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Objective: We assessed the potential of using EEG to detect cold thermal pain
in adolescents with and without chronic musculoskeletal pain.
Methods: Thirty-nine healthy controls (15.2 ± 2.1 years, 18 females) and 121
chronic pain participants (15.0 ± 2.0 years, 100 females, 85 experiencing pain
≥12-months) had 19-channel EEG recorded at rest and throughout a cold-
pressor task (CPT). Permutation entropy, directed phase lag index, peak
frequency, and binary graph theory features were calculated across 10-
second EEG epochs (Healthy: 292 baseline & 273 CPT epochs; Pain: 1039
baseline & 755 CPT epochs). Support vector machine (SVM) and logistic
regression models were trained to classify between baseline and CPT
conditions separately for control and pain participants.
Results: SVM models significantly distinguished between baseline and CPT
conditions in chronic pain (75.2% accuracy, 95% CI: 71.4%–77.1%; p < 0.0001)
and control (74.8% accuracy, 95% CI: 66.3%–77.6%; p < 0.0001) participants.
Logistic regression models performed similar to the SVM (Pain: 75.8%
accuracy, 95% CI: 69.5%–76.6%, p < 0.0001; Controls: 72.0% accuracy, 95%
CI: 64.5%–78.5%, p < 0.0001). Permutation entropy features in the theta
frequency band were the largest contributor to model accuracy for both
groups.
Conclusions: Our results demonstrate that subjective pain experiences can
accurately be detected from electrophysiological data, and represent the first
step towards the development of a point-of-care system to detect pain in
the absence of self-report.

KEYWORDS

pain, machine learning, children, EEG, sensory testing, neuroimaging
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fpain.2022.991793&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fpain.2022.991793
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpain.2022.991793/full
https://www.frontiersin.org/articles/10.3389/fpain.2022.991793/full
https://www.frontiersin.org/articles/10.3389/fpain.2022.991793/full
https://www.frontiersin.org/articles/10.3389/fpain.2022.991793/full
https://www.frontiersin.org/articles/10.3389/fpain.2022.991793/full
https://www.frontiersin.org/journals/pain-research
https://doi.org/10.3389/fpain.2022.991793
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Teel et al. 10.3389/fpain.2022.991793
Introduction

Chronic pain is the third leading cause of disability in

adolescents aged 15 to 19 years old (1) and is estimated to

affect 11%–38% of all children and adolescents (2, 3).

Musculoskeletal pain is one of the most common types of

chronic pain in pediatric populations and negatively affects

activities of daily living and overall quality of life (4, 5).

Chronic musculoskeletal pain is a dynamic condition

modulated by physiological, psychological, and sociocultural

factors, resulting in pain that can vary in its intensity,

regularity, and predictability (6, 7). Children and adolescents

with chronic pain typically see two to three physicians and

wait between 12 and 24 months before being referred to a

pediatric pain specialist (8–10), delaying treatments and

interventions that can effectively manage pain. Ultimately, this

has negative consequences in physical, academic, social, and

sleep domains (5), with 32% of chronic pain patients missing

ten or more days of school per year and 47% of those

participating in sport quitting entirely (8). Furthermore,

chronic musculoskeletal pain in adolescents has a negative

financial impact on the child and their family (e.g. direct

medical costs) as well as on the economy as a whole (e.g.

productivity losses) (11, 12). As the pathophysiology

associated with chronic pediatric pain is poorly understood,

current clinical assessments are reliant upon physician

interviews and observations, psychological screenings, and

subjective rating scales (13).

More objective methods of diagnosing and prognosticating

chronic pain are needed to improve medical management and

quality of life. The need for objective biomarkers of chronic

pain is particularly strong for children as they undergo

changes in pain processing, perception, and response

throughout development (14–16). Most clinical pain

evaluations require children to self-report their pain. However,

children may be less able to articulate their subjective pain

experience (17, 18) or may be entirely nonverbal due to

intellectual and/or developmental disabilities, which further

precludes appropriate diagnosis and enrollment into effective

treatment strategies. Electroencephalography (EEG) is well-

positioned to fill this clinical gap, as it is a safe, reliable, and

low-cost neuroimaging tool that can be translated into a

point-of-care system (19, 20). Pain is also associated with

complex temporal-spatial neural patterns (21); thus, the high

temporal resolution of EEG systems is particularly suited for

capturing information that represents the central mechanisms

involved in chronic pain (22). Adults with chronic pain show

altered EEG patterns compared to healthy controls, including

increased frontal connectivity (23) and a shift towards

increased power in higher frequency bands (24). Other studies

investigate the neurophysiological response of healthy adults

exposed to a tonic pain stimulus (e.g. the cold pressor task

(CPT)), as this is thought to better mimic true pain responses
Frontiers in Pain Research 02
compared to phasic pain models (25, 26). Several EEG

features, including spectral power derived from both fast

Fourier (27, 28) and continuous wavelet (29) transformations,

functional connectivity (27), and time-frequency outcomes

(30, 31), differentiate between resting (e.g. no pain) and tonic

cold pain conditions in heathy participants, with frontal theta

rhythms appearing particularly sensitive to cold pain (32).

Growing evidence suggests that EEG features can detect

both acute and chronic pain, but several factors preclude the

translation of these findings to pediatric participants. 1) Most

of the available studies have been conducted exclusively with

adult participants. As there are distinct patterns of brain

activation between adults and children in both healthy (32)

and chronic pain participants (33), it is likely that these

findings do not translate to adolescents. 2) Quantitative

sensory testing modalities, such as the CPT, are used in

chronic pain patients to differentiate between pain

mechanisms, quality, and/or neurophysiological correlates,

which can help guide and personalize treatment (34, 35). To

date, the literature evaluating EEG changes during a CPT has

focused on healthy participants. As individuals with chronic

pain have altered EEG patterns at rest (36), these changes

may not translate to children with chronic pain. 3) Finally,

movement artifacts in EEG are a common problem in pain

research (29, 37), as pain can cause changes in facial

expressions (38) and gross motor movement. Furthermore,

most clinical pain assessments require behavioral ratings of

pain (e.g. verbal indication, hand signal, or by moving a

sliding scale) (27–29), which may intrinsically generate

movement artifact in the EEG signal.

We address all three of the aforementioned limiting factors

in the current study, with the long-term goal of developing an

effective point-of-care system for the detection of pediatric

pain. The objective of this study was to assess the potential of

using EEG-derived features to detect cold thermal pain in

adolescents with and without chronic musculoskeletal pain

using machine learning (ML) and inferential statistics

approaches. We hypothesized that EEG features would

accurately classify resting state and tonic cold conditions

regardless of whether ML or inferential approaches were

modeled. Furthermore, we hypothesized that adolescents with

chronic musculoskeletal pain would have unique

neurophysiological responses to the CPT compared to healthy

children.
Materials and methods

This is a sub-study of a larger project investigating clinical

pain and EEG outcomes at rest and during thermal

quantitative sensory testing (QST) in adolescents with and

without chronic musculoskeletal pain. The methods of the

larger study are described in Ocay et al. 2022 (In Review).
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The current study focused on comparing the classification

accuracy of EEG features in healthy and chronic pain

participants during no-pain (resting baseline) and pain (tonic

cold) conditions using ML algorithms and inferential statistics

approaches. All participants (and their parent, if younger than

14 years old at the time of enrollment) provided written

informed consent. This study was approved by the Research

Ethics Board at McGill University (A09-M17–17B).
Participants

Adolescents with chronic musculoskeletal pain were

recruited from the Edwards Family Interdisciplinary Center

for Complex Pain at the Montreal Children’s Hospital, as well

as spine and orthopedic outpatient clinics at the Shriners

Hospitals for Children-Canada between October 2018 and

June 2021. Participants with chronic musculoskeletal pain

were included if they were between 10 and 18 years old,

reported musculoskeletal pain once or more per week for at

least the preceding three months, and could understand and

complete the clinical outcomes associated with the larger

study. Age-matched healthy controls with no history of

musculoskeletal pain within the last three months were

recruited through word of mouth and recruitment flyers

placed in local magazines and on social media. Participants

were excluded if they were unable to communicate in English

or French, had diagnosed development delays, or had severe

systemic disease resulting in functional limitations.
Thermal experimental pain condition

All participants underwent thermal QST previously

described by our research group (39, 40). Only the cold

thermal condition was used in this study. Each participant

underwent a CPT, immersing their left forearm in cold water

(12 °C) for 2 min. Participants verbally rated their pain every

15 s throughout the CPT, using a numerical rating scale

ranging between 0 (no pain) and 10 (worst pain imaginable).

An average pain intensity score of 10 (maximum value) was

given if a participant was unable to keep their forearm

submerged for the full 2-minute protocol.
Electroencephalography (EEG) methods

EEG recording and processing
A dry EEG headset (DSI-24, Wearable Sensing) was used to

record electrical activity during an eyes-open resting state (i.e. no-

pain) assessment and throughout the CPT. To investigate the

effect of motor movement on EEG features, a subset of

participants arbitrarily moved a computerized visual analogue
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scale (used in the tonic heat condition of the larger study)

during the baseline assessment while the remaining participants

completed the baseline with no voluntary motor movements.

EEG data was recorded at 300 Hz, referenced to the Pz

electrode, and impedance was kept below 1 MΩ in accordance

with manufacturer recommendations. Following data collection,

the EEG signal was loaded into EEGlab (41), where it was

preprocessed as follows: 1) data were bandpass filtered between

0.1–50 Hz; 2) EEG was re-referenced from Pz to A1 and A2

(ear lobe) electrodes; 3) bad channels, if present, were removed

from the dataset; 4) an Independent Component Analysis was

conducted to remove repetitive noise in the signal (eye blinks,

eye movements, etc.); and 5) any remaining bad segments of

EEG data were manually removed following a visual inspection

of the signal and segments were rejoined (i.e. concatenated) at

the boundary. Missing values resulting from the removal of

noisy channels were imputed using the mean value from all

existing data points for a given feature (e.g. column average).

EEG feature extraction
The preprocessed EEG was segmented into 10 s, non-

overlapping epochs and analyzed in Matlab using custom

scripts. All features described below were calculated at four

frequency bands: 1) delta (1–4 Hz), 2) theta (4–8 Hz), 3) alpha

(8–13 Hz), and 4) beta (13–30 Hz). Seven classes of EEG

features were calculated for each 10-second epoch: spectral

power, peak frequency, permutation entropy (PE), weighted

phase lag index (wPLI), directed phase lag index (dPLI), and

graph theory features (path length, clustering coefficient, small-

world architecture, modularity, and node strength).

Spectral features, which assess the power of oscillatory

components of the EEG signal, were computed using the

spectopo function from EEGlab. Spectral power outcomes

were generated using the multitaper method, with number of

tapers K = 3 and a time-bandwidth product NW= 2. Peak

frequency (Hz) was calculated as that with the largest power

amplitude within each frequency band. Spectral power

outcomes were generated for each channel, while peak

frequency was calculated across all channels.

Permutation entropy assesses the information content of the

EEG signal. The continuous EEG signal was mapped onto a

symbolic sequence of motifs according to shape (slope, peaks,

and troughs). This mapping is specified through an

embedding dimension (number of samples included in each

motif) and time lag (number of samples spanned by each

section of the motif) (42). We selected an embedding

dimension of 5 and time lag of 4 to ensure a sufficient

deployment of the trajectories for the beta frequency band

(43). Higher (approaching 1) normalized PE value indicates

that the EEG signal contains predominately higher

frequencies, while lower (approaching 0) normalized PE value

implies that the EEG signal contains predominately lower

frequencies. PE features were calculated for each channel.
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Weighted phase lag index (wPLI) was used to calculate the

degree of functional coupling across all electrode pairs, as this

phase-based functional connectivity metric is minimally

susceptible to volume conduction (44). For each channel,

instantaneous phase of the EEG was calculated using a Hilbert

transform. Then, the phase difference between each pair of

electrodes was calculated and weighted by the magnitude of

the imaginary component of the cross-spectrum. The wPLI

ranges between 0 (i.e. no coupling) and 1 (i.e. strong coupling).

To determine the direction of the phase lead/lag

relationships between electrode pairs, the dPLI was calculated

(45). The dPLI ranges between 0 and 1: 0.5≤ dPLI≤ 1

indicates that electrode 1 leads electrode 2, 0≤ dPL I≤ 0.5

indicates that electrode 2 leads electrode 1, and dPLI = 0.5

indicates no consistent phase lead/lag relationship between

electrodes. Both wPLI and dPLI yield a 19 × 19 functional

connectivity matrix, with each cell in the matrix representing

the strength of the functional connection between a pair of

electrodes. To generate the average connectivity value per

electrode, we calculated the mean across each row of the matrix.

Graph theory analyses, which synthesize functional

connectivity into graph representations to evaluate network-based

outcomes, were performed using both weighted and binary

networks. To create weighted networks, graphs were derived from

raw wPLI matrices (e.g. continuous values between 0 and 1). To

create binary networks, the wPLI matrices were transformed such

that functional connections above a given threshold were set to 1

and the remaining connections were set to 0. The threshold was

set to the percentage of connections required to maintain a

minimally spanning graph for the baseline EEG; separate

thresholds were calculated for each participant at each frequency

band. All graphs (e.g. weighted and binary) were normalized

against 100 random networks that shuffled the network’s edges

while preserving the degree and strength distributions. From the

weighted and binary networks, we calculated graph theoretical

properties of path length (46), clustering coefficient (47, 48),

small-world architecture (47), modularity (49), and node strength.

The code underlying the graph theory analysis is found in the

Brain Connectivity Toolbox (50).

Ultimately, a total of 380 EEG features were calculated: 76

(19 channels × 4 frequency bands) spectral power features, 4

(1 outcome × 4 frequency bands) peak frequency features, 76

(19 channels × 4 frequency bands) PE features, 76 (19 channels

× 4 frequency bands) wPLI features, 76 (19 channels × 4

frequency bands) dPLI features, 36 (9 features × 4 frequency

bands) binary graph theory features, and 36 (9 features × 4

frequency bands) weighted graph theory features.
Machine learning methods

We implemented a ML framework for an epoch-by-epoch

binary classification of no-pain (baseline) vs. pain (CPT). As
Frontiers in Pain Research 04
our prior work found significant differences in EEG features

between healthy controls and chronic pain participants (Ocay

et al. 2022, In Review), models were run separately for each

group. As the range of possible values of the EEG features

varied widely, a standard scaler normalization was applied to

ensure equal weighting across all EEG features in the machine

learning analysis. Across all groups and conditions, an

observation space (i.e. total number of 10-second epochs on

which EEG features were extracted) of n = 2,359 (Healthy: no-

pain = 292 epochs, pain = 273 epochs; Chronic Pain: no-pain =

1039 epochs, pain = 755 epochs) was formed. The entire analysis

pipeline was developed and implemented using scikit-learn (51).

Model selection
We evaluated multiple binary classification algorithms to

identify the optimal ML approach to separate no-pain and

pain conditions. These models included linear-discriminant

analysis (LDA), support vector machines (SVM), and decision

trees. To compare the ML approaches to more traditional

inferential statistics methods, we also evaluated logistic

regression models. For the SVM and logistic regression

models, we conducted a hyperparameter sweep (0 to 1 by 0.1

steps, 2, 5, 10) of the regularization parameter C. Both linear

and radial basis function kernels were also evaluated for the

SVMs, while the gini and entropy criterion hyperparameters

were tested for the decision trees. The LDA was conducted

using only default hyperparameters in scikit-learn.

EEG epochs derived from a single participant are highly

correlated; to ensure independence between the training and

test sets, a leave-one-subject-out (LOSO) cross-validation

scheme was used. The overall accuracy reported for each

model was calculated as the average accuracy over all LOSO

repetitions. The ML and logistic regression model (and their

associated hyperparameters) with the highest classification

accuracy were selected for subsequent analyses.

Feature importance of the final model was evaluated using

the logistic regression model weights observed during the final

model performance on the validation set, as model

coefficients cannot be generated when using a radial basis

function kernel for SVM models. As all features were

normalized using a standard scalar prior to the machine

learning analysis, no additional scaling of the model

coefficients was performed.
Statistical analysis

Demographic information and effect of
movement on EEG features

Independent sample t-tests (continuous data) or chi-square

analyses (categorical data) compared demographic

characteristics between chronic pain and heathy participants,

with significance set at p = 0.05. Prior to the machine learning
frontiersin.org
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analysis, independent sample t-test were also conducted to

evaluate differences in no-pain EEG features between those

participants who performed small, arbitrary motor

movements at rest compared to those completing the baseline

fully at rest (i.e. no voluntary motor movements). Each EEG

feature (power, peak power, etc.) was analyzed separately;

within features, all channels and frequency bands were

combined. Bonferroni corrections were applied based on the 7

classes of EEG features analyzed, setting the significance level

at p = 0.007. Any EEG features determined to be significantly

affected (p≤ 0.007) by motor movements were removed from

the dataset prior to the ML analysis. To provide further

evidence regarding the effect of motor activity on baseline EEG

features, Cohen’s d values are reported and interpreted as

negligible (d < 0.2), small (0.2≤ d < 0.5), medium (0.5≤ d < 0.8),

and large (d≥ 0.8) effect sizes.

Machine learning model performance
The full dataset was randomly split into an 80:20 train/test

and validation dataset, implemented with the test_train_split

function in scikit-learn. Model selection and initial model

performance metrics were performed on the train/test set

using the LOSO cross-validation scheme described above.

Once the best models and their associated hyperparameters

were selected, final model performance was determined using

the validation set. To determine if particular EEG features

contributed more strongly to the classification accuracy of the

model, the final models were run on the full dataset (all EEG

features combined) and on each EEG feature individually (PE

features only, graph theory features only, etc.).

Permutation testing assessed the statistical significance of

model performance. Model accuracy was calculated on 10,000

iterations through a permutated dataset, creating a null

distribution of random accuracy. Model performance was deemed

to be statistically significant if the accuracy of the true model (i.e.

non-permutated labels) was greater than the permutated model at

a level of p = 0.01. To establish 95% confidence intervals, a

bootstrapping procedure was performed. Bootstrapped datasets

were created by sampling from the original dataset with

replacement. Similar to the permutation testing, model accuracy

was calculated on 10,000 bootstrapped datasets to create a null

distribution of classifier performance. The 95% confidence

intervals were created using the 2.5 and 97.5 percentiles of the

bootstrapped distribution. To compare between group (healthy

vs. chronic pain) and model type (ML or inferential statistics),

models were deemed to have significantly different classification

accuracy if their confidence intervals did not overlap.
Results

A total of 160 adolescents (39 controls, 121 pain) completed

the study. Both groups were similar in age (Control: 15.2 ± 2.1,
Frontiers in Pain Research 05
Pain: 15.0 ± 2.0, t = 0.49, p = 0.62), but the chronic pain

group had a significantly higher proportion of females

(Control: n = 18 (46.2%), Pain: n = 100 (82.6%), χ2(1) = 20.3,

p < 0.0001). The majority of participants in the chronic

musculoskeletal pain group reported pain for more than 12

months (n = 85, 70.3%), while 22 (18.2%) reported pain

between 6 and 12 months, and 14 (11.6%) report pain for less

than 6 months. Most pain participants reported their pain

frequency as at least once per day (n = 97, 80.2%) or every

other day (n = 16, 13.2%), with the duration of each episode

ranging from a few minutes (n = 17, 11.9%) to constant (n =

95, 66.4%). At baseline, no healthy participants reported any

pain, while chronic pain participants reported a pain score of

3.4 ± 2.4 (t =−15.5, p < 0.0001). The average pain score

recorded throughout the CPT was significantly higher than

baseline for both healthy (6.1 ± 2.3, t =−16.6, p < 0.001) and

chronic pain (6.7 ± 2.4, t =−10.4, p < 0.001) participants;

however, there were no differences in the average pain rating

between healthy and chronic pain groups throughout the CPT

(t =−1.27, p = 0.21, Figure 1). Approximately half (n = 72,

45%) of participants performed arbitrary motor movements

using the computerized visual analogue scale at baseline to

examine the influence of motor movements on the EEG

features.
Voluntarily motor movement affects a
subset of EEG features

Spectral power (p < 0.001, Cohen’s d = 0.84), wPLI (p < 0.001,

Cohen’s d = 0.40), and weighted graph theory outcomes (clustering

coefficient: p = 0.002, Cohen’s d = 0.19; small-world architecture:

p = 0.006, Cohen’s d = 0.17; node strength: p < 0.001, Cohen’s

d = 0.38) significantly differed between participants who did and

did not complete small, arbitrary motor movements during the

no-pain EEG assessments. All of the remaining EEG variables

were not significantly different between groups and had Cohen’s

d values <0.20 (negligible effect size), indicating that these

outcomes were not affected by voluntary motor activity. Spectral

power, wPLI, and weighted graph theory outcomes were

removed from the dataset, with peak frequency, dPLI, PE, and

binary graph theory features retained for the no-pain vs. pain

classification analysis.
EEG classifies pain with 75% accuracy
in chronic musculoskeletal pain
participants

Model performance on the test/train sets
The SVM with radial basis function kernel and C = 0.9

yielded the highest classification accuracy of all ML models,

while an L1 penalty and C = 0.1 produced the best
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FIGURE 1

Subjective pain ratings before and after the CPT. Bar charts displaying self-reported pain scores (numeric rating scale 0–10) at baseline and during the
CPT (average score throughout the condition). All healthy participants reported no pain (0) at baseline. Both healthy and chronic pain participants had
significantly higher pain scores during the CPT compared to baseline. Chronic pain participants had significantly higher scores than healthy
participants at baseline, but average pain scores throughout the CPT were not significantly different between groups. ***denotes significance at
p < 0.001 level.
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performance for the logistic regression models. The SVM model

distinguished between no-pain and pain conditions with 75.6%

accuracy (95% CI: 71.9%–77.6%; p < 0.0001). The logistic

regression distinguished between no-pain and pain conditions

with 74.8% accuracy (95% CI: 71.1%–77.6%; p < 0.0001). No

performance differences were observed between the SVM and

logistic models, as evidenced by their overlapping confidence

intervals. The performance of individual features is found in

the Table 1. In both the SVM and logistic regression models,

dPLI, PE, and peak frequency features significantly classified

between no-pain and pain conditions as independent features.

Final model performance on the validation set
Overall model performance was largely replicated on the

validation set. Final model accuracy was 75.2% (95% CI:

71.4%–77.1%, p < 0.0001) for the SVM and 75.8% (95% CI:

69.5%–76.6%, p < 0.0001) for the logistic regression. In both

instances, the model accuracy was within 1% point of the

observed performance on the test/train set. For the SVM
Frontiers in Pain Research 06
model, PE, dPLI, and peak frequency features could all

significantly classify between no-pain and pain conditions as

stand-alone features; only the binary graph theory features

(53.7% accuracy, 95% CI: 48.0%–55.9%, p = 0.84) were unable

to independently classify between the conditions. For the

logistic regression model, all features accurately classified

between no-pain and pain conditions (range: 58.6%–75.2%

accuracy) at a level greater than chance (Table 1).
EEG classifies pain with 72%–74%
accuracy in healthy participants

Model performance on the test/train sets
The highest performing SVM model in the healthy control

group used a radial basis function kernel and C = 0.8, while the

best performing logistic regression model was identical to the

chronic pain participants (L1 penalty and C = 0.1). Model

performance in the healthy control group was nearly identical to
frontiersin.org
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TABLE 1 Test/train and validation set accuracies for the radial SVM and logistic regression models presented for the chronic pain and healthy
controls groups.

Model Type Features Chronic Pain Participants Healthy Controls

Test/Train Set Validation Set Test/Train Set Validation Set

Accuracy (%) P Accuracy (%) P Accuracy (%) P Accuracy (%) P

SVM All 75.59 (71.92, 77.58) <0.001 75.20 (71.39, 77.11) <0.001 74.43 (68.22, 78.39) <0.001 74.77 (66.36, 77.57) <0.001
dPLI Only 56.57 (54.83, 62.58) 0.002 59.67 (54.50, 61.03) <0.001 53.04 (43.64, 59.84) 0.17 43.93 (37.38, 53.27) 0.88
Graph Only 57.68 (51.72, 60.26) 0.09 53.68 (47.96, 55.86) 0.84 55.63 (46.22, 61.93) 0.11 59.81 (49.53, 62.62) 0.02
PE Only 74.36 (70.64, 76.73) <0.001 72.75 (67.03, 74.11) <0.001 70.56 (65.99, 77.88) <0.001 71.96 (66.36, 78.50) 0.009
Peak Only 61.26 (57.04, 64.64) <0.001 59.13 (55.86, 59.95) <0.001 55.30 (48.61, 65.08) 0.008 55.14 (47.66, 58.88) 0.07

Logistic Regression All 74.84 (71.10, 77.61) <0.001 75.75 (69.48, 76.57) <0.001 72.76 (65.88, 78.91) <0.001 71.96 (64.49, 78.50) <0.001
dPLI Only 58.44 (53.02, 61.20) 0.007 61.58 (52.86, 61.59) <0.001 51.78 (43.68, 60.09) 0.26 50.47 (38.32, 57.94) 0.45
Graph Only 57.30 (52.80, 60.63) 0.05 59.95 (53.13, 60.49) <0.001 55.09 (45.33, 62.13) 0.03 59.81 (49.53, 65.42) 0.02
PE Only 74.67 (70.62, 76.52) <0.001 75.20 (70.02, 76.02) <0.001 73.44 (68.02, 80.04) <0.001 74.77 (66.36, 78.50) 0.002
Peak Only 60.17 (57.48, 63.86) <0.001 58.58 (56.40, 60.49) <0.001 55.23 (46.20, 62.08) 0.13 54.21 (48.60, 58.88) 0.006

Note: 95% Confidence intervals are presented below the point accuracy in parentheses. dPLI = directed phase lag index, Graph = binary graph theory,

PE = permutation entropy, and Peak = peak frequency.
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the chronic pain group, with the SVM classifying between

no-pain and pain conditions with 74.4% accuracy (95% CI:

68.2%–78.4%, p < 0.0001) and the logistic regression classifying

with 72.8% accuracy (95% CI: 65.9%–78.9%, p < 0.0001). PE

features significantly classified between no-pain and pain

conditions for both SVM and logistic regression models (SVM:

70.6% accuracy, 95% CI: 66.0%–77.9%, p < 0.0001; Logistic: 73.4%

accuracy, 95% CI: 68.0%–80.0%, p < 0.0001, Table 1), while peak

frequency features were significant stand-alone classifiers in the

SVMmodel only (55.3%accuracy, 95%CI: 48.6%–65.1%,p = 0.008).

Final model performance on the validation set
Overall model performance was replicated for healthy

participants using the validation set, with classification

accuracy equivalent to test/train model performance as

evidenced by the overlapping confidence intervals. The overall

SVM model with all EEG features included classified between

no-pain and pain conditions with 74.8% accuracy (95% CI:

66.3%–77.6%, p = 0.0007), while the logistic regression

performed at 72.0% accuracy (95% CI: 64.5%–78.5%,

p = 0.0003). For the SVM model, only PE features could

independently classify between no-pain and pain at a

significant level (72.0% accuracy, 95% CI: 66.3%–78.5%,

p = 0.009). For the logistic regression model, both PE (74.8%

accuracy, 95% CI: 66.3%–78.5%, p = 0.002) and peak

frequency (54.2% accuracy, 95% CI: 48.6%–58.9%, p = 0.006)

features could classify at a level above chance (Table 1).
Theta permutation entropy is most
predictive of pain experience, with
different regions of importance
between groups

The most important features (i.e. the top 10% based on the

absolute value of the model coefficient) for chronic pain and
Frontiers in Pain Research 07
healthy participants are visualized in Figure 2. PE features

were the most important feature for both groups, aligning

with the individual EEG feature results presented above. PE

features accounted for 89.5% (n = 17) and 68.4% (n = 13) of

the most important features for chronic pain and healthy

participants, respectively. The remaining features were derived

from the dPLI analysis, with no peak frequency or binary

graph theory features appearing in the top 10% of the logistic

regression model coefficients. For both groups, the majority of

features were in the theta (Pain: n = 7, 36.8%; Control: n = 8,

42.1%) and alpha (both groups: n = 5, 26.3%) frequency

bands. Models in chronic pain participants place more

importance on features in frontal (Pain: n = 7, Controls: n = 3)

and central (Pain: n = 4; Controls: n = 2) regions; conversely,

feature importance in healthy participants was predominantly

in parietal (Pain: n = 1; Controls: n = 4) and occipital (Pain:

n = 1; Controls: n = 4) areas.

Models for both chronic pain and healthy participants

highlighted the importance of PE features and the theta

frequency band for the classification of cold thermal pain.

Thus, we performed a secondary analysis on the classification

accuracy of theta-derived PE features for each individual

electrode, using the best performing SVM and logistic

regression models and bootstrapping procedures described

previously. Topographic maps and bar charts display the

resulting classification accuracy in chronic pain (Figure 3)

and healthy (Figure 4) participants. For chronic pain

participants, classification accuracy ranged from 50.7% (T4) to

67.0% (T6) across individual electrodes. Higher, although

more variable, performance was observed for healthy

participants, with accuracies ranging from 46.7% (T4) to

74.8% (P3) across individual electrodes. Regardless of model

type (SVM or logistic regression), temporal (T6), occipital

(02), and frontal (Fz) electrodes had the best performance for

chronic pain participants. However, PE theta models in the

chronic pain group did not outperform healthy participants at
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FIGURE 2

Baseline vs. CPT: feature importance. Most important features (top 10%) for classifying between pain and no pain conditions based on logistic
regression model weights for chronic pain (A) and healthy (B) participants. Note: Model coefficients cannot be generated when using a radial
basis function kernel for SVM models; thus, overall model feature importance was only explored using the logistic regression models. Solid boxes
represent permutation entropy features, while stripped boxes indicate directed phase lag index features. No graph theory or peak frequency
features were in the top 10% based on model coefficients. Positive model weights are predictive of tonic cold pain conditions, while negative
model weights are predictive of no-pain conditions.
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FIGURE 3

Individual electrode classification accuracy for chronic pain patients permutation entropy features (theta frequency band). Pain vs. no pain
classification accuracy for each individual electrode and across all electrodes for PE (theta band) features only in chronic musculoskeletal pain
participants. Topographic maps and bar charts are displayed for SVM models (A & B) and logistic regression models (C & D).
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any individual electrode. Parietal electrodes had the best

classification accuracy for healthy participants across both

models. In the logistic regression models, PE theta models in

healthy participants had significantly higher classification

accuracy in all parietal electrodes (Pz, P3, and P4) than

chronic pain patients as evidenced by non-overlapping

confidence intervals. For SVM models, only P3 and P4

electrodes outperformed the chronic pain group.
Discussion

EEG can accurately discriminate between no-pain and pain

conditions in children with chronic musculoskeletal pain and

healthy youth. Classification accuracy reached 75.8% for
Frontiers in Pain Research 09
chronic pain participants and 74.8% in healthy participants.

No significant differences were observed between groups

(healthy vs. chronic pain) or model types (SVM vs. logistic

regression). We evaluated the most important features of

model performance for each group, using the top 10% of

logistic regression model weights. PE was most important

EEG feature, while theta was the most significant frequency

band for both groups. While features and frequencies were

similar for both groups, models in adolescents with chronic

musculoskeletal pain placed higher importance on features in

the frontal region as opposed to healthy controls whose most

significant contributors were in parietal regions.

Similar studies investigating no-pain and pain (tonic cold)

conditions in healthy adult participants report classification

accuracies ranging between 84.6%–93.3% (30, 31, 52–54). Due
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FIGURE 4

Individual electrode classification accuracy for health controls permutation entropy features (theta frequency band). Pain vs. no pain classification
accuracy for each individual electrode and across all electrodes for PE (theta band) features only in healthy participants. Topographic maps and
bar charts are displayed for SVM models (A & B) and logistic regression models (C & D). White circles designate electrodes where models in
healthy participants had significantly higher classification accuracy than chronic pain participants.
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to small sample sizes (<40 participants) only one prior study

used a hold-out set to validate their model, with accuracies

dropping from 87.5%–93.3% on the training set to 70.9%–

82.73% on the hold-out set (30). The validation accuracies

from Kaur et al. (30) align with our findings; it remains a

strong possibility that the remaining models may be

overfitting their data, increasing their classification accuracy

but limiting their generalizability. Most prior literature used

spectral features to classify between conditions (30, 52, 53),

which were removed from our dataset as they were

significantly affected by voluntarily motor movement. It is

possible that information contained in spectral analyses is

important for the classification of CPT conditions,

diminishing our classification accuracy; alternatively, it is

possible that subtle motor activity associated with pain
Frontiers in Pain Research 10
artificially increased classification accuracies in prior studies.

Low temperature (0 °C) CPTs elicit a strong pain response,

while warmer temperatures (3–7 °C) provoke pain of a lower

intensity and shorter duration (55). Our CPT temperature

(12 °C) was warmer than other studies and the milder

stimulus may have produced a subtler neurophysiological

response. However, our participants average pain rating

throughout the CPT was ∼6.5, which is considered between

moderate and severe on a 0–10 numeric rating scale.

Furthermore, prior research found that numeric rating scales

are reliability associated with clinical pain in children and

numeric rating scale scores >4 are sensitive to pain requiring

medication in chronic pain patients (56), thus we are

confident our experiment captured a true pain response.

Finally, all prior studies exclusively focused on healthy, young
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adult participants. Children experience vast brain maturation

throughout adolescence (57) and studies in both healthy (58)

and chronic pain participants (33) suggest neurophysiological

differences between adults and children. The age of our

participants and inclusion of chronic pain participants may

also contribute to differences between our findings and prior

studies with healthy adults.

PE is a quantification of information in the EEG signal (59),

and our results suggest that information content changes in

response to the CPT. We are the first study to investigate

EEG-derived PE during a CPT, although one prior study

evaluated a similar entropy-based metric. Vatankhah et al.

found that no-pain and cold thermal pain classification

accuracy was 14% higher using approximate entropy vs.

spectral features (54). The superior classification accuracy of

entropy-based features aligns with our results, as well as other

studies demonstrating changes in PE outcomes in relation to

pain (60, 61). Our study also aligns with prior CPT studies

reporting changes in theta activity in relation to pain

stimulation (27, 28, 30). Furthermore, the theta band is

heavily implicated in the thalamocortical dysrhythmia (TCD)

model of chronic pain. In this model, theta activity is

surrounded by high frequency (beta or gamma) activity (62),

which disconnects normal circuit function. A thalamocortical

column-specific decrease in information processing is created,

which is thought to ultimately resulting in the oscillatory

mechanism that propagates the painful condition (63, 64).

Although our results do not provide direct evidence of the

TCD model of chronic pain, the importance of PE features

and theta frequency activity point to the important role of

information processing in pain.

Prior studies in healthy participants highlight both frontal

(27, 28, 30) and parietal (28, 30) responses to simulated pain

during a CPT. Additional studies also provide support that

chronic pain participants have alterations in frontal (23) and

parietal (64) areas compared to healthy controls at rest. Pain

is relayed to the thalamus from the spinal cord, where it is

splits into two distinct pain systems: 1) the lateral pain

system, which includes the somatosensory cortex, involved in

the perception of pain (sensory and discrimination); and 2)

the medial pain system, including the prefrontal cortex, which

encodes the emotional aspects of pain (affect and motivation)

(65, 66). The majority of studies using tonic experimental

pain conditions show an activation in the lateral pain system,

but less than 25% of studies in chronic pain participants show

changes to the somatosensory cortex (65). In fact, chronic

pain participants often show increased activation in medial

pain system structures and decreased activation in the

somatosensory cortex compared to healthy controls at rest,

which couples with observations that chronic pain leads to

decreased sensory processing and increased affective

processing (67, 68). Our results agree with this literature

and generally suggest that adolescents with chronic
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musculoskeletal pain predominantly contextualize cold

thermal pain through affective systems, while healthy controls

have a sensory-based experience of tonic cold pain.
Strengths

The inclusion of a large cohort (n = 121) of pediatric chronic

pain participants is a major strength of the current study, as prior

work has primarily evaluated small samples of healthy adults. Our

study design allowed for the development of models specific to

chronic pain participants, which differed from healthy children

in the locations of the most discriminatory EEG features. The

chronic pain group was highly variable in relation to their

specific diagnosis, location, and frequency of pain. Our

heterogeneous sample is representative of the diverse

presentations of chronic pain patients seeking clinical care and

increases the generalizability of our model to various pain

phenotypes. Prior literature focused predominantly on spectral

EEG features, a limitation that has been noted previously (32).

Our methods included spectral, entropy, functional connectivity,

and graph theory feature types, many of which were previously

unexplored in pediatric chronic pain participants. The inclusion

of PE features was particularly prudent, as these features best

classified tonic cold pain and represent an important

contribution to the pain literature. Finally, we systematically

evaluated and removed features that were affected by voluntary

motor movement. Subjective pain ratings are collected serially

through thermal QST and typically require verbal indication or

movement (pointing to a number, moving a sliding scale, etc.).

Thus, the potential for motor-based artefact entering the EEG

signal is high. The removal of such features provides confidence

that our findings result from the neurophysiological changes

underlying cold pain, not motor activity. Finally, our

classification is not reliant upon subjective pain reports. Beyond

providing objective evidence to clinicians, this approach can be

particularly beneficial in younger children who do not have the

language or cognitive capacity to adequately verbalize their pain

or in children with disabilities who may be nonverbal.
Limitations

The recruitment of healthy controls was largely affected by

the COVID-19 pandemic. Although our healthy participant

sample (n = 39) is very comparable to prior studies, the

imbalance in group size prevented models directly comparing

chronic pain to healthy children at baseline and during the

CPT. We intentionally selected our approach to focus on

objective, physiological outcomes to evaluate metrics that

could be broadly generalizable to young and/or populations

that may not be able to complete common self-reported pain

scales. However, as pain varies throughout the CPT, modeling
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subjective pain (e.g. numeric rating scale values during the CPT)

in addition to classifying condition (e.g. baseline vs. CPT) would

have strengthened our results. However, subjective pain ratings

(15sec) were not collected on the same time scale as EEG epochs

(10sec). Therefore, subjective pain ratings were not available for

every EEG epoch and could not be modeled with our data. A

significantly higher proportion of females was present in the

chronic pain group, which aligns with prior literature

suggesting chronic pain is more prevalent in girls (2, 69).

However, as EEG is affected by both age (70) and sex (71),

the relatively wide age range (10–18 years) during an

important maturation period and imbalance between sexes in

the chronic pain group may have decreased model

performance. We constrained our ML approaches to

common, supervised learning methods. Future studies should

evaluate other approaches, including unsupervised learning.

Regardless of model type, more extensive external validation

(replicating results on more participants from different

geographical regions and different EEG systems, etc.) is

needed before translation to clinical settings. Denser

electrodes arrays limit clinical translation, but provide

opportunities for sophisticated analysis techniques (e.g., source

localization, local graph theory metrics, etc.) that provide

more insight into the specific brain areas and networks

underlying the perception of pain. Finally, we selected a tonic

thermal stimulus as this more closely mimics clinical pain and

allows for sufficiently long EEG recording periods. However,

other forms of pain stimulation (e.g., pin prick, pressure) are

also used in comprehensive clinical pain assessments and

should be evaluated in conjunction with EEG recordings

when feasible.
Clinical implications

An objective, physiological biomarker of pediatric chronic

pain has the potential to improve clinical care and overall

quality of life. Children may not have the developmental

abilities or language capacity to clearly and thoroughly

describe their pain to clinicians; this is particularly true for

more vulnerable populations (e.g. non-verbal children). Even

when they can adequately verbalize their pain, children often

report that their pain was “disbelieved” or “dismissed” by

their physician (72). Thus, a biomarker could provide

objective evidence that a child is experiencing pain, which

may facilitate earlier enrollment into treatments capable of

effectively managing the child’s pain. PE features, which can

be generated from a single EEG electrode, were determined to

be the most important feature for both groups. This increases

the potential for clinical translation, as a single-metric, single-

electrode biomarker greatly reduces the burden, time, and cost

associated with EEG. In healthy participants, theta PE at the

P3 electrode produced identical classification accuracy to all
Frontiers in Pain Research 12
EEG features and frequency bands, although the highest

single-electrode accuracy in chronic pain participants was

∼7% lower than the full model. Still, our results highlight the

potential for PE features as an objective marker of pain in the

absence of self-report. Furthermore, PE features are robust to

noise sources and artefacts (73), which is critical in busy

recording environment such as clinical settings. Equivalent

results were obtained using SVM and logistic regression

models, which can have important implications for

translation. Some clinicians can be skeptical of ML

approaches, as the transformations used to generate high

discrimination accuracy often comes at the expense of

understanding the specific features, patterns, or

neurophysiological responses underlying model performance

(74). Thus, the ability to replicate findings using an inferential

statistics approach speaks to the consistent performance of

model and may increase uptake in clinical settings, as

clinicians can extract the specific neural correlates associated

with a subjective pain response.
Conclusions

EEG features can accurately and significantly discriminate

between no-pain and tonic cold pain conditions in

adolescents with chronic musculoskeletal pain and healthy

controls. Final classification accuracy ranged from 72.0%–

75.8%, with no significant differences observed between

groups (healthy vs. chronic pain) or models (SVM vs. logistic

regression). PE features in the theta frequency bands had the

best discrimination for both chronic pain and healthy

participants, although the specific regions of importance

differed between groups. Overall, our results demonstrate the

feasibility of accurately detecting subjective pain experience

from electrophysiological data and represent the first step

towards the development of a point-of-care system to detect

pain in the absence of self-report.
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