaded from the Empatica server

after study finalization. For the analysis of EDA data, both

DTxP and Sham placebo arms were used. Data were collected

during the treatment, as with the movement data. In DTxP

arm, the participants performed movement related tasks,

while no tasks were instructed in the Sham arm. For the

analysis of DTxP arm, the segmentation of the EDA data was

used to distinguish between action and no-action segments.

DTxP data before first action, the start of the day segments,

were removed from the EDA analysis to compare active phase

of DTxP to no-action Sham data, as the Sham arm data were

assumed to consist of fully no-action segments.
2.3.3. Activity data
All participants wore the Garmin device throughout the

study to collect daily activity data. Aggregated data for heart

rate, steps and sleep duration were downloaded from the

Garmin server after the finalization of the study.
2.3.4. Clinical endpoints
2.3.4.1. Fear of movement and re-injury
Study participants completed the Tampa Scale for

Kinesiophobia, which includes 17 items assessing beliefs about

pain-related movement and possible further pain and reinjury

using a 4-point Likert scale from strongly agree to strongly

disagree. Higher scores indicate higher fear of movement and

re-injury.
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2.3.4.2. EuroQoL VAS for Overall Health
Participants reported their overall health condition using a

visual analogue scale from 0 to 100 anchored with 0 as “the

worst health you can imagine” and 100 as “the best health

you can imagine”.

2.3.4.3. Quality of life (QoL)
Participants completed the European Quality of Life 5- dimension,

5-level scale (EuroQoL-5D-5L). Five dimensions are assessed

including mobility, self-care, usual activities, pain/discomfort,

and anxiety and depression. Each item is scored from 1 to 5

(1 = no problems; 5 = unable to/extreme problems).
2.4. Statistical methods

2.4.1. Movement data
Previous research in patients with CLBP have shown that

motor and problem-solving skill exercises work well in

improving cognitive impairment (21–23). Furthermore,

increased activity has shown to correlate negatively with the

chronic pain, and the movement velocity has shown to

correlate with functional recovery in chronic pain (24, 25).

Thus, we used an assumption that the time spent on a given

activity correlates with the condition of a participant, i.e., a
FIGURE 1

Example EDA signal with Tonic and Phasic components (left) and with the P
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healthy participant would finish the activities faster than a

participant with CLBP. As the precise nature of the activity

within VIRPI segments was unavailable, the segment average

velocity was used to assess how quickly participants

completed their tasks. Faster average velocity indicates

finishing the activity faster.

Movements were collected from VR controllers that all

recorded x-, y- and z-coordinates. Time interval between

recordings is approximately 0.03 s, with some variation over

time. These timepoints were then combined to segments of

movement based on metadata. To analyze the movement data,

the coordinates of the controllers were transformed into the

velocity in three-dimensional space. Velocity in every

timepoint was calculated as change from previous timepoint:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 þ Dz2ð Þp

Dtime

Velocity calculated in every timepoint was then aggregated

to the average velocity for every movement segment.

To validate the segmentation, velocity distributions of action

segments and no-action segments were compared visually. For

further analysis, only data labeled as action were used as our

focus was the effects of movement. To estimate participants’
hasic component only (right).
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progress over time, linear regression lines were fitted to segment

averages over study days. Slope of regression was assessed, and

positive slope considered as increase of velocity over time and

negative as decrease of velocity over time. Linear fit was not an

optimal fit for the data, but it was kept for simplicity and for a

need to get a single measure to describe the direction of change

over the time. Some study days span over multiple calendar

days due to technical or other problems during activities and

there were planned pauses in the activity schedule. This means

that the diurnal aspect of regression is not naturally linear and

therefore results of regression should be regarded only as proxy

for natural within day progression of the participants.

To assess the association of movement data and clinical

endpoints, correlation between the change in the velocity of

movement controllers (Head, Left, Right) and change in

clinical measurements (TSK, Overall health VAS, EQ-5D-5L

QoL score) was calculated. For controllers, the slope of the

regression line was used as the measure of change. The slope

represents the estimate of daily change, so for correlation

calculations the slope was multiplied by the count of

participants’ VR study days, thus representing the estimate of

change in movement over time in study. For Clinical

measurements the change was measured as the change from

baseline at End of Treatment after 30 study days. For

robustness, the correlations were assessed with the full data
FIGURE 2

Example of a peak band and the peaks (dark blue markers) in a random sam
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and after removing the participant with 2/3 of missing study

days. Correlations were calculated as parametric and non-

parametric, as with limited number of samples single

measurements can have large effect on the parametric results.
2.4.2. Electrodermal activity (EDA) data
There are multiple ways of analyzing EDA signals (26). It is

known that EDA tends to rise when activity level rises, thus we

wanted to examine this aspect. The assumption was there would

be higher level of EDA from participants in the DTxP arm

compared to the Sham arm.

EDA signal is typically separated to “tonic” and “phasic”

components (“tonic” is the slow and “phasic” is the faster

signal variance). For this analysis we chose to concentrate on

the “phasic” variance. To remove the “tonic” component, we

decided to analyze difference in two consecutive timepoints

(t2 – t1 = Δ) of the signal. Using the difference makes the

signal stationary, as can be seen in Figure 1. To measure the

overall activity in “phasic” changes, we counted the peaks of

Δ in a segment and formed a peaks/minute measure. To

distinct high peaks per minute, we formed bands using

median absolute deviation (MAD):

MAD ¼ Median xi �Median x1::nð Þj jð Þ
ple of EDA data over couple of minutes.
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MAD is a robust measure of variability and tends to work

better in outlier detection than standard deviation. Here we

wanted to detect peaks that are equivalent to outliers in e.g.,

quality control situation. Peaks were defined as Δ higher than

median by 2-fold MAD. Peaks were normalized by counting

ratio for average peaks per minute:

Peaks
Minute

¼ count Dx . 2 �MAD xð Þð Þ
Segment Length in Minutes

A visualization of a peak band and the peaks from a random

EDA data sample is shown in Figure 2. Peak count per minute

distributions were compared between different groups using a

visual inspection.
2.4.3. Activity data
In the analysis of general activity, our approach was first to

visualize the distributions between trial arms over time. Next, a

regression coefficient model for the effects of group and day
FIGURE 3

Average velocity (m/s) in movement segments in different accelerometer sens
action type.
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with each participant having an own regression line terms was

assessed.
3. Results

3.1. Movement data

First, data were evaluated as action vs. no-action segments.

As shown in Figure 3, the visual comparison of action data vs.

no-action data shows that action data show faster movement on

average. This is, of course, a validity check for segmentation

only, and result shows that while conducting the activities,

participants’ average velocity increases. This is natural as

participants were first preparing for activities and at the end

of day, they stop activities while movement is still recorded.

Furthermore, no-action segments between actions are close to

action segments in distribution of velocity, as participants

were navigating to the next action and were more engaged in

system compared to no-action segments at the start and the

end of the day.
ors (head mounted VR device, left-hand and right-hand controllers) by
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After this, only the action segments were used to assess the

average velocity. Velocity over time was explored by fitting a

regression line to the average velocity of action task segments

during the study days. The velocity of the left-hand, right-

hand and head controllers for every participant is shown in

Figures 4–6. For most, the velocity appears to increase over

the study. This could be due to many factors, but we suggest

that one factor would be participants moving better over time.

A similar trend is observable in left hand and head controller

movements. There is variance and some obvious outliers in

the plots, however, most of the regression lines have an

upward tendency.

In this study the interest was participants progression over

30 study days, whereas participant 1054 has only 10 study

days. The slope of the regression line for the participant 1054

is three folds more than any other slope. From visual

inspection of all patient velocity averages, it is visible that the

first study days tend to have more upward progression than

rest of the study days. Thus, the missing part of these data

could likely cause bias as they are not random by its nature.
FIGURE 4

Average velocity in the left-hand controller of all action task segments with
regression line over the time.
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Correlations between the slope of average velocity values

in the controllers and the change in clinical measurements

(TSK, Overall health VAS, EQ5D5L QoL score) during the

study were calculated. In Table 1, all the values by

participants are shown. Controller values are estimated as

the slope of daily change multiplied by study days in VR,

i.e., for participant 1,016, the slope of the right controller

was 0.0031 and thus the change in velocity from day 1 to

day 30 is estimated as 0.095 m/s. Participants had 30 or 29

study days in VR, except participant 1054, who had 11

study days in VR.

The Pearson and Spearman correlations of the controller

velocity values, and the clinical endpoints are shown in

Table 2, first without participant 1054. Both movement and

clinical measurements are strongly correlated within their

respective groups. This is expected as the increased activity

should be seen as the increased movement velocity in all

body parts, and clinical measurements are all validated

questionnaires. In addition, the correlations between

movement measurements and clinical measurements are
in the 30 daily sessions (m/s) for all DTxP arm participants, with the
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FIGURE 5

Average velocity in the right-hand controller of all action task segments within the 30 daily sessions (m/s) for all DTxP arm participants, with the
regression line over the time.
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found to be on a moderate level. For TSK and EQ5D5L QoL

score the increasing movement velocity correlates with a

negative change and for Overall health VAS change the

correlation is positive. This indicates that increased velocity

correlates with improving clinical measures. The association

is similar between parametric and non-parametric

correlations. To study the robustness of the results,

correlations with the full data are examined. When the

participant 1054 is included in the data, as also shown in

Table 2, the correlations between controllers are strong.

However, the correlations between controllers and clinical

results are weaker compared to cleaned data, although the

Spearman correlations of Head device to clinical

measurements remain still on moderate level.
3.2. Electrodermal activity (EDA) data

Peaks/minute -measurement was compared between DTxP

and Sham arms by study day. Overall there are more peaks/
Frontiers in Pain Research 08
minute in early study and then some higher distributions in

DTxP arm closer to the end of study. However, the

association is not clear.

When comparing peaks/minute -measurement distribution

by participant, we ordered distributions by median (Figure 7).

We can see there is some tendency for DTxP arm to have a

higher median with larger variability. Sham arm has more

participants with clearly narrow distribution with a low

median.
3.3. Activity data

Heart rate, steps, and sleep duration aggregates were

collected, and steps were visualized. Change in daily mean

was calculated and aggregated to weekly measure. Then

change distribution over all patients was plotted and analyzed.

Some difference in the change in daily steps was observed

between groups (Figure 8).
frontiersin.org
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TABLE 1 Average velocity change as “slope value * study days” in the controllers (Right, Left, Head) and the change in Clinical assessments (Tampa
Scale of Kinesiophobia (TAMPACHG), Overall health Visual analogue scale (VASCHG), EuroQoL-5D-5L QoL score (EQ5DCHG) during the study for
each participant in DTxP arm.

SUBJECT TAMPACHG VASCHG EQ5DCHG Head_chg Left_chg Right_chg

1016 −6 20 −4 0.054 0.077 0.095

1023 −6 53 −4 0.111 0.181 0.197

1025 7 −5 4 0.046 0.127 0.055

1037 −12 50 −4 0.066 0.067 0.113

1040 −2 5 0 −0.017 −0.055 −0.055

1042 −8 15 −1 0.088 0.185 0.283

1054 −4 −20 2 0.174 0.200 0.287

1059 −8 15 −3 0.069 0.253 0.049

1062 −11 60 −4 0.070 0.163 0.090

1072 −9 25 0 0.059 0.162 0.122

1076 −8 40 −6 0.074 0.158 0.182

1078 −7 −15 1 0.046 0.027 0.011

FIGURE 6

Average velocity in the head controller of all action task segments within the 30 daily sessions (m/s) for all DTxP arm participants, with the regression
line over the time.

Liikkanen et al. 10.3389/fpain.2022.1085791
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FIGURE 7

Number of electrodermal activity (EDA) peaks per minute by participant, organized in the ascending order by the median.
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4. Discussion/conclusion

Using the opportunity of a clinical trial of a digital

therapeutic for chronic low back pain, we collected sensor

data from 39 trial participants using Oculus Quest, Empatica

Embrace2 and Garmin Vivosmart4 devices. With movement

data we analyzed the DTxP arm alone. With electrodermal

data we compared data between the DTxP and Sham placebo

arms. With activity data, we compared the data between all

study arms. We were interested first in how to render and

curate large quantities of data into qualitatively valuable

clinical information. Further, we were interested in whether

any specific data signals could be associated with clinical

changes in outcome due to the intervention. When trying to

find potential digital biomarkers, exploring the association
Frontiers in Pain Research 11
between variables by using Pearson and Spearman

correlations was assessed to be a valid and interpretable

method. As the sample size was limited, we decided to use

both correlations. Pearson is sensitive to outliers, whereas

Spearman has less statistical power as it is using ranks.

Movement data were collected from 12 adults with CLBP,

disability, and fear of pain and reinjury undertaking a

minimum of 30 sessions of rehabilitation within VR. It did

prove possible to manage large datasets from multiple

sources collated across participants and across time. Not all

data sources were useful. Electrodermal data were noisy

and unstable between the sessions, thus unsuitable for

further analyses with limited study population. Heart rate

data were aggregated over a daytime and so lacking in

precision for any meaningful clinical analysis. However fine
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FIGURE 8

Average steps per day by study week.
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movement data of head and both hands were more robust for

further analysis.

We selected velocity of individual movements over time

as a target variable collected from Oculus devices when

using the VR, in part because it was possible to segment

the data over time and for its relevance to clinical

outcomes. We found that for most of the participants the

average velocity of all the sensors increased during these

segments over the study. This suggests that participant

movement improved over time. Furthermore, this

longitudinal change correlated with the improvement in

clinical endpoint measurements. The increased velocity was

found to correlate with decreased TSK and EQ5D-5L QoL

score values and increased Overall health VAS values. All

data are in line with the improved physical state of the

participants. The largest correlation with clinical endpoints

was observed with head and right-hand sensors. The latter

makes sense since participants were mainly right-handed,

and the increase in the movement is likely explained by

them using intuitively the dominant hand in activities.

What was surprising is the even stronger correlation with

the head sensor movement data and clinical endpoints. Yet

we are unwilling to say that any body part sensor would

not be a potential source for a digital movement biomarker

in CLBP. More research is needed but we assume that

CLBP patients with kinesiophobia maintain bracing or
Frontiers in Pain Research 12
minimizing of trunk movements in avoidance of feared

pain, essentially doing any rapid movements with their

back and head.

Positive correlations of velocity with self-report clinical

outcomes are the first step in establishing a movement based

digital biomarker but there are at least three steps needed to

improve confidence in the measure. First, replication is

necessary, followed by extension to different interventions and

different clinical groups. Second, interpretation of the velocity in

this context deserves further consideration. As the segmentation

of the movement data was not based on specifically known

movements, it is unclear in which movements the change can

be seen better than in the others. Thus, collecting data by using

more precise metadata about tasks is needed. Third, the

characteristics of movement data contains other options than

just the velocity. The velocity was chosen due to its simplicity,

and because the increase of movement is a desired objective in

this target population. Machine learning methods might also

enable multidimensional descriptors without a specific value

when analyzing movement data.

The study has limitations. For movement data, we used

linear regression slope as a measure of change over time. The

slope was selected to aggregate the change to a single

measure; however, it is not an optimal measure to describe

the intermediate changes over time as there could be different

phases during follow-up. Further research and more
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informative data are needed to better quantify the different

aspects of movement over time. As mentioned above, because

of the nature of the EDA data, any interpretation will remain

uncertain. Based on earlier studies, it is however a promising

method, but because it is relative to skin temperature and

humidity, more data from wider population are needed

(7, 27). The activity data analysis was not successful since it

contained only aggregated daily data instead of raw data,

especially so with heart rate—heart rate variability analysis

wasn’t possible.

Changes in bodily movement over time appears to offer a

clinically meaningful digital biomarker to be exploited in

intervention studies aimed at the rehabilitation of adults with

chronic low back pain. Further studies would help improve our

confidence in this approach, in particular if based on more

diverse participants and a greater range of clinical endpoints.
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