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Chronic pain, chronic stress and
substance use: overlapping
mechanisms and implications
J. Schaffer, N. Fogelman, D. Seo and R. Sinha*

Department of Psychiatry and the Yale Stress Center, Yale University School of Medicine, New Haven, CT,
United States

Chronic pain is among the most common reasons adults in the U.S. seek medical
care. Despite chronic pain’s substantial impact on individuals’ physical, emotional,
and financial wellness, the biologic underpinnings of chronic pain remain
incompletely understood. Such deleterious impact on an individuals’ wellness is
also manifested in the substantial co-occurrence of chronic stress with chronic
pain. However, whether chronic stress and adversity and related alcohol and
substance misuse increases risk of developing chronic pain, and, if so, what the
overlapping psychobiological processes are, is not well understood. Individuals
suffering with chronic pain find alleviation through prescription opioids as well
as non-prescribed cannabis, alcohol, and other drugs to control pain, and use
of these substances have grown significantly. Substance misuse also increases
experience of chronic stress. Thus, given the evidence showing a strong
correlation between chronic stress and chronic pain, we aim to review and
identify overlapping factors and processes. We first explore the predisposing
factors and psychologic features common to both conditions. This is followed
by examining the overlapping neural circuitry of pain and stress in order to trace
a common pathophysiologic processes for the development of chronic pain and
its link to substance use. Based on the previous literature and our own findings,
we propose a critical role for ventromedial prefrontal cortex dysfunction, an
overlapping brain area associated with the regulation of both pain and stress
that is also affected by substance use, as key in the risk of developing chronic
pain. Finally, we identify the need for future research in exploring the role of
medial prefrontal circuits in chronic pain pathology. Critically, in order to
alleviate the enormous burden of chronic pain without exacerbating the co-
occurring substance misuse crisis, we emphasize the need to find better
approaches to treat and prevent chronic pain.
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1. Introduction

While 1 in 5 Americans suffer with chronic pain (1), the understanding of why and how

chronic pain develops remains ambiguous. Chronic pain is defined as pain that persists or

recurs for over 3 months [per International Classification of Diseases, ICD-10 (2)] or 6

months [per National Pain Strategy and NIH Task Force (1, 3)]. Chronic pain

significantly impacts individuals’ ability to work and maintain relationships and is

significantly associated with emotional distress or depressive symptoms (4–7). In the

clinical setting, opioid analgesics remain the mainstay of chronic pain treatment (8),

despite evidence that chronic opioid treatment for chronic pain is not an effective pain

management approach and development of novel therapies for pain and chronic pain is a

national priority (9). In patients whose chronic pain motivates them to use prescription
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opioids for pain relief, there is an increased prevalence of comorbid

mental health conditions including substance misuse and substance

use disorders, emotional difficulties (e.g., depression, anxiety) and

even suicidal ideation (10, 11). The prevalence and toll of

chronic pain implore us to better understand the patterns and

underlying pathophysiology of chronic pain in order to alleviate

its burden.
2. Key features of chronic pain

We first look at patterns in chronic pain from an

epidemiological perspective. Across studies, it has been shown

that women are significantly more likely to develop chronic pain

than men for certain types of pain syndromes (12–15).

Additionally, mood and anxiety disorders commonly co-occur

with chronic pain (4), and substance misuse tends to heighten

individuals’ experiences of pain. Exploring these features of the

chronic pain population may help in identifying potential

mechanisms that underly the development of chronic pain and

uncover important targets for intervention.
2.1. Sex differences

There is a greater prevalence of chronic pain in women vs. in

men in certain types of pain conditions (12). This greater

prevalence of chronic pain in women has been reported for the

following conditions: back pain, migraine, musculoskeletal pain,

neuropathic pain, oral pain, osteoarthritis, and widespread pain

(16). Such evidence suggests that evaluating sex differences in

chronic pain development and experience can help parse

potential biologic and psychologic underpinnings of chronic pain.

Animal models have shown the existence of physiological

differences between males and females that affect pain sensation

(14). For example, relative to male animals, females have slower

recovery following chronic constriction injury, have earlier pain

presentation in a model of femoral cancer, and have more

fatigue-induced hypersensitivity to pain (17–19). Furthermore,

female mice require more morphine to achieve an equal

analgesic effect to male mice (20). This sex difference in opioid

analgesic tolerance in preclinical studies is consistent with

findings in clinical studies of women and men (21).

Previous studies have shown sex differences in the endogenous

opioid system and the cannabinoid system (22, 23). Both pathways

are involved in processing pain, pain coping and self-regulation of

pain (22, 24). It has been shown that female sex is associated with

lesser activation of anti-nociceptive signaling through mu opioid

receptors, which could mediate their greater sensitivity to pain

(25). Studies on sex differences in the endocannabinoid system

reveal significantly greater CB1 activation in female vs. male

hippocampus (26), greater sensitivity in response to cannabinoid

ligand in females than males (27), and faster development of

tolerance to cannabinoid ligands in females vs. males (28).

Changes in protein expression in the endogenous cannabinoid

pathway coincide with development of chronic pain conditions
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(29). In addition, the endocannabinoid system is also involved in

stress regulation and coping (30) and animal studies have shown

that increased levels of the two main endocannabinoids—2-

Arachidonoylglycerol (2-AG) and anandamide (AEA)—promote

resilient coping following stress (31, 32).
2.2. Role of chronic stress in vulnerability for
chronic pain

Chronic stress has been shown to predict development of

chronic pain (33, 34). Chronic stress occurs when an individual

experiences sustained emotional or physiological challenges

continuously over a significant period of time, leading to “wear

and tear on the body” (35). Long-term stress has been shown to

sensitize individuals to pain, a phenomenon known as stress-

induced hyperalgesia (36–39). Bolstering this hypothesis, Ide

et al. showed that unpredictable chronic mild stress reduced the

pain-relieving effects of morphine in mice (40). Clinically, it has

been shown (41) that a greater number of adverse events

increases the risk for chronic pain development, as well as the

experience of chronic stress. Furthermore, recent evidence

suggests a biological link between stress experience and pain;

individuals with a history of Adverse Childhood Experience

(ACE) were found to have specific epigenetic changes involving a

gene associated with setting individual pain thresholds (42).

However, the relationship between chronic stress, chronic pain,

and relationship of both to opioid use has not been explored

within the same samples and we present secondary data below to

illustrate this association.
2.3. Chronic stress and pain co-occurrence
in a large community sample

In a large sample of 947 young-mid age community adults [18–

55 years of age; 56% women; mean age 30.7 (s.d. = 9.95) years] who

were not acutely ill psychiatrically or medically, and did not have

current or past opioid use disorder (OUD) as assessed by the

Structured Clinical Interview for DSM-IVTR [SCID-I (43)], we

assessed chronic stress using the Cumulative Adversity Index, a

structured interview assessment of cumulative adversity and

stressful life events [CAI (44)], and also number of pain

symptoms using the Cornell Medical Index (45). The Chronic

Stress Subscale of the Cumulative Adversity Interview (CAI)

consisted of 62 items relating to the subjective experience of

continuous stressors or ongoing stressful life events and

problems. Items were rated as not true, some to very true for

perceived difficulties with specific ongoing interpersonal, social,

and financial relationships and responsibilities including

difficulties in the work and home environment and relationships

with family and significant others. The Cumulative Adversity

Interview and its chronic stress subscale has high reliability

ranging from an overall 0.86 and 0.82 for the chronic stress

subscale (46).
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Cornell Medical Index is a questionnaire that poses “yes” or

“no” questions about individuals’ current occurrence of physical

and emotional health symptoms, including specific types of pain

symptoms. In addition to current symptoms, it also asks subjects

to indicate whether they have been diagnosed with specific

illnesses, and about health habits, like smoking (45). The CMI is

verified across multiple studies as a good indicator of general

health (47, 48).

In this large community sample, we found that women

reported greater average number of pain symptoms (t = 5.6, p <

0.001) and higher levels of chronic stress (t = 5.5, p < 0.001)

compared to men (Figure 1A). In all participants, higher chronic

stress was positively associated with greater pain symptoms

[Figure 1B; incidence rate ratio (IRR) = 1.08, p < 0.001]. Further,

greater likelihood of taking opioids was predicted by both greater

number of pain symptoms (Opioids: OR = 1.52, p < 0.026) and

high chronic stress (Opioids: OR = 1.58, p < 0.001) (Figure 1C).

These patterns of high co-occurrence of chronic stress with

chronic pain are consistent with previously cited research on the

association between stress and chronic pain and further highlight

that each is associated with an increased risk of opioid use in a

large community sample. Moreover, female sex was associated

with experiencing more chronic stress and pain, supporting

previously reported vulnerability of women to related chronic

stress and pain dysfunction and association with opioid misuse.

While these are cross-sectional data from a large non-clinical
FIGURE 1

(A) Sex difference in pain symptoms and chronic stress. Women showed greate
in a large community sample (N= 947). (B) Association between stress and p
participants (p < 0.001). (C) Pain and opioid use. The probability of opioid use
use. The probability of opioid use increased with higher levels of chronic stre
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community sample, they point to a need to further examine the

basis of the associations between chronic pain and chronic stress

in a longitudinal manner and assess sex differences in order to

further understand the mechanisms underlying the development

of chronic pain.
2.4. Comorbidities with negative affect and
depressive disorders

It has been well-established that chronic stress can produce

long-term emotional distress (49–51). As there is a positive

correlation between chronic stress and physical distress, it is

important to explore the interaction between incidence of long

term emotional and physical pain. Data from the World Mental

Health surveys show that pain conditions strongly correlate with

negative affect in communities across the world (4, 5).

Furthermore, Gerrits et al. have shown that individuals with

current or history of anxiety or depression report experiencing

more severe pain and pain in more locations than healthy

controls (52). The relationship is reciprocal: within pain

populations, there is greater prevalence of depressive symptoms,

and within clinically depressed populations, there is more

chronic pain (53). Comorbid mood disorder and chronic pain

lead to poorer prognosis in both conditions than in patients with

one of the two conditions alone (54). Long-term use of opioids
r pain symptoms (p < 0.001) and higher chronic stress (p < 0.001) than men
ain. High chronic stress was associated with greater pain symptoms in all
increased with greater pain symptoms (p < 0.001). (D) Stress and opioid

ss (p < 0.001).
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for pain conditions correlates with an increased probability of new-

onset depression (55). In the reverse direction, chronic pain

patients with comorbid mood disorders are more likely to

escalate long-term opioid use than chronic pain patients without

mood disorders (56). This comorbidity further highlights the

need to understand the emotional aspects of chronic pain in

order to effectively prevent and treat chronic pain and associated

mental illnesses.
2.5. Coping with pain and stress:
relationship to pain catastrophizing

In the face of stress and pain, the methods by which different

individuals cope can alleviate or aggravate pain. Over time,

researchers have studied the relationship between the pain

experience and catastrophizing, the latter being defined as an

“exaggerated negative ‘mental set’ brought to bear during painful

experiences” (57). Across pain conditions, catastrophizing proves

to exacerbate intensity and emotional distress accompanying pain

(57–59), and also increases the risk of developing chronic pain

(60–62). Importantly, multiple sub-populations of individuals

who tend to catastrophize overlap with those overrepresented in

the chronic pain population. Women tend to catastrophize more

than men (63, 64). Patients with depression and anxiety show

higher levels of catastrophizing in the face of distress (65), and

catastrophizing has been shown to play a mediating role in the

relationship between depression and pain (66). Patients reporting

higher adverse childhood events exhibited greater levels of

catastrophizing and perceived lower confidence in their ability to

cope with their pain (33). The latter highlights the need to

consider domains of coping and self-regulation in exploring the

neural mechanisms of chronic pain and to develop not only a

greater understanding of chronic pain, but also to identify

specific components that must be addressed in its treatment.
2.6. Chronic pain and substance misuse

Substances of abuse have been shown to induce hyperalgesia, a

state of hypersensitivity to pain. In opioid misuse, specifically, the

phenomenon of opioid-induced hyperalgesia has been shown

across preclinical and clinical models (67). In addition to

hypersensitivity to pain, periods of withdrawal from chronic

substance misuse creates a state of “hyperkatifeia”, or increase in

intensity of negative emotional state (68, 69). The combination of

heightened pain state and worsened negative emotional state may

then motivate drug use dose escalation, a path by which many

patients progress from opioid use to dependence (70).

Furthermore, chronic pain is associated with social isolation, and

opioid use has been shown to temporarily alleviate such

loneliness (11, 71). However, chronic opioid use can exacerbate

social isolation, contributing to the negative emotional state that

then drives opioid dependence and contribute to the drug

overdose mortaility rate (71).
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In addition to opioid use, chronic alcohol use sensitizes users’

nociception (72). As with opioid-induced hyperalgesia, this

alcohol-produced painful state has been shown to motivate

escalation of alcohol use in models assessing vulnerability for

alcohol use disorders (73). Similarly, when individuals with

cannabis use disorder attempt to stop using cannabis, many

experience withdrawal involving heightened states of emotional

and physical pain that can drive cannabis dependence (74). This

cyclic pattern of chronic pain leading to drug use, and drug use

leading to heightened physical and emotional pain states

highlights the need to develop better assessment of substance-

related hyperalgesia in individuals with chronic pain.

Furthermore, understanding how substance misuse may facilitate

development of heightened pain states can provide insight into

pathways that may mediate the development of chronic pain and

how best to treat such co-morbidity.

In summary, the key features associated with development of

chronic pain include chronic stress and cumulative adversity

experiences, mood and anxiety comorbidity, substance misuse

risk and sex differences in pain experience for certain types of

pain conditions and in the development of chronic pain.

Additionally, specific types of pain coping may also increase

risk of development of chronic pain. Notably, adverse stressful

experiences in early life or during vulnerable periods of illness

or adversity may increase chronic pain via epigenetic

mechanisms by changing stress genes and changes in genes

that support microglia during neuronal development (75, 76).

Such epigenetic changes may alter the structure and function

of neural circuits involved in regulating stress and pain,

thereby reducing stress coping and increasing nociception.

Thus, the next section explores the overlap in functional neural

mechanisms of chronic stress and chronic pain and discusses

the clinical implications.
3. Overlapping neural circuits in
chronic pain and chronic stress

Recent evidence focusing on understanding the pain experience

in humans, has identified a Neurologic Pain Signature (NPS), a

defined pattern of brain functional magnetic response imaging

(fMRI) activity underlying the pain experience (77). Evidence

shows the NPS can be divided into a nociceptive component and

a self-regulatory component (78–81). While regions such as the

somatosensory cortices, dorsal anterior cingulate cortex (dACC),

and thalamus are known to react to noxious stimuli and to

signal pain experience, fronto-striatal circuits have been shown to

mediate top-down self-regulation of pain (78, 79). Specifically,

the nucleus accumbens (NAc)-ventromedial prefrontal cortex

(VmPFC) pathway has been shown to act as an anti-nociceptive

region (80), with increased blood-oxygen-level-dependent

(BOLD) activity in the VmPFC inversely relating to pain (81).

Recent research has also shown significant abnormalities in

functional connectivity of the VmPFC and NAc and other

fronto-striatal regions during resting state in individuals with

chronic pain on prescription opioids compared to drug free
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controls, further supporting the importance of this circuit in

regulating nociception (82). Importantly, studies from animal

models and clinical research show that dysfunction of the medial

prefrontal cortex, a key component of this self-regulatory

pathway, mediates the development and persistence of chronic

pain (83–86).

Similar to pain encoding in the brain, stress processing involves

both stress-sensing components as well as top-down regulation of

stress circuits and the stress experience. Acute stress activates the

hypothalamic-pituitary-adrenal axis, which receives top-down

regulatory input from the VmPFC (35, 87). Flexible and adaptive

VmPFC function is necessary to “turn off” stress once fearful

stimuli are gone (88, 89), and impaired VmPFC function is

observed in patients with post-traumatic stress disorder (90). The

VmPFC’s role in top-down control of both emotional and

physical distress makes this region a key area of interest when

studying the development of chronic pain, given the

simultaneous epidemiological overlaps in emotional and physical

pain. We focus specifically on the self-regulatory component of

pain and stress circuits because of the clear anatomical and

functional overlap in brain circuits across both stress and pain.

(See Figure 2 illustration of the known neural circuits of pain

and stress and their overlap.)
FIGURE 2

Schematic of known distinct and overlapping stress circuits. Illustration of the
during experience of: stress (blue), pain (yellow) or both stress and pain (green
stimulation of the target region by the region of arrow origin and sharp arrow
receives input from pain- and stress-encoding regions, and has outputs in
NAc, nucleus accumbens; Hpc, hippocampus; Thal, thalamus; LC, locus coer
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3.1. Ventromedial PFC (VmPFC) and the
self-regulation of pain and stress

Activity in the ventromedial prefrontal cortex has been shown to

function as an anti-nociceptive neural signal (80). Chronic back pain

patients were found to have reduced medial PFC (mPFC) gray

matter volume (91). In a study that tasked participants with utilizing

strategies to regulate their pain experience, activity in the VmPFC

and nucleus accumbens were greatest when participants were

actively trying to down-regulate pain (78). In a separate study of

brain activity and the effects of opioid analgesia during experimental

pain, baseline striatal activity was correlated with greater opioid-

induced pain relief (92). As cited earlier, McConnell et al. (82) also

show dysfunction in this corticostriatal circuit in chronic pain

patients using prescription opioids and such dysfunction related to

greater negative affect. Other work has bolstered this finding

showing that using cognitive strategies that rely on mPFC circuits to

distract attention from painful experiences relies on opioid-ergic

networks that gate nociceptive input at the level of the spine (93). In

the context of the previously noted sex differences in the

endogenous opioid system, and its relation to pain processing, it will

be important to explore these neurobiological circuits as it relates to

predisposition to chronic pain in men and women.
sagittal brain section, marking regions known to show change in activity
). Blunt arrowheads indicate inhibition of, while sharp arrowheads indicate
heads indicate stimulation. The ventromedial prefrontal cortex (VmPFC)
both pain and stress pathways. dACC, dorsal anterior cingulate cortex;
uleus; PAG, periaqueductal gray.
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If the VmPFC is necessary in self-regulation of pain, we may

expect that factors known to increase the risk of developing

chronic pain—like chronic stress—do so by contributing to

VmPFC dysfunction. In addition to pain regulation, the VmPFC

is a crucial region for adaptive coping (94) and emotion

regulation (95, 96). It is involved in the self-control and

regulation of emotions of both stressful (97) and rewarding

nature (98). Studies on the effects of chronic stress—a known

predisposing factor of chronic pain—on brain structure and

function reveal that chronic stress is associated with anatomical

and functional changes in the VmPFC. Chronic stress is

associated with lower gray matter volume in the mPFC, VmPFC,

striatum and insula (46). Chronic stress is known to increase

inflammation through the peripheral and central nervous systems

(76), and such inflammation is thought to contribute to the

development of psychiatric disorders in patients who endured

chronic stress (99). Furthermore, stress-induced inflammation is

associated with disruptions in functional connectivity in the

VmPFC in patients with depression (100). VmPFC and other

prefrontal disruption has also been documented in patients with

alcohol use disorder and substance use disorders (101–104).

Taken together, these findings suggest that pathology of the

VmPFC may mediate the effects of chronic stress on self-

regulatory pain mechanisms.
3.2. Stress, pain, and hypoactive VmPFC
response

In a previous study, we examined the association between

cumulative adversity, including chronic stress, health symptoms

and neural responses to stress vs. no-stress neutral cues in 75

healthy community adults with no history of depression, anxiety

or substance use disorder (105). Cumulative adversity and

chronic stress were assessed using the Cumulative Adversity

Index (CAI) along with the Chronic Stress Subscale, and physical

and emotional health symptoms were assessed using the Cornell

Medical Index (CMI) and each of these are described in Section

B3 above. In those with a history of cumulative stress and

adversity, findings revealed a key neurofunctional link such that

higher CAI scores corresponded to greater limbic-striatal (e.g.,

regions of the amygdala, hippocampus, insula, and striatum)

responses to acute stress stimuli, but reduced stress-related

activity in the orbitofrontal cortex (OFC), a region of the

VmPFC, involved in emotion, pain, and reward self-regulation.

Furthermore, hyperactivation of the hippocampus and

hypoactivation of the OFC/VmPFC region was each significantly

associated with greater overall number of health symptoms.

These findings suggest that higher levels of adversity and

chronic stress may sensitize individuals to higher neural stress

reactivity in emotional- and distress-sensing regions while

simultaneously compromising responses of the VmPFC self-

regulation region during acute stress with signiticant impact on

health. This pattern is most clearly revealed in a direct

comparison of those with the highest cumulative stress levels

(High Stress—top one third of the sample, N = 25) as compared
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to those who report lowest cumulative stress levels (Low Stress—

bottom one third of the sample, N = 25) as shown in Figure 3A

[from Seo et al. (105)]. Furthermore, in a separate study of 30

community adults, we assessed the functioning of the VmPFC

over several continuous minutes of sustained stress exposure and

demonstrated that dynamic and flexible activity in the VmPFC

during stress mediates active coping in stressful situations (106).

Thus, it could be expected that deficient VmPFC engagement, as

shown in Figure 3A, among high stress individuals may interfere

with not only active stress coping, but also with active top-down

regulation of pain.

To follow up on the hypothesis presented above, we conducted

secondary whole brain analyses of the data presented in Seo et al.

(97) to specifically examine whether the VmPFC is involved in

predicting pain symptoms in the high and low stress stress

groups described above, and tested its specific role in mediating

the link between chronic stress and pain symptoms by

conducting a mediational analysis. The VmPFC region of interest

(ROI) beta values were extracted from the whole brain analysis

(results shown in Figure 3A) for the High Stress and Low Stress

groups (N = 50). The chronic stress scores from the CAI and the

number of physical pain symptoms in the sample of High and

Low stress groups from the Cornell Medical Index (CMI,

described above in Section 2.2) were included in a mediational

analysis to assess whether chronic stress predicts physical pain

symptoms and whether the acute stress response of the VmPFC

mediates the link between high chronic stress and higher pain

symptoms. Indeed, the findings of this secondary follow-up

analyses reveal that the blunted acute stress-induced VmPFC

response significantly mediated the relationship between chronic

stress and self-reported pain symptoms (Figure 3B).

These findings support the hypothesis that cummulative and

chronic stress may negatively impact the VmPFC, compromising

self-regulatory control over the stress-pain circuit, leading to risk

of greater physical pain symptoms. Together, these findings also

support the hypothesis that VmPFC may serve as a a common

overlapping neural region that may underlie the high association

between chronic stress and increased vulnerability to chronic

pain. On the basis of this neurobiological overlap, a heuristic

feed-forward model on the overlap of chronic pain, chronic stress

and substance misuse risk is proposed in Figure 4, wherein

chronic stress states alter VmPFC related circuits that regulate

stress, reward and pain. A dysfunctional VmPFC circuit then

results in risk of greater acute pain experience and poor self-

regulation of pain that, in turn, increases the risk of sustained

pain symptoms and development of chronic pain (Figure 4).
3.3. Summary on overlapping processes of
chronic stress and chronic pain

In this section, we address the neurobiological link between

pain and stress, substance use, and sex differences. Critically, the

VmPFC is a neurobiological focus in the neural circuits

underlying each of these conditions and appears to be a key

region mediating the relationships amongst these variables. Many
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FIGURE 3

VmPFC, stress, and pain. (A) High Stress group (N= 25) show greater limbic-striatal (amygdala, hippocampus, insula and striatum) responses during acute
stress exposure compared to the Low Stress (N= 25), but lower, more hypoactive VmPFC response to stress in the high vs. low stress groups (105). (B) The
ROI of the hypoactive VmPFC response was entered in a mediation analysis to assess whether VmPFC functional response during acute stress mediated
the effects of chronic stress on greater self reported pain symptoms (N= 50). Mediational analysis indicated that high chronic stress was associated with
lower stress-induced VmPFC response (a process: −0.03, p < .01) and lower the VmPFC response, higher the reported pain symptoms (b process: −7.37,
p < .05), and that the direct significant effect of high chronic stress associated with high pain symptoms (c = 0.52, p < .05) was fully accounted by the
stress-induced VmPFC functional response (indirect effect c′: a × b= .22, p < .05, 95% CI = .01–.74), such that the direct effect of chronic stress on
pain symptoms was no longer significant once the stress-related VmPFC response was included in the mediational mode (Direct effect c/c′ = 0.52/
0.30, p= ns). *p < .05, **p < .01.

Schaffer et al. 10.3389/fpain.2023.1145934
studies have pointed to the overlap between stress and pain circuits

(7). In individuals with a history of early life stress, as well as those

with current diagnoses of post-traumatic stress disorder, imaging

studies show a blunted VmPFC stress response (107, 108, 109).

Early life stress has been linked specifically to VmPFC

hypoactivation (38, 110). Patients with alcohol use disorder show

a similar VmPFC dysfunction in response to stress (101). These

same circuits are also dysfunctional in patients with chronic pain

using prescription opioids (82). A decrease in prefrontal activity

has also been shown to be correlated with increased levels of

pain catastrophizing (111). Conversely, an increase in VmPFC

responding during stress has been associated with higher levels of

active coping (106). Furthermore, the VmPFC is a key region

regulating limbic and striatal regions, regions responsive to stress

and reward stimuli respectively. As reviewed in above sections,

substantial neurobiological evidence indicate that the VmPFC-

limbic-striatal circuit may underlie the pathology of co-occurring

chronic pain and chronic stress. Given that the VmPFC exerts

regulatory control over subcortical regions involved in stress (e.g.,

amygdala) and reward (striatum) processing, VmPFC

dysfunction in individuals with chronic pain may increase risk of
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common comorbid conditions including depression, anxiety,

prescription opioid misuse and other substance use disorder

(SUD). Initially, individuals with chronic pain may experience

pain symptoms alone. However, as their symptoms worsen, they

are likely to experience pain, distress, and emotional difficulties

(e.g., depressed and anxious mood) resulting from sensitized

VmPFC-limbic-striatal circuit governing both pain and stress as

shown in Figure 4. Continued chronic pain and distress are

likely to further compromise this circuit, weakening the VmPFC

control over the striatal regions (reward system). The

subsequently disinhibited striatal system may result in difficulties

controlling an urge to use substances (e.g., opioid, alcohol, and

other substances), and to cope with pain and emotional distress,

further increasing the risk of other comorbid conditions

including depression, anxiety, and SUD in individuals with

chronic pain.

Although this pattern can occur in both men and women,

given some evidence of sex differences in prevalence of chronic

pain subtypes (12) and high prevalence of affective disorders in

women (112, 113), it is likely that there are sex differences in the

manifestation of this pathology, and therefore further research in
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FIGURE 4

A heuristic feed-forward model of overlapping stress circuits and circuits driving risk of chronic pain. Presentation of a noxious stimulus results in
activation of the insula, amygdala, and dorsal anterior cingulate cortex (dACC). In the adaptive pain pathway, the ventromedial prefrontal cortex
(VmPFC) and striatum engage soon after the start of the acute pain experience to regulate nociceptive signals, thereby mediating pain relief. In
chronic pain, factors such as adverse childhood events, sex, genes, drug use, negative affect, and stress can all increase the activity of the insula,
dACC and amgydala following noxious stimulus presentation and also result in hypoactivation of the VmPFC and striatum, identified as the resilient
coping and self regulation circuit. This hypoactivation impairs self-regulation of not only stress but also pain states, thereby extending the pain
experience. Both heightened pain sensitivity and longer lasting pain predispose patients to risk of drug use, negative affect, and chronic stress, that in
turn creates a feed-forward sensitized pathway towards more hypoactivation of the coping and self regulation circuit, thereby increasing risk of
sustained pain symptoms and chronic pain.
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both men and women is needed to understand pain-related

dysfunction in the VmPFC-limbic-striatal circuit. In support of

this, our group has shown that sex differences in stress

responding are mediated by the VmPFC. While dorsomedial

activity tends to attenuate the stress response in men, VmPFC

activity seems to dampen stress reactivity in women (114). Thus,

hypoactivity of the VmPFC in women may lead to difficulties

with controlling striatal and limbic response to stress and reward

stimuli, which may explain high prevalence of chronic pain, and

co-occurring emotional disorders in epidemological studies.
4. Clinical implications

Our current pharmacological approaches to treating chronic

pain target the opioid, gamma-aminobutyric acid (GABA), and

cannabinoid systems (115–117). As noted earlier, opioid agonists

are commonly prescribed for chronic pain conditions, but

chronic opioid use itself may exacerbate chronic pain. We have

reviewed findings on opioid-induced hyperalgesia, and the

processes by which opioids may hypersensitize individuals to risk

of chronic pain. In addition, our group has shown that opioid-

dependent individuals are less likely to employ adaptive coping
Frontiers in Pain Research 08
strategies (118), and report higher chronic stress and traumatic

experiences (119) which may further exacerbate hyperalgesic

responses. As we have also reviewed, self-regulation of pain relies

on neural mechanisms involved in adaptive coping. Thus,

chronic opioid use may in fact simultaneously exacerbate the

nociceptive aspect of pain while inhibiting individuals’ ability to

self-regulate pain. Notably, opioids may be creating a feed-

forward cycle that ultimately worsens, rather than alleviates, the

experience of chronic pain (shown in Figure 4).

Alternatives to opioid treatment include medications that alter

neurotransmitter signaling upstream of, downstream of, or in

parallel with endogenous opioid pain-gating (120). For example,

serotonin noradrenergic reuptake inhibitors (SNRIs) are often

used to treat chronic pain comorbid with anxiety and emotional

distress (121–123). Gabapentinoids, whose effect is mediated

directly by binding to voltage-gated calcium channels, but

perhaps indirectly by altering GABAergic and glutamatergic

activity (124–126), are first-line treatment for neuropathic pain

(121, 127). Additionally, cannabinoid agonists are rising in

popularity for pain treatment, and self-motivated use of

medicinal cannabis for pain and stress relief is increasing in the

US (128, 129). There is also some evidence that

tetrahydrocannabinol can reduce dysfunctional corticomesolimbic
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connectivity in those with chronic pain (130). However, there is a

desperate need for testing of medicinal cannabis products that are

non-addictive and for novel non-addictive agents and approaches

for pain treatment. As more analgesic agents are introduced, it is

crucial that we understand how these substances may interact

with the pain circuitry in the brain, and especially pain

regulatory pathways of the VmPFC and striatal circuits and their

impact on the risk of developing chronic pain. In addition, pain

management combined with stress management will be beneficial

for the treatment for chronic pain given the substantial overlap

between stress and pain pathways. Recent work has shown the

effectiveness of mindfulness-based stress reduction, acceptance

and commitment therapy (ACT) and cognitive behavioral

therapy in chronic pain treatment (131–133). Both psychological

strategies and carefully studied pharmacologic solutions may

ultimately provide more successful pathways to managing

chronic pain without exacerbating the condition or creating new

adversities.
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