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Chronic pain affects ∼10–20% of the U.S. population with an estimated annual cost

of $600 billion, the most significant economic cost of any disease to-date. Neuropathic

pain is a type of chronic pain that is particularly difficult to manage and leads to significant

disability and poor quality of life. Pain biomarkers offer the possibility to develop objective

pain-related indicators that may help diagnose, treat, and improve the understanding of

neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to

opiates, inflammation, and endocannabinoids with the objective of identifying composite

biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided

into physiological non-imaging pain biomarkers and brain imaging pain biomarkers.

We review both types of biomarker types with the goal of identifying composite pain

biomarkers that may improve recognition and treatment of neuropathic pain.
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INTRODUCTION

Pain is a protective evolutionary function that involves “unpleasant sensory and emotional
experiences associated with, or resembling that associated with, actual or potential tissue damage”
(International Association for Study of Pain). Acute pain is an adaptive and essential survival
behavior. Chronic pain is a pathological condition that poses a significant clinical, economic and
social burden (1, 2). Chronic pain is the most common clinical complaint in the United States
affecting ∼10–20% of the U.S. population with an estimated annual cost of $600 billion, the most
significant economic cost of any disease to-date (2–6).

Neuropathic pain is defined as pain that is “initiated or caused by a primary lesion or dysfunction
in the nervous system” (7). Neuropathic pain can be divided into either having peripheral origin
or central origin and can be further divided into acute or chronic pain, the latter defined as pain
lasting for longer than 3 months (7).
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Pain is a subjective sensory experience that cannot be
directly measured nor quantified. Although pain is subjective
and influenced by many physiological and psychological
factors, measuring biomarkers of neuropathic pain provides an
opportunity to identify objective markers of peripheral nerve
damage and other pathology contributing to neuropathic pain.
If used in combination, biomarkers related to pain mechanisms
(including opiate, inflammation, and endocannabinoid
mechanisms) offer the possibility to develop objective pain-
related indicators that may improve diagnosis, treatment,
and understanding of pain pathophysiology (8–11). The
pursuit of pain biomarkers has followed two largely separate
general directions: physiological vs. brain neuroimaging.
Physiological pain biomarkers research has followed multiple
lines of investigation including genetic, vesicular micro-RNA,
metabolic/molecular, and stress markers. Neuroimaging
biomarker research in neuropathic pain research was initially
motivated by research into brain areas activated by painful
stimuli and that vary with pain severity (10, 12–14). Brain
activity that occurs in response to pain can also be observed
in the absence of pain, which has led to conflicting evidence
regarding brain activity related to pain. Thus, some researchers
are developing biomarkers based on the mechanisms underlying
pain and pain perception and biomarkers that may predict
response to medication and pain treatments allowing for
prediction of personalized treatment responses (10, 15, 16).

Toward the goal of identifying composite biomarkers for
investigating neuropathic pain mechanisms and improving
diagnosis and treatment response, we present a review of
non-imaging and imaging pain biomarkers related to various
neuropathic pain mechanisms, including opiate, inflammation,
endocannabinoid mechanisms. In this review, we review
mechanisms for neuropathic pain in general, but we focus on
pain biomarkers for different types of peripheral neuropathies.
Although various reviews of pain biomarkers exist, we focus
on creating composite biomarkers through machine learning
approaches that can most accurately identify people with
neuropathic pain.

OPIOID PAIN BIOMARKERS

Opioid Mechanisms
Endogenous opioids are necessary for the expression of pain
relief (17) and pain-induced aversion (18, 19). Blocking
opioidergic transmission reduces dopamine release in the
nucleus accumbens that accompanies pain relief (20).
The endogenous opioid system consists of four opioid
peptide families: β-endorphin, enkephalins, dynorphins,
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cortex; NA, nucleus accumbens; QST, quantitative sensory testing; SFN, small

fiber neuropathy; sICAM-1, soluble intercellular adhesionmolecule-1; TNF, tumor
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and nociceptin/orphanin and 4 families of receptors: mu, delta,
kappa, and nociceptin (21, 22).

Opioid receptors are expressed by central and peripheral
neurons, by neuroendocrine (pituitary, adrenals), immune, and
ectodermal cells (23–25). All opioid receptor types mediate
analgesia but have differing side effects, mostly due to their
variable regional expression and functional activity in different
parts of central and peripheral organ systems. Endogenous
opioids are particularly concentrated in circuits involved in pain
modulation (26).

Opioid Pain Biomarkers
Beta-endorphin levels in the CSF, blood and saliva have been
investigated as possible pain biomarkers. Plasma Beta-endorphin
has been used to investigate age responses to experimental pain
(27). Patients with chronic neuropathic pain due to trauma
or surgery have been shown to have lower levels of Beta-
endorphin in the CSF (28). Plasma and CSF Beta-endorphin
have been investigated in patients with trigeminal neuralgia (29).
Interestingly, Beta-endorphin in peripheral blood was related to
levels in CSF; furthermore, the levels of Beta-endorphin were
inversely correlated with the severity of pain symptoms (29).
While chronic low back pain typically involves non-neuropathic
pain mechanisms, it is interesting that plasma Beta-endorphin
levels have been shown to be a promising biomarker for chronic
back pain (30). In other non-neuropathic pain conditions, mu
opioid receptors expressed on immune B cells was found to be
a biomarker for chronic pain in fibromyalgia and osteoarthritis.
In this study, the percentage of mu opioid receptors positive B
cells was statistically lower in patients with moderate to severe
pain than in pain-free subjects or mild pain subjects (31). In a
heterogenous group of patients with pain, a composite biomarker
was identified that uses emergent properties in genetics to
separate patients with pain requiring extremely high opioid doses
from controls (32). Negative studies for opiate mechanism pain
biomarkers have shown that salivary Beta-endorphin is not a
biomarker for neuropathic chronic pain propensity (33).

Functional brain imaging performed on patients with non-
neuropathic primary dysmenorrhea with mu-opioid receptor
A118G polymorphism has been used to investigate pain
sensitivity and opioid-analgesic treatment related to function
in the descending pain modulatory system. Specifically, the
functional connectivity of the descending pain modulatory
system dependence upon mu-opioid receptor A118G
polymorphisms was investigated. This study found that patient
groups with different alleles for the A118G polymorphisms
exhibited varying functional connectivity between the anterior
cingulate cortex and periaqueductal gray (34).

Although magnetic resonance imaging provides information
regarding structural and metabolic changes that provide insight
into pain perception of the CNS, magnetic resonance imaging
cannot image opioid function in cells in vivo at the molecular
level. Such important opioid function information can be
obtained through positron emission tomography and can be used
to investigate pain opioid mechanisms (35).
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INFLAMMATION PAIN BIOMARKERS

Peripheral Neuroinflammation
Mechanisms
While the development of neuropathic pain has long been
ascribed to the known contributors of central sensitization
(action potential kinetics, phenotypic transformation, receptor
density zone reorganization and long-term potentiation), the role
of neuroinflammation regarding the initiation and maintenance
of neuropathic pain has evolved tremendously over the last
decade. Pro-inflammatory cytokines have been implicated in the
generation of neuropathic pain states at both peripheral and
central nervous system sites (36, 37). Neuroinflammation of the
peripheral nervous system is triggered by inciting damage to the
peripheral nerves, either by trauma, metabolic disturbances (i.e.,
diabetes), viral infection (i.e., HIV) or surgical lesions leading
to sprouting of new pain-sensitive fibers (such as A-β fibers),
excessive neuronal firing, and hypersensitization of primary
afferent peripheral neurons. During a peripheral nerve injury,
local cytokines recruits macrophages which secrete components
of the complement cascade, coagulation factors, proteases,
hydrolases, interferons, and other cytokines that ultimately
facilitate degradation and phagocytosis of the pathogen and
injured tissue. Peripheral neuroinflammatory mechanisms affect
the damaged neuron and neighboring afferent neurons sharing
the same innervation territory (38–45).

Central Neuroinflammation Mechanisms
Peripheral nerve injury causes neuroinflammation in the spinal
cord (41, 46–48). The neuroinflammation is triggered by
hyperactivity of the injured primary afferent peripheral sensory
neuron which increases neurotransmitters and neuromodulators,
causing hyperactivity of postsynaptic nociceptive neuronal
hyperactivity as well as the release of several inflammatory
activators. A result of this lumbar spinal inflammation process
is disruption of the blood-spinal cord barrier leading to
increased permeability, which then leads to infiltration of
immune cells such as T lymphocytes, macrophages, mast cells,
and neutrophils from the periphery into the spinal cord and
dorsal root ganglion (46). These mechanisms contribute to
further release of inflammatory mediators which contribute
to alterations in post-synaptic receptors. This neurotransmitter
increase leads to hyperactivity of post-synaptic nociceptive
neurons in the spinal cord and altered signaling up to
the thalamus and cortex that may contribute to central
sensitization and pain hypersensitivity (41, 45, 49). Nerve injury
typically involves neuro-immune interaction involving glia (50–
52). Glia are known to provide functional microenvironment
modulating neuronal signal transduction, synaptic pruning, and
neuroplasticity that contributes to central sensitization.

Inflammation Pain Biomarkers
Cytokines as Pain Biomarkers
Concentrations of CSF proinflammatory cytokines are increased
in multiple neuropathic pain states (53). Most studies of
pain syndromes have found elevations of proinflammatory and
anti-inflammatory cytokines in painful conditions compared

with healthy controls; furthermore, frequently higher levels of
proinflammatory markers are associated with greater pain (54).
Other markers such as soluble intercellular adhesion molecule-
1 (sICAM-1), for example, have also been demonstrated to
correlate with pain. sICAM-1 measured in serum correlates with
patients’ self-reported pain levels in various pain conditions
(back pain, polyneuropathy, post-herpetic neuralgia, orofacial
pain, mixed pain, andmusculoskeletal pain), distinguishing these
patients from those with no or mild pain (55).

Cytokines in Peripheral Neuropathy
Cytokines have also been demonstrated to be potent mediators
of pain in peripheral neuropathy. In one peripheral neuropathy
study, gene expression of pro- and anti-inflammatory cytokines
was shown to be increased in patients compared to controls
(56). Another study found neuropathic pain group was found
to have higher serum levels of several markers including C-
Reactive Protein (CRP) and Tumor Necrosis Factor (TNF)-
α compared with two control groups. Furthermore, patients
with painful neuropathy had higher sICAM-1 and CRP levels
when compared to painless neuropathy (57). A meta-analysis
comprehensively assessed the relationship between serum TNF-
α levels and diabetic peripheral neuropathy in patients with
type 2 diabetes, demonstrating increased serum TNF-α levels in
patients with diabetic neuropathy compared to type 2 diabetic
patients without neuropathy and compared with controls (58). Il-
17 is significantly upregulated in rat models of neuropathic pain,
and mRNA expression levels of IL-1β and IL-6 are significantly
enhanced in the spinal dorsal horn compared with controls (59).
Moreover, functional recovery from neuropathic pain following
a peripheral nerve injury relies on downregulation of IL-1 β and
TNF- α responses (60).

Substance P and Neuropeptides Pain Biomarkers
Another key pro-inflammatory neuropeptide, Substance P, is
known to initiate biological inflammatory effects (61). In
painful trigeminal neuralgia, levels of Substance P and other
neuropeptides (CGRP and VIP) in the cerebrospinal fluid and
blood of patients were found to have higher levels than that of
controls; furthermore, blood levels of these markers correlated
with those of the CSF (29). Another study investigating non-
neuropathic experimental pain found altered substance P levels
and dynamics when comparing older and younger adults (27).

Imaging Neuroinflammation Biomarkers
Compromised BBB can be identified with gadolinium-enhanced
MRI as is seen in the setting of white matter lesions in multiple
sclerosis. CNS-infiltration of circulating immune cells, such as
monocyte infiltration into brain parenchyma, can be tracked with
iron oxide nanoparticles and MRI. Pathological consequences
of neuroinflammation such as apoptosis can be imaged with
PET [99mTc] Annexin V or with iron accumulation with using
MRI T2∗ relaxometry. These imaging techniques can be used
to image human neuroinflammation which have potential to
impact patient care in the foreseeable future (62, 63). Integrated
positron emission tomography-magnetic resonance imaging and
the radioligand 11C-PBR28 for the translocator protein (TSPO)
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can be used to image regional brain volumes with glial activation.
Given the putative role of activated glia in the establishment
and or maintenance of persistent pain, pathophysiology, and
management of a variety of persistent pain conditions the results
from this technique are important to consider when considering
imaging techniques for measuring CNS inflammatory effects of
pain (64).

ENDOCANNABINOID PAIN BIOMARKERS

Endocannabinoid Mechanisms
There are three classifications of cannabinoids:
phytocannabinoids (plant-derived), endocannabinoids (in
human or animal tissues), and synthetic cannabinoids. Similar
to the opioid system, versions of the endocannabinoid (ECB)
system have been found in the vast majority of species with
a nervous system (65). In particular, the ECB ligands 2-AG
and AEA have been found throughout the animal kingdom
(66). The ECB system regulates physiology across most organ
systems and operates independently and interacts with the
inflammatory system, the opiate system, the Vaniloid (TRP)
system, and with nuclear transcription factors (67–72). The ECB
system works as a part of a negative feedback loop that regulates
neurotransmitter and neuropeptide release in the nervous
system. Endocannabinoid ligands are generated on-demand
in response to high levels of activity and produce short-term
inhibitory effects via their actions as retrograde transmitters at
presynaptic inhibitory G protein-coupled receptors (2).

The two most prevalent endocannabinoid ligands that bind
endocannabinoid receptors are anandamide (AEA) and 2-
arachidonoylglycerol (2-AG) (67). The 2-AG basal level is
∼1,000 times greater than AEA in the brain (73). The enzyme
acylphosphatidylethanolamine-phospholipase D is involved in
the formation of AEA, and the enzyme diacylglycerol lipase
is involved in 2-AG formation (74). Once synthesized and
released, endocannabinoids are removed from the extracellular
space through an endocannabinoid membrane transporter,
subsequently AEA is hydrolyzed by the enzyme fatty acid
amide hydrolase (FAAH), and 2-AG is degraded by cytosolic
monoacylglycerol lipase (MAGL).

There are two G protein-coupled ECB receptors (CBR1 and
CBR2). CBR1 receptors are highly expressed on presynaptic
neurons in the brain, spinal cord, and dorsal root ganglion. CBR2
receptors are primarily expressed in immune cells (including
myeloid, macrophage, lymphoid, and mast cells) (75). AEA
maintains basal endocannabinoid tone and has a high selectivity
for the CBR1 receptor over the peripheral CBR2 receptor.

The CBR1 receptor is the most abundant G protein-coupled
receptor in the brain and one of the most abundant in both
the peripheral and central nervous system. CBR1 are expressed
primarily on presynaptic peripheral and central nerve terminals.
CBR1 is the central receptor responsible for the behavioral and
psychotropic effects of the “high” caused by THC (65, 72). The
CBR1 receptor is also present in multiple immune cells, making
it important when considering anti-inflammatory properties of
endocannabinoids (68, 75).

The CBR2 receptor is largely present on peripheral immune
cells and participates in regulation of the immune system. The
principal endogenous ligand for the CBR2 receptor is 2-AG.
In the brain, stimulation of CBR2 receptors does not produce
cannabis-like effects (72, 74). The anti-inflammatory effects of
exogenous cannabinoids are mediated by the endocannabinoid
system, likely through CB2Rs in the periphery that have
immunomodulatory functions (76).

In neural and non-neural systems, in response to tissue injury
or excessive nociception, the ECB system generally suppresses
inflammation, suppresses sensitization, and suppresses pain (68,
71, 72, 77); however, ECB activity on the nociception system
can be complicated, with ECB antinociceptive or pronociceptive
depending on the site of expression and the underlying
physiological brain state (2).

Endocannabinoid Pain Biomarkers
ECB biomarkers have been used to monitor neuropathic pain.
Increases in circulating AEA concentrations occur in patients
with neuropathic pain complex regional pain syndrome (CRPS)
when compared to controls without pain (78). Increases in
circulating 2-AG concentrations have also been reported in
neuromyelitis optica (79). Circulating concentrations of AEA and
2-AG have been shown to correlate with the numbers of daily
severe headaches (80). ECB biomarkers also are present for non-
neuropathic pain conditions: bladder pain (81), fibromyalgia
(78, 82), cold pain sensitivity (83), osteoarthritis (84), knee
pain (85), and back pain (86). Clinical Cannabinoid Deficiency
Syndrome has been linked to migraines, neuromuscular pain,
and gastrointestinal disorders (87).

Endocannabinoid Interactions With
Inflammation and Opioids
When considering ECB pain biomarkers, it is important to
consider that the ECB system interacts significantly with
inflammation mechanisms as well as opioid mechanisms. The
ECB system regulates inflammation at multiple levels and
generally inhibits inflammation. In preclinical and laboratory
investigation, it has been shown that the ECB system inhibits
pro- inflammatory cytokines while increasing production of anti-
inflammatory cytokines. The ECB system also inhibits immune
cell activation, immune cell proliferation and migration, and
can increase immune cell apoptosis via multiple mechanisms
(23, 67, 88–93).

CBR1 receptors are 10 times more concentrated than
mu-opioid receptors in the brain, and cannabinoid receptors
co-localize with opioid receptors in many regions involved
in pain circuitry including the dorsal horn of the spinal
cord and in the supra-spinal periaqueductal gray and rostro-
ventral medulla (67, 72, 94). ECB and opioid pain biomarkers
potentially can be identified via endogenous opioid function
which can be assumed when comparing pain sensitivity in the
presence of opioid blocking treatment, such as naloxone vs.
placebo. Higher endogenous opioid function is associated
with decreased benefit from opioid treatments such as
morphine (95). Exercise induced analgesia involves both
opioid and endocannabinoid mechanisms (96). Exercise
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induced increases of endocannabinoid ligands such as AEA
are blocked by naltrexone. This indicates that opioids are
involved in the increase of endocannabinoid ligands following
exercise (97). Intrathecal morphine decreases circulating levels
of endocannabinoids demonstrating how the opioid and
endocannabinoid systems are linked (98). Lower endogenous
opioid function is associated with greater analgesia from pain
treatment with opiates. One study demonstrated that low
endocannabinoid activity is also associated with greater analgesia
from pain treatment with opiates (99).

Pathogenic alterations in the distribution of microbial
species within the gut (gut dysbiosis) is associated with
neuropathic pain in a variety of clinical conditions. One
study found that reductions in the diversity and increases
in the ratios of two microbial species (ratios of Blautia
and Clostridium to Lachnospira) may contribute to HIV-
associated neuropathic pain (100). This may be particularly
relevant in the context of the endocannabinoid system, as the
endocannabinoid system regulates homeostasis of multiple organ
systems, including the gut. Because dysregulation of the gut-brain
axis can result in chronic inflammation and neuroinflammation,
endocannabinoids have anti-oxidant, and anti-inflammatory
properties relevant to modulation of inflammation that occurs
along the gut-brain axis (101, 102).

NON-IMAGING PAIN BIOMARKERS

Genetic Biomarkers
In a systematic review and meta-analysis of 29 studies on
potential genetic variants associated with neuropathic pain
identified (103), 28 genes were significantly associated with
neuropathic pain, many involved in neurotransmission, immune
response, and metabolism. Genetic variants in HLA genes,
COMT, OPRM1, TNFA, IL6, and GCH1, were found to
have an association with neuropathic pain in more than
one study. In the meta-analysis, polymorphisms in HLA-
DRB1∗13,HLA-DRB1∗04,HLA-DQB1∗03,HLA-A∗33, andHLA-
B∗44 were associated with significantly increased risk of
developing neuropathic pain, whereasHLA-A∗02 reduced risk of
neuropathic pain.

To detect genetic associations, particularly those of small effect
size, a study must be sufficiently statistically powered to detect
those differences. Most genetic studies of neuropathic pain have
typically analyzed cohorts with <1,000 cases, which has resulted
in only suggestive associations (103, 104). One reason that genetic
studies in neuropathic pain lack sufficient sample sizes is the costs
associated with studying these large cohorts (105).

Micro-RNA
Micro-RNA Mechanisms
MicroRNA are small non-coding RNA molecules that contain
about 22 nucleotides and are found in plants, animals, and some
viruses (106). Identification of the first microRNA occurred in
1993, and currently more than 2,000 human microRNAs have
been recognized (107).MicroRNA function in RNA silencing and
post-transcriptional gene expression regulation. Base-pairing
occurs between microRNA and complementary sequences of

mRNA molecules leading to silencing of mRNA by (i) cleavage
of the mRNA, (ii) destabilization of the mRNA by shortening
the poly(A) tail, and (iii) inefficient translation of mRNA
into proteins by ribosomes. Each microRNA species regulates
multiple genes creating a complex regulatory network (108, 109).

MicroRNA-mRNA interactions allow for modification of gene
expression by controlling translation in response to signaling
events. Disease states or perturbations in cellular homeostasis
can lead to aberrant microRNA expression (110). Numerous
studies suggest the involvement of microRNAs in key biological
processes including development and cellular homeostasis, and
their altered expression is associated with various pathological
conditions including cancer, immune disease, inflammatory
disease as well as pain mechanisms (106, 111, 112).

Micro-RNA Are Stable in Blood Circulation
It is well-established that microRNAs are present in the serum
and plasma of humans and stable (as part of RNase resistant
molecular complexes or within vesicles or exosomes) such
that retrospective studies can be performed using banked
samples (106, 110, 113). Horizontal transfer of circulating
microRNAs between cells is a novel mode of intercellular
communication (109).

Micro-RNA-Based Biomarkers of Chronic Pain
The discovery of stable microRNAs in circulation has generated
enormous interest in exploring their utility as potential non-
invasive biomarkers (110, 114). The induction and chronification
of pain are associated with many expressional changes in pain-
related proteins regulated by microRNA. Thus, microRNAs are
useful as diagnostic and prognostic biomarkers in pain medicine.
MicroRNAs have been found to be involved in the onset and
progression of several human chronic pain conditions by means
of gene repression (107, 114–116). MicroRNA signatures specific
to different pain conditions, and their reversal on treatment can
be beneficial in patient stratification, prognosis and in bridging
pre-clinical, and clinical results (113).

Dysregulations in microRNAs have been reported in several
pain disorders in humans in both affected tissues and the
circulation (107, 117): Neuropathic pain (117, 118), peripheral
neuropathy (119, 120), complex regional pain syndrome (109,
117, 118), cystitis-induced chronic pain (118), osteoarthritis
(121), irritable bowel disorder (117, 118), fibromyalgia (117, 118),
and migraine (107, 111, 122).

Micro-RNA Biomarkers of Chronic Pain Treatment
Presence of circulating microRNAs within exosomes opens
up novel avenues for targeting treatments for chronic
pain conditions. Such approaches can provide insights on
the molecular underpinnings regarding therapeutic targets,
treatment doses, and patient eligibility for different treatments
(113, 118, 123).

Selectively inhibiting or supplementing a microRNA
contributing to pathogenesis is being pursued as a therapeutic
strategy for a variety of disorders. Studies from rodent pain
models and from patients have now implicated a role for
microRNAs in mediating various aspects of pain processing.
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These non-coding RNAs can provide mechanistic insights into
the pathways modulated and could serve as therapeutic targets
(110). Drug treatments alter microRNAs in humans and in
various animal models. Thus, microRNAs can be predictive
biomarkers for therapeutic intervention as well as prognostic
markers for treatment response (106).

Micro-RNA Biomarkers of Painful Peripheral

Neuropathies
MicroRNA modulated inflammation has a major role in the
induction and maintenance of neuropathic pain. Inflammation-
regulating microRNA profiles in patients with peripheral
neuropathies have been characterized. In patients with
polyneuropathies of different etiologies the expression of
miR-21-5p, miR-146a, and miR-155 were upregulated. In painful
neuropathies, tissues from skin biopsies from the lower leg,
where neuropathic changes are most common, had reduced
miR-146a and miR-155 expression compared to the thigh;
furthermore, peripheral neuropathies are associated with
aberrant microRNA expression in the sural nerve and in the
skin (119). In sural nerve biopsies of patients with peripheral
neuropathies miR-132-3p expression was more than doubled in
white blood cells of neuropathy patients compared to healthy
controls as well as in painful compared with non-painful
neuropathy (120). MiRNA’s (miR-155) have been found to be
upregulated in polyneuropathies, and miR-21 is increased in
painful neuropathies.

Stress
Allostatic Load
Allostatic load indices, an index that measures the effects on
the body by chronic stress, have been demonstrated to predict
morbidity and mortality. Allostatic load has been studied in
pain with allostatic load model covariates including age, sex,
education, smoking status, alcohol consumption, activity level,
depression, and common comorbid health conditions. Allostatic
load painmodels have shown a positive relationship between pain
severity and allostatic load (124).

Cortisol and Dehydroepiandrosterone
Cortisol is a proposed stress-related pain biomarker (125).
DHEA and DHEAS are neurosteroids that modulate inhibitory
GABA receptors and excitatory NMDA receptors, producing
complex neuronal effects (126). In animal studies, DHEA and
DHEAS levels have been proposed as a biomarker for pain
(127, 128). In multivariable regression analysis, gender, age,
and pain perception in the shoulder and upper limbs were
significantly related to serum DHEAS (129). In another study
plasma DHEAS levels were lower compared with persons with
chronic neck pain compared with controls with no pain (130).
One study found that the odds of having depressive symptoms
increased with higher cortisol/DHEA-S ratios among people
living with HIV on treatment, suggesting altered neuroactive
steroid metabolism may contribute to the pathophysiological
mechanisms of depression in people living with HIV (131). A
study of male war veterans found that reductions in DHEA
levels were associated with muscle soreness and were positively

associated with chest pain (132). Self-reported back pain
measures in female war veterans were inversely correlated with
DHEA and DHEA-S (126); those reporting moderate to severe
low back pain demonstrated significantly lower DHEA-S levels
compared to those with no or mild lower back pain.

Allopregnanolone
Allopregnanolone is a neuroactive steroid derived from
progesterone that is synthesized within the nervous tissue.
Allopregnanolone interacts with GABA-A receptors making
it important in neuroprotection particularly in cases of
ischemia and peripheral neuropathy. Plasma allopregnanolone
immunoreactivity has been associated with decreased pain
sensitivity in humans which may be mediated by hypothalamic-
pituitary-axis function (133). Allopregnanolone levels have also
been inversely associated with low back pain and chest pain
(132). In addition, allopregnanolone levels have been inversely
associated with muscle soreness, chest pain, and aggregate total
pain among war veterans (134).

Saliva
Biomarkers in saliva may be useful as they are easily measurable
without requiring a needlestick or invasive methods (135).
Salivary biomarkers, such as salivary cortisol, salivary α-amylase,
secretory IgA (sIgA), testosterone, glutamate, or tumor necrosis
factor receptor type II (TNF-RII) has been proposed as possible
pain biomarkers (136–138). In particular, sIgA and TNF-RII as
useful salivary markers of pain given their high intra-individual
reproducibility (139, 140).

Other
QST and Skin Biopsy and Peripheral Nerve Imaging
Quantitate sensory testing and skin punch biopsy results
are potential peripheral neuropathic pain biomarkers, in
particular for diabetic peripheral neuropathy (141, 142). Markers
for peripheral nerve fiber degeneration and regeneration,
microvasculature characteristics, and peripheral angiogenesis
have been investigated as biomarkers for diabetic peripheral
neuropathic pain (142). A review of MRI imaging of the sciatic
nerve and its branches provides convincing evidence that
diabetic peripheral neuropathy is associated with increase nerve
cross sectional area, T2-weighted hyperintense and hypointense
lesions, evidence of nerve edema, decreased fractional anisotropy
and increased apparent diffusion coefficient. These nerve
abnormalities are potential markers of pain in diabetic
neuropathy (143).

Physiological Markers
Skin conductance responses and alterations in
electrocardiograms have been used to predict pain level ratings
with high sensitivity and moderate specificity (144). Pupillary
dilatation in response to noxious stimuli is thought to be related
to locus coeruleus responses to nociceptive stimuli (145).

Fatty Acids and Linoleic Acid Derivative
Ornithine levels have also been found to be elevated in patients
with persistent muscle pain (146). Significant correlations have
also been seen for plasma concentrations of the linoleic acid
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derivatives 9- and 13-hydroxy-octadecadienoic acid among
patients with neck pain (147).

Neurotrophic and Neurotransmitter Pain Biomarkers
Neurotrophic factors (BDNF, NGF, NT3, TrkA) and
erythropoietin with the erythropoietin receptor are up-regulated
in patients with peripheral neuropathy (56). Neurotransmitters
in serum have been proposed as pain biomarkers, including
neuropeptide Y and BDNF (148–150) as well as Dopamine
(151). The catecholamine product metanephrine has also been
proposed as a pain biomarker (152).

BRAIN IMAGING PAIN BIOMARKERS

Pain Brain Circuits
In the past decade, the focus of brain imaging investigation
of pain mechanisms has shifted from investigating individual
regions of the brain to investigating brain circuits, see Figure 1.
One of the most important brain circuits is the default mode
network which is associated with daydreaming (154, 155).
The executive network is the brain circuit used when not
daydreaming but instead attending to the outside world (156).
The ascending pain network includes the anatomical pathway
that conveys the nociceptive input from the peripheral nervous
system to the spinal cord and the brain (157). The descending
modulation network involves brain regions that connect to the
brainstem and then down to the dorsal horn and increase or
decrease ascending pain signals depending on the behavioral state
of the individual (158). The salience network is a large-scale brain
network of the human brain that is primarily composed of the
anterior insula and dorsal anterior cingulate cortex. It is involved
in detecting and filtering salient stimuli, as well as in recruiting
relevant functional networks (157, 159).

Brain Circuit Changes in Chronic Pain
Chronic Pain Reduced Gray Matter Volumes
One of the most established chronic pain brain imaging
biomarkers is reduced regional gray matter volumes in brain
regions related to pain processing (160–164). One of the early
reports of reduced brain gray matter volumes in chronic pain
was reported in chronic back pain (160). Despite that brain
atrophy has been identified as a potential cause of chronic pain
in neurologic dementia disease (165), it has been demonstrated
that chronic pain causes brain atrophy (164). Subsequent studies
identified characteristic patterns of gray matter atrophy in
different chronic pain conditions (161–163).

Presence of Chronic Pain
It has been shown that in multiple chronic pain conditions that
there is increased connectivity between the salience network and
the default mode network and decreased activity in the default
mode network (166–171). This exciting biomarker for chronic
pain indicates that the chronic pain experience is disrupting the
normal daydreaming default mode network with an abnormal
interaction with the salience network which monitors stressful
events like the presence of painful stimulation.

Pain Rumination
Pain rumination occurs when people negatively dwell on their
pain experience. Interestingly, this negative cognitive dwelling on
the pain experience appears as increased activity in the default
mode network (172). This increase in default mode activity is
distinct from the decreased activity observed in the default mode
network when chronic pain increases cross-talk between the
salience network and the default mode network (166).

Pain Mind Wandering
It is plausible to envision that healthy mind wandering away
from thinking about the pain experience is the opposite of
pain rumination (172, 173). The dynamic pain connectome is a
model that helps to understand the pain experience that include
the salience network, default mode network, ascending pain
system, and descending pain modulation pathway (157, 159).
The dynamic pain connectome model was derived from brain
imaging data in healthy subjects who had mind-wandering away
from a painful stimulus. This work found that most brain regions
were activated by noxious stimuli whether the mind wandered
away from the stimulus or not. The responses of the salience
and default mode networks and connectivity with antinociceptive
areas showed mind wandering brain activity that included a clear
distinction between trials in which subjects attended to pain vs.
mind-wandered from pain (159, 173).

Transition to Chronic Pain
Increased functional connectivity between the medial prefrontal
cortex–nucleus accumbens at the beginning of back pain predicts
that patients will go on to develop chronic back pain; while
patients with decreased connectivity in this circuit went on to
recover from back pain (174, 175). Structural brain imaging in
subacute back pain patients was followed longitudinally for 3
years as they either recovered from or transitioned to chronic
pain. Furthermore, these results indicate that persistence of
chronic pain is predetermined by corticolimbic neuroanatomical
factors (176).

Placebo Mechanisms
There is substantial overlap between the circuits involved in
human placebo analgesia and those that mediate multiple
forms of context-based modulation of pain behavior in
rodents, including forebrain-brainstem pathways and opioid and
cannabinoid systems in particular. This suggests that placebo
effects are a set of adaptive mechanisms that shape nociceptive
signaling (177, 178). Subcortical limbic volume asymmetry,
sensorimotor cortical thickness, and functional coupling of
prefrontal regions, anterior cingulate, and periaqueductal gray
are predictive of placebo response (179). One study found that
placebo and nocebo effects are generated through differential
engagement of the periaqueductal gray-rostral ventromedial
medulla pathway, which likely influences pain experience by
modulating activity at the dorsal horn level (180).

Pain States and Traits and Resilience
Individuals have a set point around which different biological
attributes can fluctuate transiently into different states. However,
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FIGURE 1 | This schematic of the left side of the brain shows brain regions involved in pain brain circuits. The brain regions were extracted from the Hammers

Maximum Probability Atlas (153).

if one remains in a different state other than their set point for
a considerable period (e.g., induced by a disease), this different
state is considered a new set point. In pain research it is important
to consider trait and state pains to gain an understanding of not
only an individual’s current pain state but also more broadly to
their trait pain, which may be more reflective of their general
condition (181). Resilience is a trait that is highly associated with
chronic pain–related health outcomes. The neural correlates of
both pain and trait resilience are critical to understand the brain–
behavior relationship in chronic pain; yet, neural correlates of
resilience in chronic pain states are unknown (182). Therefore,
regional BOLD (Blood Oxygen Level Dependent) variability and
circuit connectivity have potential to provide predictive power
for pain resilience or vulnerability to chronic pain and treatment
efficacy (182, 183).

Imaging Biomarkers for Diabetic
Peripheral Neuropathic Pain
Two reviews on mechanisms and imaging biomarkers for

diabetic neuropathic pain review that diabetic peripheral

neuropathy and associated pain have structural and functional

central nervous system changes in the spinal cord, subcortex,
and cortex (184, 185). Diabetic peripheral neuropathy has
been associated with changes in the thalamus. A decreased
thalamic NAA/creatinine ratio is suggestive of thalamic neuronal
dysfunction (186, 187), and thalamic microvascular perfusion

changes have also been observed (188). Smaller spinal cord cross-
sectional area has been observed in those with diabetic peripheral
neuropathy (189, 190). In fact, in diabetic peripheral neuropathy,
diffusion tensor imaging techniques found posterior column
damage in the cervical spinal cord (191). Diabetic neuropathic
pain is related to decreased NAA in the thalamus (187), increased
thalamic vascularity (188), and spinal cord posterior column
damage (191).

Diabetic neuropathic pain is associated with increased
regional brain gray matter volume loss localized to brain regions
involved in somatosensory perception (192); furthermore, in
diabetic neuropathic pain, increased total gray matter atrophy
is associated with impaired ability to walk (193). Diabetic
neuropathic pain has been shown to be related to aberrant
default mode functional connectivity (171), decreased functional
connectivity between the thalamus and cortex (194), and
decreased functional connectivity in attention networks (195).
Altered fMRI activation responses to experimental heat pain
in limbic and striatal brain circuits are related to the duration
of diabetic neuropathic pain (196). Diabetic neuropathic pain
is related to a double dissociation such that neuropathic
pain intensity is more associated with thalamus-insular cortex
functional connectivity and nerve deficits are more related to
thalamus-somatosensory cortex functional connectivity (197).
Diabetic neuropathic pain is also associated with decreased
functional connectivity between the thalamus and amygdala
(198), decreased gray matter volumes and decreased white
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matter connectivity in pain processing and pain modulation
brain regions (199), decreased somatosensory cortical thickness
related to cortical function dysfunction (200), increased activity
in the anterior cingulate cortex (201), as well as ventrolateral
periaqueductal gray functional connectivity is altered and
correlates with magnitude of spontaneous pain and allodynic
pain (202).

Imaging Biomarkers for HIV Peripheral
Neuropathic Pain
Structural brain imaging has revealed changes to the brain
associated with HIV peripheral neuropathy. Total cortical
volume is smaller with HIV distal neuropathic pain (203). In fact,
in HIV distal neuropathic pain the posterior cingulate cortex is
the cortical region that was found to be smaller (204). In another
sample of people living with HIV, subjective symptoms of HIV
peripheral neuropathy were associated with smaller precuneus
volumes which overlap with the posterior cingulate cortex (205).
Smaller brain volumes for HIV distal neuropathic pain are
consistent with a general pattern that brain volumes are reduced
for a variety of chronic pain conditions (161, 162). Interestingly,
the midbrain, thalamus and posterior cingulate cortex volumes
are all reduced in HIV distal neuropathic paresthesia (206). It
has been suggested that brain atrophy associated with HIV distal
neuropathic paresthesia may precede brain atrophy associated
with HIV distal neuropathic pain (206).

More recent multi-modal brain imaging research has
revealed structural brain changes associated with HIV peripheral
neuropathy (207). HIV peripheral neuropathy is correlated with
decreased white matter integrity running from the midbrain to
the somatosensory cortex. HIV peripheral neuropathy severity is
also associated with decreased generalized fractional anisotropy
along the tracts of the external capsule in both hemispheres,
appearing to lead along the lateral thalamus to sensorimotor
cortex. A similar correlation is found in the superior bilateral
cingulum. These results indicate ascending deafferentation in
HIV peripheral neuropathy extends further downstream from
damaged peripheral nerves than seen previously, into the cortex.

HIV-associated distal neuropathic pain is associated with
decreased fMRI resting state functional connectivity in the
default mode network and increased functional connectivity
in the salience network (208). Decreased connectivity between
the medial prefrontal cortex and posterior cingulate cortex
and stronger connectivity between the ACC and thalamus is
associated with HIV distal neuropathic pain.

In the setting of experimental heat pain, significant interaction
has been found within the right anterior insula during
expectation of experimental pain offset in that a group with
HIV distal neuropathic pain compared group without HIV distal
neuropathic pain exhibited increased insula activation in the
feet (with painful neuropathic pain) compared to the hand
(without neuropathic pain) (209). These findings are consistent
with abnormal processing of expectation of experimental pain
offset or abnormal pain relief mechanisms potentially due
to increased negative expectation regarding the experience of
chronic endogenous neuropathic pain.

Imaging Biomarkers for Chemotherapy
Peripheral Neuropathic Pain
Anterior cingulate cerebral perfusion and gray matter density
correlate with chemotherapy-induced peripheral neuropathy
symptoms including pain (210). Patients with chemotherapy-
induced peripheral neuropathy symptoms (including pain)
demonstrated greater activation during painful stimulation
in the precuneus compared to healthy controls and exhibited
hypo-activation of the right superior frontal gyrus compared
to healthy controls. Painful stimuli delivered chemotherapy-
induced peripheral neuropathy symptoms patients evoke
differential activation of distinct cortical regions, reflecting a
unique pattern of central pain processing compared with healthy
controls providing a tool for monitoring cerebral changes during
anti-cancer and analgesic treatment (211).

Small-Fiber Peripheral Neuropathy Brain
Changes
A population of mixed small-fiber peripheral neuropathy
(metabolic, inflammatory, chemo, idiopathic) was used to
investigate how dysfunction of skin nerves led to abnormal
recruitment of pain-related brain regions, suggesting that the
brain may be affected in SFN. Greater volume reduction
in pain-processing regions, particularly the bilateral anterior
cingulate cortices was associated with greater depletion of
intraepidermal nerve fibers. There was significant reduction
in functional connectivity from the anterior cingulate cortex
to the insula pain-processing cortex that is linearly correlated
with the severity of intraepidermal nerve fiber depletion (212).
Similarly, another population of mixed small-fiber peripheral
neuropathy (metabolic, inflammatory, chemo, idiopathic) the
degree of skin nerve degeneration was associated with the
reduction of connectivity between the thalamus and pain-related
areas. Despite altered white matter connectivity, there was
no change in white matter integrity assessed with fractional
anisotropy. These findings indicate that alterations in structural
connectivity may serve as a biomarker of maladaptive brain
plasticity that contributes to neuropathic pain after peripheral
nerve degeneration (213).

Imaging Biomarkers for Other Peripheral
Neuropathies and Pain
A population of Charcot-Marie-Tooth patients had abnormal
diffusion tensor imaging findings indicative of significant
cerebral white matter abnormalities. Diffusion tensor imaging
abnormalities were correlated with clinical disability, suggesting
that there is comorbidity of central nervous system damage
with peripheral neuropathy in Charcot-Marie-Tooth patients
(214). A population of patients with hereditary neuropathy with
liability to pressure palsies were compared to a population of
normal controls and the fractional anisotropy values of the
patients were significantly lower in bilateral frontal, orbitofrontal,
and temporal areas of white matter (215). Patient populations
of paresthesia-dominant and pain-dominant patient groups
were compared and contralesional cortical thickness were
correlated with pain severity (216). Acquired and hereditary
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peripheral neuropathies are associated with increased functional
connectivity of the left precuneus/posterior cingulate cortex in
the default mode network. This increased connectivity in the
default mode network is correlated with duration of peripheral
neuropathy and severity of clinical total neuropathy score (217).

COMPOSITE PAIN BIOMARKERS

As discussed in the introduction, if used in combination,
biomarkers related to pain mechanisms offer the possibility to
develop objective pain-related indicators that may help diagnosis,
treatment, and understanding of pain pathophysiology (8, 10).
One possible application of such an approach might be to
determine if a patient who is not communicative is experiencing
pain. Another example may be to help guide selection
of treatment for neuropathy, such as whether transcranial
magnetic stimulation may alter network activity among those
with neuropathy.

Modeling pain brain mechanisms can be achieved
using multi-modal brain imaging including functional
magnetic resonance imaging, structural magnetic resonance
imaging, diffusion tensor magnetic resonance imaging,
electroencephalography, EMG, and PET (10, 13, 14, 218).
As we have reviewed here, in addition to using imaging
biomarkers, composite pain biomarkers can be investigated
using a multitude of non-imaging biomarkers.

Multiple analytic approaches have been used to investigate
composite pain biomarkers: (i) composite algorithms have
been investigated (219), (ii) unsupervised and supervised
multivariate analyses have been used to distinguish pain
groups and non-pain groups (220), (iii) supervised pattern
recognition have been used to cluster diagnostic groups
for different pain conditions (221), (iv) mechanism-based
pharmacokinetic-pharmacodynamic modeling has been used
to identify biomarkers that help diagnose pain and predict

pain treatment (16), (v) principal component analysis has
been applied to biochemical markers to create distinct pain
profiles (222), (vi) patterns of inflammatory blood cytokines and
chemokines have been used to differentiate pain and non-pain
groups (223), (vii) multivariable data analysis using simultaneous
analysis of 92 inflammation-related proteins with pain intensity
and pain thresholds were used to identify protein patterns which
distinguish pain and non-pain groups (223), (viii) metabolomics
have been applied to chronic pain (224).

DISCUSSION

Methods to Find Composite Pain
Biomarkers
As detailed above, chronic pain and neuropathic pain
impact multiple organ systems. Advancing the value of
pain biomarkers depends on (1) selection of measurements
and metrics that are the most mechanistically valid and
informative, and (2) combining the selected measurements
such that they mechanistically and statistically maximize
accurate classification. Advancement of measurement
accuracy is vital and the subsequent steps of the approach
are entirely contingent upon the success of this step. This
literature for the domains discussed in this manuscript is
too voluminous for a single review. In the above reviewed
literature, we attempted principally to focus on which
biological systems and which biomarkers should be the
focus of measurement. For effective application of measurements
of these domains it is important to discuss approaches for
measurement selection.

In Figure 2, we provide a significantly abbreviated schematic
of key available statistical approaches to handling multimodal
datasets in building composite biomarkers. We have highlighted
four general areas of statistics/machine learning: (1) feature
reduction (225), (2) classification (226, 227), (3) regression

FIGURE 2 | This is a non-comprehensive guide to important approaches when considering multimodal biomarkers. Key approaches include, classification, feature

reduction, regression, and clustering. Linear (blue) and non-linear (green) approaches are highlighted, although ranking order and other transformations can be

adapted across methodology.
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TABLE 1 | Summary table for pain biomarkers.

Type of pain

biomarker

Pain biomarker Pain disease Section References

Opioid markers Beta-Endorphin Experimental Neuropathic Trigeminal 2 (27–30)

B-Cell opioid receptors Neuropathic 2 (31)

Composite genetic Heterogeneous 2 (32)

Mu-Opioid A118G polymorphisms Dysmenorrhea 2 (34)

Migraine PET Migraine 2 (35)

Endogenous opioid function Experimental knee 4 (95–99)

Inflammatory markers Multiple cytokines Heterogeneous 3 (53, 54)

sICAM-1 pain intensity Heterogeneous 3 (55)

TNF-α Diabetic PN 3 (56–58)

Neuropeptides (Substance P, CGRP, VIP) Experimental Trigeminal Sickle Cell 3 (27, 29, 61)

Brain imaging neuroinflammation Multiple inflammatory 3 (62–64)

Endocannabinoid AEA CRPS 4 (78)

markers 2-AG Optic neuromyelitis 4 (79)

AEA, 2-AG Headache 4 (80)

Multiple components ECB Heterogeneous 4 (80–86)

Gut inflammation and ECB HIV 4 (100–102)

Genetic markers Genetic risk factors Neuropathic 5 (103–105)

MICRO-RNA markers MICRO-RNA dysregulation CRPS 5 (109)

MICRO-RNA dysregulation Heterogeneous 5 (117, 118)

MICRO-RNA dysregulation Peripheral neuropathy 5 (119, 120)

MICRO-RNA dysregulation Osteoarthritis 5 (121)

MICRO-RNA dysregulation Migraine 5 (122)

Stress markers Allostatic load Heterogeneous 5 (124)

Cortisol Systemic sclerosis 5 (125)

DHEA, DHEAS Heterogeneous 5 (126, 129, 130, 132)

Allopregnanolone Experimental Heterogeneous 5 (133, 134)

Salivary Markers Cortisol, alpha-amylase, sIgA, testosterone,

sTNR-RII, glutamate

Experimental Heterogeneous 5 (136–140)

Other pain markers QST, skin biopsy Peripheral neuropathy 5 (141, 142)

Sciatic nerve MRI Diabetic peripheral neuropathy 5 (143)

Skin conductance Experimental 5 (144)

Pupil dilation Experimental 5 (145)

Ornithine, linoleic acid derivatives Heterogeneous 5 (146, 147)

Neurotrophic factors Peripheral neuropathy 5 (56)

Serum neurotransmitters Back pain 5 (148–152)

Pain brain circuit Ascending pain network 6 (157)

markers Descending modulation network 6 (158)

Default mode network (DMN) 6 (154, 155)

Executive network 6 (156)

Salience network 6 (157, 159)

Acute pain machine learning 1 (12–14)

Pain brain circuit Chronic pain cortical atrophy Heterogeneous 6 (160–164)

modulation markers Chronic pain salience network interaction with

default mode network

Heterogeneous 6 (166–171)

Pain rumination increased DMN activity Temporomandibular 6 (172)

Pain mind wandering DMN interaction with

descending modulation network

Experimental 6 (173)

(Continued)
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TABLE 1 | Continued

Type of pain

biomarker

Pain biomarker Pain disease Section References

Pain chronification increased connectivity between

the MPF and NA

Chronic back pain 6 (174–176)

Placebo and nocebo mechanisms 6 (177–180)

Pain trait vs. pain states 6 (181)

Resilience networks 6 (181–183)

Peripheral neuropathy Thalamic changes (NAA, microvascular) Diabetic 6 (186–188)

markers Spinal cord atrophy Diabetic 6 (189–191)

decreased cortical gray matter Diabetic 6 (192, 193, 199, 200)

Changed brain circuit connectivity Diabetic 6 (171, 194, 195, 197,

198, 202)

Changed fMRI activation Diabetic 6 (196)

Decreased white matter integrity Diabetic 6 (199)

Changed anterior cingulate blood flow Diabetic 6 (201)

Decreased cortical gray matter HIV 6 (203–205)

Decreased subcortex HIV 6 (206)

Decreased white matter integrity HIV 6 (207)

Changed brain circuit connectivity HIV 6 (208)

Changed fMRI activation HIV 6 (209)

Anterior cingulate perfusion and volume Chemotherapy 6 (210)

Changed fMRI activation Chemotherapy 6 (211)

Decreased cortical gray matter SFN 6 (212)

Changed brain circuit connectivity SFN 6 (212, 213)

Decreased white matter integrity Charcot-Marie-Tooth 6 (214)

Decreased white matter integrity Hereditary neuropathy with liability to pressure

palsies

6 (215)

Decreased cortical gray matter Carpal tunnel syndrome 6 (216)

Changed Brain Circuit Connectivity Heterogeneous peripheral neuropathy 6 (217)

(228), and (4) clustering (229). Feature reduction can occur
during or prior to classification, regression, or clustering. Feature
reduction primarily focuses on two primary approaches: (1)
integration of measurements toward creation of a composite
variable to simplify and enhance model performance, and (2)
effective feature reduction through variable selection to use
optimal variables. Thus, feature reduction can represent the
effective combining of strong measurements to a meaningful
and robust latent variable or elimination of unnecessary,
or statistically weak, measurements. Some methods, such as
random forest, has built in feature reduction (230). Classification
methods are often utilized to build toward categorical variables,
however methods like neural networks are also designed for
predicting continuous variables (231). Regression models are
often used for the prediction of continuous measures or in
the case of canonical approaches this can be with multiple
dependent variables predicted simultaneously (232). Finally,
in the case where there is no existent or optimal category
or variable that the biomarkers seek to predict unsupervised
approaches can be useful. With all these approaches variables
can either be approached as linear or non-linear, although
transformations and feature reduction approaches can mitigate
these differences. It is important, regardless of approach,
to understand the biological mechanisms being modeled by

defining a model that best reflects the underlying systems to
optimize prediction.

Two key methods for statistical reduction of variables are (1)
selecting top ranking variables and (2) creation of composite
variables by factor or component-based analysis. Random Forest,
as depicted in Figure 2, can be utilized to determine importance
scores by evaluating the hierarchical functionality of a given
variable as a bifurcator for optimizing classification (226).
Random Forest is not alone in its utility to provide variable
importance ranking but provides a nice mechanism for this
analysis. The statistical creation of composite variables can be
done through principal component analysis (or independent
component analysis among other methods) such that novel
values are calculated for a set of variables that account for large
swaths of variance with a single value vector (233, 234). This
can substantially increase the efficiency of a model and serve to
highlight a robust latent feature.

Summary of Possible Pain Biomarkers
A summary of pain biomarkers discussed in this review
article are provided in Table 1. Non-imaging pain biomarkers
include opioid pain biomarkers: Beta-endorphin, B-cell opioid
receptors, composite genetic, Mu-opioid receptor A118G
polymorphisms, migraine opioid PET, and endogenous opioid
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function. Inflammatory pain biomarkers include cytokines,
sICAM-1, cytokines related to back pain, cytokines related
to peripheral neuropathy, substance P, and neuropeptides.
Endocannabinoid pain biomarkers include: AEA in CRPS,
2-AG in optic neuromyelitis, AEA and 2-AG in headaches, ECB
elements in multiple non-neuropathic pain conditions, ECB
elements in endogenous opioid function, and ECB elements
in gut-brain interactions. There are pain biomarker genes
related to neuropathic pain risk. MICRO-RNA dysregulation
pain biomarkers are found in neuropathic pain, peripheral
neuropathic pain, CRPS, migraine, and non-neuropathic
pain conditions. Stress related pain biomarkers include
allostatic load, Cortisol, DHEA(S), and allopregnanolone.
Measuring saliva contains potentially particularly accessible pain
biomarkers. Other pain biomarkers can be accessed via QST,
skin conductance, pupil dilation, fatty acid pain biomarkers
(ornithine and linoleic acid derivatives), neurotrophic factors,
and serum neurotransmitters.

Brain imaging pain biomarkers for measuring pain can
be evaluated using three different MRI brain methods: gray
matter structural imaging, white matter diffusion tensor imaging,
and functional brain activation. Brain circuits related to pain
mechanisms include an ascending brain circuit, a descending
pain modulation circuit, the default mode circuit, the executive

network brain circuit, and finally the salience network. Pain
mechanisms in the brain can be measured via modulation
in brain circuits: acute pain machine learning measures of
chronic pain, pain rumination, pain mind wandering, placebo
mechanisms, pain traits and states, and resilience. HIV peripheral
neuropathy changes in the brain include reduced total cortical
gray matter and reduced posterior cingulate cortex volume
in particular, white matter degeneration, altered resting state
networks, and aberrant expectation of pain relief.

By focusing on a broad array of mechanisms and biomarkers,
we can uncover important mechanistic connections and
interactions across systems. Neuropathic pain is a debilitating
condition that has primary, and cascading affects across body
systems. Assessment and understanding in an appropriately
comprehensive approach are challenging due to the vast and
diverse literature and the complexity measurement. This review
aims to facilitate navigation of this literature and the appropriate
selection of biomarkers for future research.
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