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INTRODUCTION

The process of novel analgesic drug development, from ideation to sustainable marketing, has
many steps: each with multiple challenges. Successful evolution to safe, effective, and economically
viable clinical use requires a series of positive outcomes in both scientific and business arenas.
Failure at any point can result in the abandonment of further development of the new molecular
entity (NME). In fact, most early analgesic development approaches end well before regulatory
approval and marketing for clinical use. Only 2% of NMEs for pain transitioned to Food and Drug
Administration (FDA) approval compared with 10% for all diseases from 2007 through 2017 (1).

When one considers the enormity of the problems associated with the most potent currently
available analgesics, opioids, the urgency of the unmet medical need cannot be overstated (2).
Still non-opioid options, especially in the US, are shrinking rather than growing. The removal of
marketed cyclooxygenase-2 (COX-2) inhibitors from the US market (3) and other jurisdictions,
and the failure of approval for newer COX-2 agents (4) have made this situation even more acute.
With fewNMEs coming online, development has focused on recycling already approved traditional
opioids with novel delivery systems (5, 6) or abuse deterrent formulations (7). A biased mu opioid
agonist, oliceridine, is among the few NMEs to reach regulatory approval in recent years (8).
While it does provide an improved safety profile with respect to respiratory depression (9), like
the other mu opioids, this remains a risk. Moreover, mu opioids, as centrally acting agents, carry
with them the additional risk of addiction (10). According to the Centers for Disease Control and
Prevention (CDC), 1 out of 4 persons receiving prescription opioids suffer from addiction, most
having experienced their first opioid in the form of a prescription from a physician (11).

Expanding the physicians’ armamentarium to address moderate-to-severe chronic pain beyond
archetypal mu opioids is an urgent unmet need. Chronic pain, by some estimates, affects nearly
one-third of the population worldwide (12). Yet it is important to note that failure to address this
therapeutic gap has not been the result of apathy or lack of effort on the part of pharma or the
scientific community. Numerous NMEs have shown great promise in animal models only to fail
in clinical trials. Some failures may have conceivably been attributed to failure to reach effective
concentrations sufficient for target engagement due to inappropriately low dosing or suboptimal
formulation. Historically, there were undoubtedly other failures that might well have been avoided
by applying the same rigor to preclinical investigations that has been recognized as good practice in
clinical trials for many years (13). Despite considerable advances directed toward both the conduct
and reporting of preclinical trials (14–16), difficulties in translation to the human pain state remain.
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The thesis presented here is that there are at least two
more major knowledge gaps that have hampered successful
development of analgesic NMEs. Urgently needed are: (1) better
preclinical pain models and pain measurement methods (or
methods to eliminate animal models altogether), and (2) a better
understanding of the alterations in pain pathways associated
with chronic pain states. These two areas requiring improved
understanding are interrelated.While often assumed that specific
behavioral observations and responses to various stimuli reflect
pain in preclinical models, this is often far from certain. However,
since preclinical models aim to emulate specific chronic pain
conditions, ensuring similar underlying mechanisms are present
in both the preclinical and the clinical models strengthens
confidence in the ability to monitor analgesic response in animals
unable to provide self-report.

PRECLINICAL PAIN MODEL TRANSLATION

The current regulatory process involves preclinical small animal
efficacy testing (usually rodents), followed by both small and
larger animal (typically canine) safety testing, before Phase
I clinical trials on healthy volunteers. Efficacy and safety
investigations in humans who suffer from the specific pain
indication(s) of interest begin much later in Phase II and III
clinical trials after many millions of dollars have already been
spent (17). Failure at this late stage results in a dampening
effect on investment and on the enthusiasm for the entire
process. The inclusion of Proof-of-Concept (PoC) and Proof-of-
Activity (PoA) studies early in clinical development might help
identify biomarkers for better candidate selection in subsequent
Phase II and II trials, thus improving outcomes (18). The use
of biomarkers, especially in clinical phase I and II have been
estimated to potentially double the chance of successful FDA
approval (19).

Biomarkers can take the form of genetic, physical or
laboratory testing, neuroimaging, or other observations that
can be correlated with diagnostic, prognostic, or therapeutic
responses (20). Often mentioned in reference to clinical
chronic pain conditions is the use of quantitative sensory
testing (QST). QST is particularly useful in chronic pain
states affecting sensory perception thresholds and tolerability
(e.g., hyperalgesia, allodynia, hyperpathia). Neuroimaging, while
challenging logistically, could also be of value in both preclinical
and clinical models. Genetic testing is appealing, but interspecies
differences limit generalizability. Skin biopsy is feasible in
both preclinical and clinical models. In conditions associated
with peripheral small-fiber neuronal changes, intra-epidermal
nerve fiber density examination has been used for diagnostic,
pharmacodynamic response, predictive, and prognostic purposes
(21, 22). Situations where injury-induced changes in opioid
receptor density or behavior are expressed in affected tissues
in the periphery lend themselves to this latter PoC approach.
Biopsy to directly assay peripheral opioid receptor density has
been performed in the preclinical setting (23). For clinical study,
less invasive approaches may be desirable. Indirect or surrogate
studies assessing the response to local challenge with chemically

(e.g., capsaicin), thermally (e.g., UV: ultraviolet radiation) or
electrically evoked stimuli can be useful in first-in-human
drug studies to document activity (PoA) (24), and potentially
in patient selection for later clinical studies to differentiate
candidates with preexisting inflammation-induced hyperalgesic
skin from less susceptible candidates in select clinical settings.
Accordingly, a more effective preclinical process, incorporating
relevant biomarkers, should also result in greater success.
However, unless and until methods are developed that will be
accepted by regulatory authorities that obviate the need for
animal studies, proactively attempting to improve the translation
from lower species to humans remains critical.

This first issue, interspecies differences, has been concisely
described elsewhere (25). Briefly, humans are not large rats,
and unfortunately even rats are not just large mice. Expecting
rodents to express behaviors analogous to complex pain
characteristics associated with chronic pain in humans, such
as the emotional/affective and suffering components, is not
reasonable given the anatomic differences in forebrain structure.
These authors also make the important point that chronic pain
expression, as assessed by behavioral changes in rodents, is
further complicated by the fact that rodents are prey animals.
Visible evidence of vulnerability in a prey animal is not
conducive to survival and thus the reluctance to show signs of
weakness following injury is more adaptive than stoic. Altered
burrowing behavior may be more indicative of distress than
other observations such as weight-bearing, gait abnormalities or
other spontaneous behaviors presumed to relate to pain (26, 27).
The use of small non-human primates (28, 29), if accepted
by regulatory bodies, could potentially improve translation,
especially if naturally occurring pain conditions provided an
ethical opportunity for study. While much can be gleaned from
human ex-vivo human tissue regarding mechanism (30, 31),
response to a novel treatment can only be ascertained in vivo.
Moreover, the clinical human population, far from a specific
strain of animal selected to create uniformity in preclinical
testing, are more like “wild type” animals. The diverse responses
to analgesics reflect this fact, again emphasizing the importance
of biomarkers in subject selection in clinical trials, as well as the
use of biomarkers in the earlier preclinical studies (22).

It is well known that the “standard” preclinical pain models
used to emulate various human chronic pain conditions
produce idiosyncratic responses (such as altered licking,
vocalization, facial expressions, weight-bearing, feeding, social
interaction, ambulation, rearing, burrowing, and conditioned
place preference) that are assumed to relate to the pain experience
(32). These models imperfectly match clinical conditions with
respect to the inciting injuries, longitudinal time course
following injury, and genetic predisposition (33). Similarly,
typical interventions imperfectly match duration of treatment,
as most preclinical efficacy trials involve a single or a limited
number of repeat doses. Nor can they, as limited duration
studies, account for subsequent time-dependent adaptation,
including the development of tolerance to intervention. Longer-
term studies are performed in safety testing; applying this same
strategy to efficacy testing could potentially improve success in
the clinical setting.
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By way of example, the types of injuries that are commonly
used to study potential treatments for neuropathic pain include
placing ligatures around the sciatic nerve (chronic constriction
injury; CCI), ligating a portion of the sciatic nerve (partial
nerve injury; PNI), ligation of spinal nerves contributing to
the sciatic nerve (spinal nerve ligation; SNL), and ligation of
two of the three terminal branches of the sciatic nerve (spared
nerve injury; SNI). These models develop on a different time
courses, last different periods of time, result in differing degrees
of evoked behaviors such as mechanical hyperalgesia, mechanical
allodynia, and thermal hyperalgesia, and exhibit differences in
spontaneous behaviors as well (34). A model focusing on the
initiation of neuroinflammation without overt nerve injury has
been proposed whereby the sciatic nerve is surrounded by a
cuff that bathes the nerve in zymosan (Sciatic inflammatory
neuritis; SIN). However, it still involves surgical incision (itself
a confounding injury) and implantation of the foreign body
(35). A variation on this approach whereby the zymosan is
injected percutaneously with no surgical incision or implanted
foreign body other than the zymosan has been described (36).
These latter two approaches have not been widely accepted, but
arguably are less contrived. Additionally, contralateral effects
in the non-surgical percutaneous model, as in the clinical
condition, were largely absent, in contrast to the dose-dependent
contralateral effects in SIN and the less prominent but still
consistently reproducible contralateral effects noted in CCI (37).
Regardless, clinical neuropathic pain conditions only rarely
involve injuries due to suture or section of all or part of the
sciatic nerve, its roots, or its branches. The models do, however,
allow for examination of features that may relate to symptoms
experienced in some patients. Back translating from human to
animal by identifying patient phenotypes based on QST or other
biomarkers has been suggested as a “precision medicine” method
to improve preclinical pain model selection (38). Absent better
models, this approach seems completely reasonable.

PERIPHERAL OPIOID RECEPTOR

CHANGES

Just as humans are not large rodents, somewhat
analogously chronic pain is not persistent acute pain.
Chronic pain often involves altered pain pathways.
Long-term potentiation, microglial activation, synaptic
pruning and other mechanisms contribute to the
neuroplasticity that can cause pain to become intransigent
and independent of the initial inciting injury. In these
cases, chronic pain becomes a disease in and of itself
(39, 40).

Given the importance of mu opioid receptors (MOR) within
principal pain pathways in the central nervous system (brain
and spinal cord), up- or down-regulation of MORs in number
or function impacts the ability of traditional mu opioids to
modulate chronic pain states. Furthermore, in some cases,
alterations in MOR activity in chronic pain states appear to
relate to specific insults. Several common chronic pain states are
recognized to be relatively unresponsive to mu opioid agonists

and characteristically difficult to treat, including bone cancer,
fibromyalgia, and neuropathic pain.

MORs are down-regulated in bone cancer (41). Alternatively,
multiple non-opioid pain pathways are activated, including
enhanced involvement of inflammatory mediators such as
bradykinin (42). In fibromyalgia, investigators have described
reduced central availability of MORs (43). Neuropathic pain
states are similarly characterized by a shift away from mu-opioid
dominated pathways to noradrenergic pathways (44). The lack of
efficacy in these situations contributes to inappropriate and futile
dose escalation. Consequently, these phenotypic shifts, along
with alterations due to the act of mu agonist administration
inducing tolerance and addiction, are among the reasons that
traditional mu opioids have not been shown to be consistently
superior to non-opioid analgesics in chronic pain states (45, 46).

In contrast, injuries resulting in peripheral inflammation, at
later stages, eventually inducemigration ofMORs into peripheral
tissues (47, 48), offering the opportunity for mu opioid agonists
to have distinct analgesic effect apart from their action in
the central nervous system. Analgesics, including mu opioids,
that remain in the periphery avoid central MOR-mediated
sedative effects, respiratory depression, and the potential for
addiction. Unfortunately, mu opioid agonists can themselves
induce microglial activation that induces hyperalgesia, lowers
pain thresholds, and induces a primed microglial phenotype that
persists even after opioid discontinuation, thus worsening rather
than alleviating chronic pain (49).

Inflammation also induces changes in non-mu opioid
receptor activity in the periphery. Kappa opioid receptors (KOR)
are constitutively present peripherally and may participate
in anti-inflammatory induced analgesia (50). However, even
absent inflammation, peripheral KORs actively mediate analgesia
(51). Yet in the presence of inflammation, kappa opioid-
mediated analgesia is enhanced. This enhancement likely results,
at least in part, from synergistic action on delta opioid
receptors (DOR). The DOR, also constitutively present in the
periphery, is normally quiescent, being functionally impeded
by G Protein-Coupled Receptor Kinase-2 (GRK2). In the
presence of inflammation, the DOR receptor becomes active.
Proinflammatory bradykinin stimulates GRK2 movement away
from DOR and onto Raf Kinase Inhibitory Protein (RKIP).
Protein kinase C (PKC)-dependent RKIP phosphorylation
associated with the binding of bradykinin (BK) induces this
GRK2 sequestration, restoring DOR functionality in sensory
neurons (52). Additionally, KORs and DORs form heterodimers.
The activity of these heterodimers has been demonstrated in
peripheral sensory neurons and the allosteric interaction between
the kappa and delta components of the heterodimers is thought
to contribute to the enhancement of kappa-mediated analgesia by
delta agonists (53).

DISCUSSION

Adaptation to both injury and exposure to exogenous toxins can
be essential for survival. Drugs, as exogenous substances, can be
considered potentially toxic assaults to be pharmacokinetically
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metabolized and eliminated. Perhaps less well appreciated are
altered pathways that pharmacodynamically minimize the drug’s
effects though the induction of tachyphylaxis, tolerance, or
other mechanisms. These processes can become even more
significant with repeated administration, as is required in
chronic conditions. Thus, over time these adaptations may
severely impair the efficacy of the administered drug. Agents
that appear to be effective in short-term preclinical models
may subsequently fail with longer-term administration clinically.
In contrast, when the altered pathways responsible for these
effects are understood, they can be exploited to improve
drug efficacy in specific conditions. The phenotypic shift in
neuropathic pain, away from opioid-mediated pathways in favor
of noradrenergic pathways, as previously mentioned, provides
just such an opportunity. Further, because adrenergic receptors
are up-regulated in peripheral sensory neurons (54), they are
readily accessible for study. This well-known and long studied
observation could have been exploited as a useful biomarker for
screening and recruiting susceptible candidates for inclusion in
clinical trials, as well as optimizing the selection of preclinical
models for detailed study.

Another NME among the very few novel analgesics to be FDA
approved in recent decades is tapentadol. It is one of the multiple
potential analgesics demonstrating significant noradrenergic
effects, suggesting utility in neuropathic pain states (55).
Mechanistically, tapentadol’s relatively modest analgesic activity
attributed to action at theMOR is greatlymagnified by synergistic
noradrenergic reuptake inhibition (56). While the effect on
descending central pathways may be largely responsible for
its non-opioid analgesic effect, had initial preclinical and early
clinical trials focused on noradrenergic receptor upregulation,
as a peripherally accessible biomarker, the development process
might well have been accelerated Ultimately, tapentadol extended
release was approved for neuropathic pain associated with
diabetic peripheral neuropathy (57, 58).

Many chronic pain conditions, including neuropathic pain,
involve the initiation of inflammatory pathways, albeit to varying
degrees. One NME, CAV1001, has demonstrated efficacy in
multiple preclinical models (59). CAV1001, as a dual-acting,
peripherally restricted kappa/delta opioid agonist, was more
effective in reducing inflammatory-induced hyperalgesia in mice
by an order of magnitude when compared on an equimolar
basis to a peripherally restricted pure kappa opioid agonist.
This synergy is consistent with DOR becoming active in
the inflammatory state and consequent potential involvement

of DOR/KOR heterodimers. Moreover, it was shown to be
relatively more potent in preclinical models known to have
greater involvement of the inflammatory cascade (59). The
use of a biomarker designed to identify heterodimers of
DOR/KOR and their behavior following injury in the selection
of candidates for subsequent clinical trials could greatly improve
the odds for successful clinical development of this NME.
Absent immunostaining or other practical technique to directly
assess peripheral receptor density in sensory neurons from skin
biopsy, indirect evidence for inflammation-induced hyperalgesic
responses could be used.

UV-evoked inflammatory hyperalgesia has been used as
an early biomarker for efficacy in early human studies on
volunteers. Although the technique causes no significant
injury, it does result in the local elaboration of multiple
inflammatory mediators (24, 60). This model has been used
experimentally in human volunteers to confirm efficacy
for multiple drugs, including opioids (61). Importantly,
the technique has also been successfully used in preclinical
translational models (62). Additional application of laser
algesimetry, where a CO2 laser stimulus is used to generate
somatosensory evoked potentials, can add an objective measure
of efficacy that has been used in healthy volunteers with
UV-induced inflammatory hyperalgesic skin (24) and might
be useful in clinical trial subject screening. Numerous drugs
have been evaluated with this technique including mu-,
kappa- and the mixed-opioid agonists tramadol, tapentadol,
and pentazocine.

While the aforementioned factors are important, they
illustrate just two among many explanations as to why most
seemingly promising preclinical drugs go on to fail in clinical
trials. The examples given also reinforce the concept that
no single analgesic can be expected to be useful for all
chronic pain states, and that mechanism based multimodal
approaches will remain best practice for the foreseeable future.
Novel analgesic development should focus on a customized,
personalized, biomarker driven approach that fully considers
not only very specific mechanisms of action, but also the
underlying pathophysiology as it exists within each genetically
and epigenetically unique chronic pain patient.
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