
TYPE Original Research
PUBLISHED 19 June 2023| DOI 10.3389/fpain.2023.1150264
Natalia Egorova Brumley,

University of Melbourne, Australia

REVIEWED BY

Youngsun Kong,

University of Connecticut, United States

Yaqi Chu

Shenyang Institute of Automation, Chinese

Academy of Sciences (CAS), China

*CORRESPONDENCE

Raul Fernandez Rojas

raul.fernandezrojas@canberra.edu

RECEIVED 24 January 2023

ACCEPTED 29 May 2023

PUBLISHED 19 June 2023

CITATION

Fernandez Rojas R, Hirachan N, Brown N,

Waddington G, Murtagh L, Seymour B and

Goecke R (2023) Multimodal physiological

sensing for the assessment of acute pain.

Front. Pain Res. 4:1150264.

doi: 10.3389/fpain.2023.1150264

COPYRIGHT

© 2023 Fernandez Rojas, Hirachan, Brown,
Waddington, Murtagh, Seymour and Goecke.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Pain Research
Multimodal physiological sensing
for the assessment of acute pain
Raul Fernandez Rojas1*, Niraj Hirachan1, Nicholas Brown2,
Gordon Waddington3,4, Luke Murtagh5, Ben Seymour6,7

and Roland Goecke1

1

Human-Centred Technology Research Centre, Faculty of Science and Technology, University of
Canberra, Canberra, ACT, Australia,

2

Faculty of Health, Queensland University of Technology, Brisbane,
QLD, Australia,

3

Australian Institute of Sport, Canberra, ACT, Australia,
4

University of Canberra Research
Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia,

5

Department of
Anaesthesia, Pain and Perioperative Medicine, The Canberra Hospital, Canberra, ACT, Australia,

6

Wellcome
Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, UK,
7

Oxford Institute for Biomedical Engineering, University of Oxford, Headington, UK

Pain assessment is a challenging task encountered by clinicians. In clinical settings,
patients’ self-report is considered the gold standard in pain assessment. However,
patients who are unable to self-report pain are at a higher risk of undiagnosed
pain. In the present study, we explore the use of multiple sensing technologies to
monitor physiological changes that can be used as a proxy for objective
measurement of acute pain. Electrodermal activity (EDA), photoplethysmography
(PPG), and respiration (RESP) signals were collected from 22 participants under two
pain intensities (low and high) and on two different anatomical locations (forearm
and hand). Three machine learning models were implemented, including support
vector machines (SVM), decision trees (DT), and linear discriminant analysis (LDA)
for the identification of pain. Various pain scenarios were investigated, identification
of pain (no pain, pain), multiclass (no pain, low pain, high pain), and identification
of pain location (forearm, hand). Reference classification results from individual
sensors and from all sensors together were obtained. After feature selection,
results showed that EDA was the most informative sensor in the three pain
conditions, 93.2+ 8% in identification of pain, 68.9+ 10% in the multiclass
problem, and 56.0+ 8% for the identification of pain location. These results
identify EDA as the superior sensor in our experimental conditions. Future work is
required to validate the obtained features to improve its feasibility in more realistic
scenarios. Finally, this study proposes EDA as a candidate to design a tool that can
assist clinicians in the assessment of acute pain of nonverbal patients.
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1. Introduction

Pain assessment is one of the most challenging tasks encountered by clinicians (1).

This becomes particularly problematic, when clinicians need to assess pain in patients

who are unable to communicate (i.e., nonverbal patients). Although pain is considered a

subjective experience needing the patients to self-report, the inability to report pain

does not negate the possibility that the patient is experiencing pain and in need of

pain-reliving treatment (2). In clinical settings, the most reliable method of pain

evaluation is the patient’s self-report. This method relies in the patient’s ability to

communicate a self-assessment of pain, thus, clinicians can use this information to

understand the patient’s pain experience and for pain management. However, patients
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are often unable to self-report pain due to, for example, being

unconscious, sedated, recovering from a stroke, in mechanical

ventilation, or suffering from advanced dementia.

When a patient is unable to provide a self-report of pain, other

methods for pain assessment are available (3). Pain measurement

tools that can be utilised to screen pain in non-verbal patients

includes, the behavioral pain scale (BPS), critical-care pain

observation tool (CPOT), and the nonverbal pain scale (NVPS).

These techniques require highly skilled observers to measure pain

(4). Thus, a clear disadvantage of these screening tools is that

they are susceptible to assessment bias or misinterpretations,

which leads to low inter-rater reliability. Another limitation of

these tools is the fact that they often provide a one-time

measurement. When multiple observations are constantly needed,

the number of clinical observations are labour intensive, which

can cause increased workload and nurse burnout (5). These

limitations are important to be considered, since they can lead to

under-treated pain and unnecessary suffering, or over-treated

pain due to strong analgesics and/or analgesic overuse (6).

An important role of clinicians is pain assessment for acute

postoperative pain control. It has been reported that three quarters

of patients undergoing surgical procedures experience acute pain

(7). Acute pain is a type of pain that typically lasts for a short

period of time and is usually originated as a response to an injury,

illness, or tissue damage. In this context, postoperative pain

management is an essential component in facilitating a patient’s

recovery to normal function, improve patient comfort, and prevent

further complications. It is well documented that inadequate pain

assessment and management is associated with increased morbidity

and mortality rates (8). In addition, ineffective management of

acute pain can cause both physical and psychological distress, such

as, depression, anxiety, or chronic pain; it can also lead to an

increased risk of complications and, thus, longer hospital stays.

Health problems that can lead to increased health care costs for the

patient and the public. Therefore, a tool that can assist clinicians in

the assessment of acute pain is needed, which will contribute to a

more objective, valid, and reliable diagnosis of pain.

Different physiological signals can be used to measure

(minimally invasive or noninvasive) physiological changes during

acute pain. In the event of acute pain, the autonomic nervous

system (ANS) simultaneously affects the function of multiple

physiological activities in the body (4). Therefore, sensing

technologies that can afford a measure into the ANS are often

used. Examples of these technologies include, electrodermal

activity (EDA), photoplethysmography (PPG), or respiration

(RESP). For example, EDA can capture sympathetic changes

related to pain, as it measures the sweat glad activity as response

to pain (9). PPG can be used to measure the autonomic response

through analysis of heart rate variability (HRV) (10). The

respiratory system is also affected by a sympathetic nerves, which

have a stimulating effect by increasing oxygen intake in the event

of acute pain (11). Although, the use of these sensing

technologies can be used individually, multimodality systems

have also shown promising results (12–14).

Machine learning has been fundamental for the success of

physiological-based systems for the detection of pain. In this
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context, machine learning is used to better interpret the

complexity of pain by revealing patterns within the physiological

data. The literature presents different attempts to use multimodal

sensing and machine learning for the detection of pain. For

instance, in a study by Teichmann et al. (15), ECG and PPG

sensors were used to monitor physiological signals from

participants and to design a random forest (RF) classifier to

identify pain sensations. In another study, Chu et al. (16) used

PPG, ECG, and EDA signals to predict the absence and presence

of pain using linear discriminant analysis (LDA), k-nearest

neighbour (KNN), and support vector machines (SVM).

Similarly, Jiang et al. (14) employed EDA, heart rate (HR),

breath rate (BR), EDA, and electromyogram (EMG) sensors to

identify pain using artificial neural networks. In a study by Yang

et al. (17) to investigate the feasibility to use multiple

physiological measures to identify pain, a logistic regression

model was implemented using oxygen saturation (SpO2), blood

pressure (BP), HR, respiration (RESP), and skin temperature

data. These examples show that physiological indicators and

machine learning can be used in the identification of human pain.

In this study, we explore different pain estimation modalities

using multiple physiological sensors (EDA, PPG, RESP). First, we

investigate the use of these sensing technologies to identify acute

pain (e.g., no pain vs pain). Second, we also explore if pain

intensity can be identified in a multiclass problem (e.g., no pain,

low pain, high pain). Third, we address the problem of

identifying the source of pain using physiological sensors.

Consequently, we have designed a stimulation paradigm which

affords two intensities (low and high) in two different anatomical

locations (forearm and hand). We aim to identify physiological

indicators that can be used to trigger technological support to

assist clinicians in the assessment of acute pain, in our future

work. Therefore, this study presents the following contributions:

(1) it offers an exploratory study that aims to compare different

sensors technologies in a unimodal and multimodal approach for

the objective assessment of acute pain; (2) with a novel dataset,

this study serves as a validation of EDA as the superior sensor

technology for pain assessment and a possible candidate for

further investigation in clinical settings; (3) it presents a set of

EDA-based features as potential indicators of acute pain using

EDA and machine learning; and (4) to the best of our

knowledge, this is the first study that investigates the use of

physiological signals to identify the anatomical location where

pain originates, which sets baseline results for future studies

within the same research stream. The current clinical

applications of the proposed are constrained, necessitating

further experimentation before its deployment in clinical settings

or real-world scenarios can be considered viable.
2. Methodology

2.1. Participants

Twenty-two participants (12F/10M) took part in the experiment.

Their age ranged from 19 to 36 year old (mean age 27+ 4:19 std).
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No participants reported a prior history of neurological or

psychiatric disorder, a current unstable medical condition, chronic

pain, regularly taking medications or being under medication at

the time of testing. Participants were given a detailed explanation

of the experimental procedures upon their arrival. Written

informed consent was obtained before the start of the experiment.

The experimental procedures involving human subjects described

in this paper were approved by the University of Canberra’s

Human Ethics Committee (number:11837).
2.2. Experimental procedure

All experiments were conducted at the Human-Machine

Interface Laboratory at University of Canberra, Australia. The

participants were seated on a chair in front of a table and with

both arms resting on the table. The electrodermal activity

(EDA) and photoplethysmography (PPG) sensors were placed

on the left hand, while the respiration (RESP) sensor was

placed on the chest of the participants; all sensors were made

by Biosignal plux (Lisbon, Portugal). The two electrodes of the

EDA sensor were placed on the proximal phalanx of the index

and middle fingers of the hand, and the PPG finger clip sensor

was placed on the middle finger. On the right arm, the

electrodes of a transcutaneous electrical nerve stimulation

(TENS) machine (Medihightec Medical CO., LTD., Taiwan)

were placed on the inner forearm and on the back of the hand.

These two anatomical locations were used to explore the

possibility to identify the source of pain. The location and

intensity of pain stimulus were counterbalanced to avoid
FIGURE 1

Graphical representation of the two parts of the experimental procedure. (A) In
Two anatomical regions (forearm and hand) were used to stimulate participant
location, threshold of pain was first obtained and then pain tolerance was reco
intensity and anatomical location was carried out. Sensor data was recorded t
self-reported numeric pain rating was obtained.
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habituation to repeated experimental pain and to avoid

confounding factors due to order effects (18).

The experiment consisted of two main parts, the identification of

individual pain perceptions and the pain stimulation part. Figure 1

presents a schematic representation of the experimental procedure.

In the first part of the experiment, pain perceptions were obtained

using the quantitative sensory testing (QST) protocol (19); no

sensors were used in this part of the experiment. The QST protocol

is used determine individual’s pain threshold and pain tolerance.

We defined pain threshold (low pain) as the lowest stimulus

intensity at which stimulation becomes painful, and pain tolerance

(high pain) as the highest intensity of pain a person can endure

before reaching a point of intolerable discomfort. The participants

were exposed to gradually increasing stimulus and were instructed

to verbally rate (0 ¼ “no pain,” 10 ¼ “maximum pain”) the pain

intensity when the stimulation became painful (pain threshold) and

then when the stimulation reached a point where it could no

longer be endured (pain tolerance). The intensity of the TENS

machine, in which the threshold and tolerance of pain occurred,

were recorded to be used as the intensity during the stimulation part.

In the second part, the pain intensity and anatomical location

was studied. Before the start of the pain stimulation sequence, the

physiological sensors were placed on the hand (EDA and PPG) and

the chest (RESP) of the participant. At the start of the experiment,

a 60-second baseline period was recorded, in which the participants

were instructed to remain calm; this baseline period served as the

no-pain condition for the classification tasks. After that, the

counterbalanced design alternated stimuli intensity (low or high)

and location (forearm or hand). Six repetitions with a duration

of 10 s for each stimulus were recorded. Immediately after each
the first part of the experiment, individual pain perceptions are obtained.
s, a random order was carried out to select the anatomical region. At each
rded. (B) In the second part of the experiment, a randomised order of pain
hroughout this part of the experiment. After each stimulus the individual’s
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TABLE 1 Summary of features obtained during the feature extraction
process.

Sensor Features
EDA Phasic max peak amplitude, number of EDA peaks, and amplitude

measures (mean, median, standard deviation, max, min, range and
interquartile range metrics)

RESP Respiratory rate variability indices, respiratory sinus arrhythmia indices,
RESP amplitude measures (min, max, mean), and RESP rate changes
(min, mean, max, time of min, time of max)

PPG PPG rate characteristics (mean, amplitude) and heart rate variability
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stimulus, the participants were asked to verbally rate the

stimulation using the same scale (0 ¼ no pain, 10 ¼ maximum

pain) used during the pain perception. After rating the pain

intensity, a 40-second rest period was offered to allow all

physiological signals to return to baseline. In total, twenty-four

recordings (2 intensities � 2 locations � 6 repetitions) were

obtained from each participant. Each experiments lasted for

approximately one hour (30 min preparation and individual pain

perception, and 30 min pain stimulation experiment).

(HRV) indices (time, frequency, and nonlinear domain)
2.3. Pre-processing

All physiological data was sampled at 100Hz. Each physiological

signal was treated separately to remove noise. The respiration data

were filtered with a band-pass Butterworth filter (0.1–0.5 Hz), as

this frequency range corresponds to the respiratory frequency of the

human body (20). For the EDA data, a low-pass Butterworth filter

(5 Hz) was applied to remove high-frequency oscillation and power

line interference. Then, the EDA signals were separated into their

phasic and the tonic components following the standard procedure

by Makowski et al. (21), with a high-pass (0.05 Hz) and low-pass

(0.05Hz) Butterworth filter, respectively; however, the phasic

component was chosen for the remaining of the analysis due to it

provides better response to the rapid changes in electrodermal

activity in response to the stimuli. The PPG data were filtered with

a band-pass Butterworth filter (0.04–1.7 Hz) to obtain

cardiovascular-derived information corresponding to the normal

heart beat (60–100 bps) and respiratory sinus arrhythmia (22).
2.4. Data analysis

2.4.1. Validation of experimental conditions
The study used a within-subjects design, in which each

participant completed all the experimental conditions. The four

experimental conditions were: (1) low pain on hand, (2) low pain

on forearm, (3) high pain on hand, and 4) high pain on forearm.

To validate the design of the experiment and the experimental

conditions, pain ratings were self-reported by the participants

after each stimulus were used as the criterion measure of pain.

Normality of data distribution was checked with Shapiro-Wilk

test. This test showed that data did not significantly deviate from

a normal distribution (p . 0:05), thus, parametric testing was

used. A one-way analysis of variance (ANOVA) was conducted

(with p , 0:05 considered statistically significant) to determine if

the pain ratings were related to the experimental conditions

(High and Low pain) across all the participants. Thus, the null

hypotheses (Ho) is that the perceived pain is not due to the

experimental condition. When significant differences were

identified, post-hoc comparisons were carried out using Tukey’s

HSD (honestly significant difference) test.

2.4.2. Feature extraction
In order to extract features from the sensor data, all sensor data

was analysed using windows. A 10-second window size was used for
Frontiers in Pain Research 04
feature extraction, as this window size was the optimal after testing

several window sizes (e.g., 1–10 s) with the three sensors

combined. Two types of features were obtained from each window

of data, these are: statistical features from all physiological sensors

and specialised features from individual sensors (EDA, RESP,

PPG). From all three physiological sensors, 10 well-known

statistical feature were extracted (23), including: Mean, standard

deviation, Min, Max, Range, Median, Sum, Range, Q1, Q2, Q3,

Q4, and Inter-Quartile Range. Specialised features were obtained

using the Neurokit2 Python toolbox (21). For the complete set of

extracted features, the interested reader is referred to the cited

reference for detailed description. After removing features with

missing values greater than 50% of the total number of samples, a

total of 122 features were obtained. The number of extracted

features from the different sensors was: 12 features from EDA, 30

from RESP, and 80 from PPG. Table 1 presents a summary of the

extracted features. The range of each feature was re-scaled to a

[0,1] range to standardised the range of features.
2.4.3. Feature selection
Feature selection was performed to reduce the number of

features and obtain a more accurate learning model. Feature

selection was carried out after the feature extraction process. The

selection criteria was based on joint mutual information (JMI),

this method can be used to rank the features according to their

cumulative summation of the mutual information (24). JMI aims

to identify the most informative features that have a high degree

of relevance to the target variable while minimising the

redundancy between features themselves. JMI measures the

mutual information between a target variable and each feature to

quantify the level of statistical dependency between variables, i.e.,

it measures the amount of information that each feature provides

about the target variable. Features with high mutual information

are considered to be more informative and are more likely to

contribute to accurate predictions. In addition, this method

employs the mutual information among the features themselves

to identify redundant or irrelevant features. In this way, JMI

captures unique and diverse information from a set of features,

by identifying features that have high MI with the target variable

and low MI with each other. The reason JMI was chosen is

because it presents a good trade-off in terms of accuracy,

stability, and flexibility than other ranking methods (25).

Additionally, JMI evaluates the features independently of any

classification model and it is computed only once (26). A feature
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fusion approach was followed to concatenate all computed features

before the classification task.
2.4.4. Classification
The main objective of the classification was to identify the pain

intensity under various pain conditions using the physiological

data. Three main classification tasks were performed, these are:

no pain vs pain (high pain), no pain vs low pain vs high pain

(3-class problem), and pain on forearm (low and high) vs pain

on hand (low and high). The dataset was composed with the

same number of samples (six windows of 10 s) in each class, in

total 528 samples (6 repeats � 2 pain intensities � 2 locations �
22 subjects) were obtained. Three well-known machine learning

models were use to perform the classification, including linear

discriminant analysis (LDA), decision trees (DT), and support

vector machines (SVM) using the Gaussian Kernel (RBF). All

learning models and classification tasks were implemented using

Python 3.10.

A leave-one-subject-out cross validation was implemented to

evaluate the classifiers. In this method of cross validation, the

learning models are trained with the data of 21 participants and

then tested with the data of the remaining participant. This

method is repeated until all of the subjects had been part of the

testing dataset. First, reference performance values were obtained

using all features (i.e., without feature selection) from each sensor

separately and then with all sensors. In this step, parameter
FIGURE 2

Graphical representation of the classification process using leave-one-subjec
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optimisation of learning models was carried out using a grid

search with a 10-fold cross validation, using the training set only

and with all 122 features. These parameters were: for SVM, C

[1,10,100,100] and g [0.0001,0.001,0.01,0.1] parameters; for DT,

the criterion function [Gini, Entropy]; and for LDA, no

parameters were optimised as LDA presents a closed-form

solution (27). Second, after feature selection using JMI, all

features were ranked and used to train and test the classifiers.

Figure 2 presents the graphical representation of this process. In

both cases, the final generalisation results are presented as the

average value and standard deviation of performance metrics

across all subjects in the testing phase.
3. Results

In this section, the results of the empirical comparison between

the learning models (LDA, SVM, DT) to identify the different

experimental conditions are presented. The analysis was carried

out in three main parts. First, the results of the validation of the

experimental conditions are presented. Second, reference

classification results were obtained from each individual sensor

and all together. Third, feature optimisation is implemented to

identify the best feature set to classify each pain condition.

Figure 3 presents an example of the physiological response

obtained from all three sensors after each stimulus. It is evident
t-out cross validation (LOSO-CV) for performance evaluation.
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FIGURE 3

An example of the physiological data captured by the electrodermal activity (EDA), respiration (Resp), and photoplethysmography (PPG) during the
different experimental conditions.
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that the EDA sensor presents a clear distinction between the

different experimental conditions.
3.1. Validation of experimental conditions

First, a summary of the individual pain ratings based on the

four experimental conditions is presented in Figure 4. It is clear

that pain tolerance (high pain) was rated higher than pain

threshold (low pain) as the pain tolerance represents a much

higher stimulation intensity. In the design of the experimental

conditions, it was expected that the higher the stimulation

intensity, the higher the participant’s pain experience and thus,

the higher the pain rating; and the participant’s pain rating

followed the expected response. In terms of anatomical location

and intensity of pain, it is evident that the numeric pain rating

during the tolerance of pain (high pain) condition was slightly
FIGURE 4

A summary of all individual pain ratings based on the four experimental
conditions.
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higher when the stimulation was delivered on the hand

(8:69+ 1:16) than on the forearm (8:37+ 1:34). Similarly, the

numeric pain rating during the threshold of pain (low pain)

condition was slightly higher when the stimulation was applied

on the hand (3:45+ 1:57) than on the forearm (3:31+ 1:65).

Second, to validate the experimental conditions the numeric

pain rating from all participants were analysed using statistical

methods described above. There was a statistically significant

difference in pain ratings between at least two groups

(F(2, 18) ¼ 401:23, p ¼ 0:000). Tukey’s HSD test for multiple

comparisons found that the mean value of pain ratings was

significantly different between pain tolerance (high pain) and

pain threshold (low pain) in both, arm (p , 0:001, 95%

C:I: ¼ [� 5:78, � 4:69]) and forearm (p , 0:001, 95%

C:I: ¼ [� 5:59, � 4:51]). There was no statistically significant

difference in mean pain ratings between the two locations of

stimulation (arm and forearm) during pain tolerance (high pain)

(p ¼ 0:413, 95% C:I: ¼ [� 0:21, 0:86]) and during pain

threshold (low pain) (p ¼ 0:91, 95% C:I: ¼ [� 0:40, 0:68]). A

summary of descriptive statistics is presented in Table 2.

Additional comparisons between the two anatomical locations

and the two different intensities (e.g., High Arm vs Low

Forearm) are also presented in the table. The confidence interval

(C.I.) are narrow, suggesting that our estimate of the difference is

relatively precise. This reflects that the experimental conditions

did affect the pain ratings and that the number of participants

did not affect the precision of our estimates in this study.
3.2. Reference values

Based on the computed features from each sensor, reference

performance results are obtained. The performance of the

learning models are investigated with features from each sensor

separately and then with all features combined. The results on

the test set using LDA, SVM, and DT are presented in Table 3.

The results represent the classification accuracy and standard
frontiersin.org
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TABLE 2 Descriptive statistics showing the results of the one-way ANOVA test along with the Tukey’s HSD post-hoc multiple comparisons test.

Group 1 Group 2 Mean diff. p-adj Lower Upper Reject Ho
High arm High hand 0.3241 0.413 �0.2178 0.8659 False

High arm Low hand �5.0556 0.000 �5.5974 �4.5137 True

High arm Low hand �4.9167 0.000 �5.4585 �4.3748 True

High hand Low arm �5.3796 0.000 �5.9215 �4.8378 True

High hand Low hand �5.2407 0.000 �5.7826 �4.6989 True

Low arm Low hand 0.1389 0.911 �0.403 0.6808 False
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deviation, while the number of features used in each model appears

in parenthesis. The reference performance results will be used to

evaluate the learning models during the feature selection process.

Three classification tasks were investigated: identification of pain

(no pain, high pain), multiclass (no pain, low pain, high pain),

identification of pain location (forearm, arm).

Classification results for the three learning tasks presented

various results. First, EDA data produced the best results for the

identification of pain (no pain, pain). Two learning models

exhibited the best results using twelve features from EDA data,

LDA (acc ¼ 0:938) and SVM (acc ¼ 0:931). On the other hand,

performance results using a combination of all features (n ¼ 122)

exhibited similar results using the SVM model (acc ¼ 0:931).

Second, EDA also exhibited the best results in the multiclass

task. In this case, SVM produced the highest results with EDA

alone (acc ¼ 0:678) and a similar response with data from all

sensors combined (acc ¼ 0:672). Third, PPG features presented

the best results for the identification of pain location (forearm,

hand). DT produced the best result (acc ¼ 0:531) with features

only from PPG data.
3.3. Classification after feature selection

After using joint mutual information (JMI) to find the

significance of each feature, all features were ranked and used to

train and test the classifiers (refer to Figure 2). The identification

of the best performing model was systematically tested with a

different number of features based on their feature importance.

This process of feature evaluation was carried out for each of the

classification tasks. Results for individual learning tasks are

presented in Figure 5, a systematic search to identify the best

feature set was implemented using three learning models: SVM
TABLE 3 Reference accuracy results obtained with different features from
each sensor and in combination, the number of features appears in
parentheses.

Task Model PPG (80) EDA (12) RESP (30) ALL (122)
LDA 81:1+ 14 92:8+ 7 71:6+ 6 89:5+ 13

No Pain, Pain SVM 82:9+ 11 93:1+ 10 71:8+ 4 93:1+ 10

DTC 76:7+ 16 88:5+ 11 63:4+ 10 92:0+ 10

LDA 53:9+ 11 64:3+ 14 44:7+ 10 66:4+ 13

Multiclass SVM 53:2+ 10 67:8+ 16 46:2+ 9 67:2+ 14

DTC 47:5+ 10 59:3+ 13 38:4+ 9 56:5+ 13

LDA 49:1+ 5 49:8+ 8 50:4+ 8 49:8+ 6

Pain Location SVM 50:9+ 5 47:8+ 6 51:3+ 8 51:4+ 8

DTC 53:1+ 10 49:9+ 8 50:3+ 6 48:6+ 7
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(orange line), LDA (blue line), and DT (green line). The results of

each individual learning task are presented in the following sections.

3.3.1. Identification of pain
The first learning task to be evaluated was the identification of

pain (No pain vs High Pain). Figure 5 (left panel) presents the

classification results. The average accuracy results (acc ¼ 93:1)

using all features (n ¼ 122) together is presented as a horizontal

red line (refer to Table 3) as a reference value. The best result

(acc ¼ 94:1+ 8) was obtained using the SVM model with 112

features, the DT model exhibited comparable results

(acc ¼ 93:8+ 7) with 49 features, and the LDA model presented

slightly lower results (acc ¼ 92:8+ 9) with 28 features. It is clear

that SVM and DT models obtained better results than the

reference results using less features. In addition, it is possible to

observe that using only 10 features, the SVM model presents

comparable results (acc ¼ 93:2+ 8) than the reference value

(acc ¼ 93:1). This set of 10 features is composed only by EDA-

based features, these are (by decreasing order of importance):

EDA range, EDA std, EDA max, EDA q3, EDA sum, EDA mean,

EDA median, EDA q1, EDA lqr, EDA min.

3.3.2. Multiclass problem
A multiclass learning problem (No pain, Low Pain, High Pain)

was the second learning task. Figure 5 (middle panel) presents the

results for the multiclass learning problem. Two models (SVM and

LDA) presented better results than the reference accuracy result

(acc ¼ 67:2+ 14) using a combination of all obtained features.

Overall, the best result (acc ¼ 69:2+ 14) was obtained using

LDA with 49 features. Comparable results (acc ¼ 69:0+ 16)

were obtained with the SVM classifier using 30 features. The

worst performance out of the three learning models was

exhibited by the DTC model, the best performance

(acc ¼ 60:0+ 13) of the DTC model was obtained using 11

features. Again, it is possible to observe that the SVM classifier

using only 8 features produced slightly lower results

(acc ¼ 68:9+ 14) than the best results obtained by the LDA

model; these 8 features also exhibited better results than the

reference value (acc ¼ 67:2+ 14). This set of 8 features is also

composed only by EDA-based features, including (by decreasing

order of importance): EDA max, EDA q3, EDA median, EDA q1,

EDA mean, EDA sum, EDA range, EDA min.

3.3.3. Pain location
The last learning task was the identification of pain location,

i.e., identify the anatomical location where pain originates. Two
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FIGURE 5

Classification results after feature selection of the different learning tasks. Horizontal red (dashed) line represents the best accuracy result using all
(n ¼ 122) features without feature selection.

TABLE 4 Summary of results (including +std) obtained in this study from the three learning tasks after feature selection.

Task Model Sensor Features Accuracy Precision Recall F1-Score
No Pain vs Pain SVM EDA 10 93:2+ 8 94:6+ 6 96:8+ 3 95:5+ 3

Multiclass SVM EDA 8 68:9+ 14 70:8+ 8 68:9+ 8 68:5+ 8

Pain location DT EDA 8 56:0+ 8 55:2+ 6 56:4+ 13 55:4+ 7
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anatomical locations were investigated, the forearm and the hand,

both on the participant’s right arm. Figure 5 (right panel) presents

the classification results for this learning task. Again, reference

values (acc ¼ 51:4+ 8) using all available features is presented

as a red dashed line. In this case, all three models exhibited

better results that the reference value. The SVM model presented

the lowest result (acc ¼ 51:7+ 5) out of the three classifiers, this

model used 67 features. The second best result (acc ¼ 52:1+ 10)

was obtained by the LDA model with only 4 features. Finally, the

best accuracy result (acc ¼ 56:0+ 8) was obtained with the DT

using 8 features. This set of 8 features are only composed of

features from EDA data, these are (by decreasing order of

importance): EDA q3, EDA max, EDA min, EDA q1,

EDA median, EDA lqr, EDA mean, EDA sum. Table 4 presents a

summary of the accuracy results obtained with the best feature

subset for each classification task.
4. Discussion

In this study, we have carried out a stimulation experiment

with the aim to identify a set of indicators that can be used to

assess human pain. An experiment was designed to stimulate

participants with two intensity levels (low and high) and at two

different anatomical locations (forearm and hand). A total of 112

features were computed from three different sensors (EDA, PPG,

and Resp). Using a feature selection technique, the most

important features were obtained for each learning task, and then

these features were evaluated during the learning tasks. After

each classification tasks, a more compact set of features were

identified. This set of features represent a group of possible

physiological indicators for the objective assessment of pain.

The experimental conditions and overall assumption of the

experiment were validated. An increase of stimulation intensity

led to an increase in the participant’s perceived pain experience
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(p , 0:000). This is in line with previous experiments carried out

in other studies (9, 18). For instance, in an experiment to

observe the effect of thermal pain stimulation on EDA data

(9), it was found statistical significant differences between their

no pain and pain conditions. Similarly, in a study using

functional near-infrared spectroscopy (fNIRS) and thermal

stimulation (18), significant higher individual’s numeric pain

ratings were identified during pain tolerance than during pain

threshold stimuli.

This study presents promising results for the identification of

pain (i.e., no pain vs pain) using EDA sensor data. Although, the

best results were obtained with 112 features from a combination

of all three sensors (EDA, RESP, PPG) with an accuracy of 94:1%,

it was observed that the SVM model obtained comparable results

with the top-10 ranked features with an accuracy of 93:2%. It is

worth mentioning that this set of 10 features are computed from

EDA data, which presented the highest weights in the context of a

multimodal classifier. Direct comparisons with other studies are

difficult because of the use of different experimental conditions,

biosignals, sampled populations and with different demographics,

validation methods, and classification models (28). In comparison

with other studies for the identification of pain using EDA sensor

data, our study has exhibited comparable results. For instance,

Susam et al. (29) used EDA to discriminate between high pain

(moderate to severe) versus no pain in children’s postoperative

pain, with an accuracy of 77:66% using linear SVM. In another

study using EDA data collected from postoperative patients,

Aqajari et al. (30) used a random forest (RF) model to

discriminate between baseline (no pain) and low pain, and

between baseline and high pain with an accuracy of 86% and

61:5%, respectively. In another study to identify pain using the

EDA response in experimental thermal pain, Kong et al. (9) used

a polynomial SVM learning model to discriminate between no

pain and pain with an accuracy of 90%. In another study by Kong

et al. (31), an accuracy of 87% was obtained using a Gaussian
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SVM to identify between no pain and high pain using EDA data.

Table 5 presents a summary from other studies using EDA.

In the multiclass problem, we were able to classify three different

pain levels (No Pain, Low Pain, High Pain), but the accuracy was

relatively lower than the binary outcomes (No Pain, Pain).

Although, it was expected as the baseline accuracy in the three-

class classification problem would be 33:33% or 1/3, another

possible reason for obtaining a lower accuracy is the common

similarities between the physiological response among the three

experimental conditions; this can be observed in Figure 3. The

obtained accuracy is in line with other studies trying to identify

multiple pain conditions in a multiclass problem. For instance, in

a study by Kong et al. (31) to investigate the use of EDA sensor

data to identify pain, a Gaussian SVM was used to identify

between low, medium, and high pain with an accuracy of 63%. In

another study, Jiang et al. (14) used heart rate (HR), breath rate

(BR), EDA, and facial electromyogram (EMG) to identify between

No Pain, Mild Pain, and Severe Pain with an accuracy of 68:2%

using artificial neural networks. Yang et al. (17) used blood

oxygenation (SpO2), blood pressure (BP), HR, RESP, and

temperature (TEMP) to identify pain (baseline, low pain, and high

pain) in patients with sickle cell disease with an accuracy of 40:4%

using a multinomial logistic regression model.

This study also explored the possibility to identify the source of

pain using physiological data. The classification result exhibited the

lowest accuracy (acc ¼ 56:0%) among the three learning tasks,

which it was expected as this task is extremely difficult; in

particular, as the stimulation sites were on the same arm. To the

best of our knowledge there is no other study that explores the

possibility to identify the location of pain using physiological data.

The need for neural sensors (e.g., EEG, fNIRS) that provide

additional information would make pain localisation more accurate

(9). The idea to find the source of pain is important for patients

unable to communicate (i.e., non-verbal patients). Particularly

useful with the current COVID-19 pandemic, especially for

intubated patients (32). As being intubated can be painful and

traumatic even with administration of sedatives and analgesics. In a

study by Clukey et al. (33), it was found that sedation may mask

uncontrolled pain for intubated patients and prevent them from

communicating this condition to a nurse. When the intubated

patient is conscious, the patient can indicate the location of their

pain by pointing to the site or to the location on a body picture.

Unfortunately, when the intubated patient is not able to self-report,

pain localisation is extremely difficult. In these cases, nurses follow

protocols for pain screening that include a physical examination

using palpation and auscultation to determine pain and pain

localisation. Nurses look for non-verbal indicators while conducting
TABLE 5 Comparable results from studies using EDA data to identify acute
pain (No Pain vs Pain).

Study Sensor Pain stimulus Model Accuracy
Susam et al. (29) EDA Postoperative L-SVM 77:6%

Aqajari et al. (30) EDA Postoperative RF 61:5%

Kong et al. (9) EDA Thermal P-SVM 90%

Kong et al. (31) EDA Electrical G-SVM 87%

This study EDA Electrical G-SVM 93:2%
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the examination, including, crying, whining, facial expressions, or

protective body movement as guarding or clutching a body part.

However, this is a complex task and sometimes misinterpretation

of information can occur. Therefore, a system that is able to

identify pain and the pain location can be extremely helpful for

nurses to assess pain in non-verbal patients.

A multimodal approach (EDA, PPG, RESP) was designed in this

study, however, EDA sensor data exhibited the best classification

results in all the learning tasks. The use of multiple sensing

technologies was used with the expectation that improvements in

classification accuracy would be obtained. Although, this was

partially true because the combined features (n ¼ 120) from all

sensors exhibited, in some of of the classification tasks, slightly

better results than individual sensors. However, after the feature

selection process, EDA-based features showed better accuracy than

the other sensing technologies. This is in line with different

studies using multimodal sensor systems, in particular with studies

using the Biovid and X-ITE datasets. For instance, in an study

using EDA, electrocardiogram (ECG), and electromyogram (EMG)

showed that EDA-based features presented better classification

results to discriminate between baseline (no pain) and pain

tolerance (high pain) (34). In another experiment using EDA,

ECG, and EMG, it was found that EDA was the most information

rich sensor for continuous pain intensity prediction (35). Similarly,

EDA was found to be the best single modality in both

classification and regression using EDA, ECG, and EMG sensors

(36). In our study, the EDA-based features represents a more

compact set of features that can produce less complex learning

models. An advantage of finding the best sensor modality is that

EDA affords data collection from a smartwatch or wrist biosensor,

which can be easy to collect for long periods of time, in different

conditions (e.g., during transportation within the hospital, or at

night when the patient is asleep), remote monitoring (e.g., at

home), and without being obtrusive to the patient.

All physiological signals (EDA, PPG, RESP) investigated in this

study are closely related to the autonomous nervous system (ANS).

The autonomic system is related to the regulation of involuntary,

physiological processes such as regulating sweating, blood

pressure, or respiration. The ANS is also linked to pain as

painful stimuli trigger an autonomic defensive response in the

body, this response is designed to prevent further harm and

facilitate escape from the painful stimuli (37). A key element to

the immediate response to pain in the ANS is the sympathetic

nervous system (SNS), which is responsible for the body’s fight

or flight response. When experiencing pain, the SNS initiates a

physiological response that results in various changes such as

alterations in blood pressure, oxygen consumption, and sweating

(38). When SNS is activated due to pain EDA can be used as

measure of SNS activity since increased SNS activity can lead to

an increase in sweat (i.e., an increase in electrical conductance on

the skin). Similarly, PPG and RESP can assess sympathetic

activity by measuring changes in skin blood flow and respiration

rate, respectively. However, PPG and RESP are also influenced by

other factors, such as temperature and hydration in PPG, and

anxiety or physical activity in RESP data. On the other hand,

EDA is considered a relatively direct measure of SNS activity,
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since changes in skin conductance are primarily regulated by the

SNS innervation of sweat glands in the skin (39). Thus,

compared to PPG and RESP, EDA may be better suited for

detecting pain in terms of SNS activity due to it offers a

relatively more direct measure of sympathetic activation.

Preliminary results presented in this study are promising, however,

we acknowledge that this study presents some limitations that should

be addressed in our future research. Confounding factors such as stress,

anxiety, or other emotions can affect the identification of pain, in

particular due to anticipation of the upcoming pain stimulation.

Therefore, in our future research experiments, we will try to

minimise the participants’ stress as much as possible by asking

subjects to keep their eyes closed to avoid pain anticipation or by

varying the length of rest periods between stimuli (40, 41). In

addition, acute pain in clinical contexts may have variable onset

dynamics, making the identification of pain more difficult if onset

time is unknown. A possible solution will be the use of a moving

window classifier to build learning models that identify different

onsets of pain. It is also important to mention that further research

will be needed for pain detection in chronic pain patients. Another

limitation of the current study is the lack of neurophysiological

sensors (e.g., fNIRS, EEG), as these type of sensors can improve

overall accuracy and also improve our results in the location of pain

(42). In our future work, we will also explore more advanced

classification techniques (e.g., deep learning) that can help us

improve the current results. Finally, it is worth noting that clinical

applicability of the current system will need further experimentation

and research, including the need to incorporate participants with

broader age range and different pain conditions, so the learning

model could generalise better to different populations.
5. Conclusions

This study investigated multiple sensing technologies to identify

different pain estimation scenarios. Three different sensors (EDA,

PPG, and RESP) were employed to identify a set of indicators that

can be used for the objective assessment of pain. The experimental

conditions used in this study were validated by analysing the self-

reported participants’ numeric pain rating using statistical analysis.

We obtained reference classification results from each individual

sensor and from a combination of all sensors together. After a

feature selection process, results showed that EDA was the most

informative sensor for prediction in the three pain conditions

(identification of pain, multiclass, and location of pain). To the best

of our knowledge, this is the first study that investigates the use of

physiological signals to identify the anatomical location where pain

originates, which sets baseline results for future studies within
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the same research stream. The current clinical applications of

the proposed approach highlight the necessity for further

experimentation to establish its suitability for deployment in clinical

settings or real-world scenarios. Finally, future research will utilize

the proposed physiological indicators for further investigation and

the development of a tool aimed at assisting clinicians in the

assessment of acute pain.
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