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Network targets for therapeutic
brain stimulation: towards
personalized therapy for pain
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Precision neuromodulation of central brain circuits is a promising emerging
therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying
in whom, where, and in what context to provide brain stimulation for optimal pain
relief are fundamental challenges limiting the widespread implementation of
central neuromodulation treatments for chronic pain. Current approaches to brain
stimulation target empirically derived regions of interest to the disorder or targets
with strong connections to these regions. However, complex, multidimensional
experiences like chronic pain are more closely linked to patterns of coordinated
activity across distributed large-scale functional networks. Recent advances in
precision network neuroscience indicate that these networks are highly variable in
their neuroanatomical organization across individuals. Here we review
accumulating evidence that variable central representations of pain will likely pose
a major barrier to implementation of population-derived analgesic brain
stimulation targets. We propose network-level estimates as a more valid, robust,
and reliable way to stratify personalized candidate regions. Finally, we review key
background, methods, and implications for developing network topology-
informed brain stimulation targets for chronic pain.
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1. Introduction

The Centers for Disease Control and Prevention (CDC) estimates that chronic pain

affects more people in the United States than heart disease, diabetes and cancer

combined. Approximately 20% of the United States adult population suffers with chronic

pain, with more than 19 million experiencing functionally disabling “high impact”

chronic pain that limits life, work and social activity (1). Patients with chronic pain have

highly variable and often inadequate responses to treatment, leading to trial-and-error

based interventions that delay relief and increase reliance on potentially addictive opioid

analgesics. Beginning in the 1950s, an emerging understanding of the role of specific

brain regions in pain transmission and modulation motivated trials of deep brain

stimulation (DBS) for severe and otherwise refractory pain conditions of various

etiologies. More recently, preclinical pain research and neural circuitry models of pain

processing in humans have substantially broadened the range of viable empirically-defined

targets that may be used to treat chronic pain (2, 3). Although DBS of a variety of

specific brain regions can dramatically reduce pain and improve quality of life for a
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subset of patients, therapeutic responses to stimulation are highly

variable and there are currently no reliable methods for

determining optimal stimulation parameters and locations for

individual patients. The emergence of clinical transcranial

magnetic stimulation (TMS) in the 1990s and more recent

development of MRI-guided low-intensity focused ultrasound

(LI-FUS) offer promising non-invasive alternatives to DBS (4–7).

These new approaches promise to improve the safety and

accessibility of therapeutic brain stimulation for pain, but face

similar challenges in identifying in whom, where, and how to

stimulate to achieve optimal pain relief.

Dysfunction in distributed brain networks is increasingly

recognized as central to the pathophysiology of a variety of

neuropsychiatric disorders and approaches to modulate these

networks are now actively investigated as novel therapies (8–12).

Across disorders, therapeutic targets are generally established

anatomical regions informed by prior DBS and/or preclinical

models, or regions identified through population-level

comparisons between patients with the disorder and healthy adult

“control” cohorts (8, 11–14). Although improving the precision of

stimulation by targeting specific neuroanatomical regions that are

abnormally activated or connected at the population level has

been linked to improved treatment outcomes for a variety of

disorders, there is more limited evidence that such an approach

can be prospectively applied to individual patients (9, 15–17). In

fact, there is accumulating evidence across neuropsychiatric

disorders that variability in clinical response to neuromodulation

is directly related to variability in the topology (i.e., the spatial

organization and arrangement of network connections) of

underlying brain networks (18–21).

Advances in precision neuroscience have recently enabled the

estimation of reliable individual brain networks by repeatedly

scanning research participants (22–25). Studies of these highly

sampled individuals show that networks exhibit substantial

interindividual variability and that individual networks

meaningfully diverge from population average estimates (26–31).

Moreover, neural responses to both acute experimental pain and

spontaneous fluctuations in chronic pain are highly variable

across individuals (32–34). Indeed, population-level brain

imaging studies have largely failed to capture the complex and

uniquely individual aspects of pain. This failure poses a

considerable translational barrier to the development of network-

informed biomarkers that can be used guide personalized

neuromodulation for chronic pain (35, 36).

Effective pain management demands a personalized approach.

We propose that a precision neuromodulation approach to

network-informed target selection will be more robust to

individual differences in brain network topologies than current

one-target-fits-all approaches. Here, we review the

neuroanatomical basis of pain in the context of stimulation for

clinical pain relief and critique existing methods used to identify

optimal targets for therapeutic neuromodulation. We conclude

with a proposed biomarker development strategy motivated by

recent advances in network neuroscience and graph theory that

may improve personalized stimulation for pain and other

neuropsychiatric disorders.
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2. Review of pain circuits

Research across species indicates that pain is represented by a

distributed network of brain regions involved in different aspects of

pain processing, including ascending pain transmission circuits

and descending opioidergic pain modulation circuits (32, 37–43).

Early attempts to identify a single locus of pain perception in

humans converged on the thalamus, as neither focal lesions nor

stimulation of cortex could reliably modify painful sensations

(44, 45) [but see (46, 47)]. Gate Control Theory (48) offered a

mechanistic explanation for variability in pain perception as a

dynamic central processes that exerts top-down influence over

the patterned input of spinal pain transmission pathways. Gate

control theory also began to highlight the paramount importance

of motivational and affective features of the pain experience (49).

This emerging understanding of pain as a multidimensional

psychological construct was later formalized by Melzack as the

Neuromatrix, subsequently “Pain Matrix”, a widely distributed

neural network of interconnected somatosensory, limbic, and

thalamocortical structures subserving parallel processing of

sensory-discriminative, affective-motivational, and cognitive-

evaluative domains of the pain experience (50, 51). In contrast to

the largely modulatory role ascribed to the brain in Gate

Control Theory, the Neuromatrix is foundational to our

current understanding of pain as a complex experience emergent

from patterned activity across a distributed network of brain

regions (52).

Modern accounts of the Pain Matrix predict that sensory,

affective, and cognitive domains of pain processing are

represented by a specific subset of established “pain relevant”

brain regions (51, 53, 54) (Figure 1A). In this reductionist view,

sensory-discriminative regions include the sensory (i.e., ventral

posterolateral and ventral posteromedial) thalamus,

somatosensory cortex (S1/S2), and posterior insula (pIns).

Affective-motivational regions include the amygdala, ventral

striatum (VS), anterior insula (aIns), and anterior cingulate

cortex (ACC). Cognitive-evaluative regions include the

hippocampus, orbitofrontal cortex (OFC), and dorsolateral

prefrontal cortex (dlPFC). Subcortical structures like the sensory

thalamus and periaqueductal gray (PAG) with extensive

reciprocal connections to distributed cortical regions and

downstream outputs that are known to modulate spinal

nociceptive transmission are included in most models as key

ascending transmission and descending modulation hubs,

respectively. Below, we review neuroimaging evidence for and

against the involvement of specific brain regions and networks in

pain before considering implications for clinical neuromodulation.
2.1. Evidence for the involvement of specific
brain regions in pain processing

A large body of predominantly correlative brain imaging

literature in humans has been used to link activity in

specific brain regions with different domains of pain processing
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FIGURE 1

Pain matrix regions grouped by processing domain* with summarized DBS effects. (A) Brain regions implicated in different domains of pain perception
superimposed on ascending pain transmission and descending pain modulation pathways. Several implicated brain regions without stimulation data in
chronic pain (e.g., amygdala, hippocampus) are excluded for clarity, as are many connections between regions. Solid arrows indicate ascending
projections. Dashed arrows indicate descending projections. (B) Summary of acute and chronic effects of stimulation at established DBS targets, color
coded by processing domain as in A, with notes regarding specific parameter effects. Stimulation effects on relevant domains are summarized from
references cited in Tables 1, 2. Clinical efficacy summaries can be found in Table 3. PAG, periaqueductal gray; S1, primary somatosensory cortex; S2,
secondary somatosensory cortex; pIns, posterior insula; M1, primary motor cortex; aIns, anterior insula; ACC, anterior cingulate cortex; VS, ventral
striatum; PFC, prefrontal cortex; OFC, orbitofrontal cortex; VPL, ventral posterolateral; VPM, ventral posteromedial; QoL, quality of life. *Note that we
operationally define the term “domain” as a collection of related psychological processes or functions (e.g., somatosensation, emotion, cognition,
memory, etc.) for consistency with the psychology and cognitive neuroscience literature (cited from Shirvalkar et al., (3)).
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(39, 43, 55–57). In vivo imaging of brain-wide blood oxygen level

dependent (BOLD) signals with functional magnetic resonance

imaging (fMRI) is the most widely used method for mapping

brain activation during complex behaviors (43, 58, 59). The

BOLD signal is known to reflect underlying local field potentials

(LFP), which in turn correspond to stimulus-induced oscillations

in the range of 30–150 Hz (60). In general, BOLD responses to

painful experimental stimuli in Pain Matrix regions are reliably

correlated with perceived pain intensity and consistently

modulated by contextual factors that impact self-reported pain

(42, 53, 54, 61–63). A subset of studies highlight that behavioral

manipulations targeting specific (e.g., sensory, affective, and

cognitive) domains of pain processing elicit predictable changes

in associated brain regions (38, 64–66). For example, ACC

activity is selectively reduced by hypnotic suggestion to reduce

pain unpleasantness, consistent with the proposed role of ACC

in the affective domain of pain perception (67). Studies of

placebo and opioid analgesia suggest that frontal regions

implicated in affective and cognitive processing domains,

including the ACC, dlPFC, and OFC, are also well suited

to modulate activity across the network, potentially through

top-down recruitment of antinociceptive circuits in the PAG

(40, 61, 63, 68–71).

Some argue that the evolution in terminology from

“Neuromatrix” to “Pain Matrix” is inappropriate, as most

included brain regions support domain-general, rather than pain-

specific, processing (50). For example, salience-matched painful

and nonpainful sensory stimuli elicit largely indistinguishable

patterns of network activity, which challenges the specificity of

observed BOLD activations to pain (72, 73). Moreover, many
Frontiers in Pain Research 03
regions reliably implicated in pain processing are vulnerable to a

reverse inference problem, in which a specific mental state (e.g.,

pain) is inferred from observed patterns of brain activation (e.g.,

thalamus, S1) (74, 75). Indeed, pain-relevant regions like the

dorsal anterior cingulate cortex (dACC) and anterior insula

(aIns) are the most commonly activated brain regions across the

fMRI literature, regardless of the condition or process studied

(76–78). For example, dACC is implicated in a range of specific

functions ranging from attentional control and language

processing to emotional expression and learning, which, although

pain relevant, are not pain-specific (79, 80). In the context of

pain, dACC activity is commonly cited as a proxy of pain

aversiveness, yet a substantial number of studies have

demonstrated that increased dACC activity is likely anti-

nociceptive through top-down connections with the PAG (40, 68,

69, 81–86). Furthermore, most contemporary circuit models of

pain omit regions where pain-related BOLD activations are often

seen, such as the cerebellum, and where stimulation can

profoundly alter pain perception, notably the primary motor

cortex (M1) (87, 88). Thus, simple structure-to-function mapping

is fraught with potential biases in interpretation, which challenge

links between specific regional dysfunction and processing

domains commonly disrupted in chronic pain (89, 90).

More recent advances in fMRI analysis and machine learning

have enabled the development and characterization of the so-

called “Neural Pain Signature” (NPS). The NPS is a weighted

combination of multivariate patterned BOLD activity across

pain-relevant brain regions that can accurately discriminate

between painful heat and non-painful warmth or social rejection

(91). The discriminative performance of the NPS offers proof of
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principle that activity across distributed networks is more closely

linked to the subjective experience of pain than activity in

individual regions (91, 92). The primacy of networks to pain

processing is further supported by the observation that

stimulation of individual brain regions rarely elicits pain and

lesions to these regions seldom lead to specific changes in pain

processing (50). Together, these observations have motivated a

gradual transition away from focusing on regional dysfunction in

specific structures and toward evaluating brain-wide network-

level dysfunction across interconnected and functionally related

brain regions.
2.2. Functional brain networks involved in
chronic pain

Network analysis with resting state fMRI (rs-fMRI) has

characterized a variety of intrinsic resting state networks (RSNs)

defined by shared temporal fluctuations in spontaneous BOLD

activity among interconnected brain regions. RSNs are believed

to reflect the intrinsic functional architecture of underlying brain

circuits (93) and correspond with established processing domains

with relevance to pain perception (38, 50, 94). RSNs are typically

estimated using normalized univariate Pearson correlation

coefficients of the BOLD signal during periods of unconstrained

(i.e., task-free) rest, known as resting state functional connectivity

(rsFC) (95, 96). Functional networks estimated using rsFC

correspond with structural networks defined by white matter

pathways (97, 98) and with patterns of coactivation observed

while performing relevant cognitive tasks (99–102). Further, the

low frequency (<0.1 Hz) BOLD signals used to estimate rsFC

have a similar spatial correlation structure to intracranial low

frequency (<4 Hz) and γ-range (40–100 Hz) power (103, 104).

BOLD correlations also predict the spread of intracranial evoked

activations (105), illustrating their correspondence to underlying

anatomical and physiologic network architecture. Importantly,

RSNs are linked to the pathophysiology of a variety of

neuropsychiatric disorders (10, 20) and modulation of specific

RSNs with stimulation has been linked to improvements in

corresponding symptom domains (106).

Several canonical RSNs have been directly implicated in the

pathogenesis of pain, including a “salience network” (aIns, dACC,

temporo-parietal junction, and dlPFC) thought to be involved in

externally directed attention toward exogenous painful stimuli, a

“default mode” network (DMN; posterior cingulate/precuneus,

medial prefrontal cortex, and lateral parietal lobe) putatively

involved in mind wandering away from pain, and a pain-specific

descending modulatory network defined based on rsFC with

PAG, among many others (100, 101, 107). A leading network

model of chronic pain predicts that structural pathology within

and between hubs of defined RSNs are associated with trait-level

risk of developing chronic pain. Specifically, impairments in

DMN organization and connectivity with the antinociceptive

system are thought to enhance implicit attention to pain (94,

108). However, DMN pathology is not specific to chronic pain.

Rather, DMN dysfunction is a commonly cited network correlate
Frontiers in Pain Research 04
of a range of typically comorbid disorders characterized by

rumination and introspection (109–111). Thus, just as individual

brain regions, including the dACC, are implicated in divergent

pain-relevant functions (e.g., enhancing pain aversiveness and

recruiting antinociceptive circuits), DMN is routinely implicated

in both pain-protective processes (e.g., distraction) and in

ruminative and self-referential processes that are thought to

increase the risk for developing chronic pain (110, 112–114).
2.3. Relevance of circuit models to chronic
pain

Although contemporary circuit models of pain processing

clearly suffer from a lack specificity to pain, more concerning for

their translational potential to brain-based therapeutics is the

consistent failure of models derived from studies of acute

experimental pain to generalize to chronic pain. Most prior

research has relied on studies of evoked brain activity during

noxious stimulation in healthy volunteers, which may lack

validity in the chronic pain state (43, 115). Whereas the NPS can

predict acute experimental pain with >90% sensitivity and

specificity, the same algorithm performs poorly when applied to

natural fluctuations in chronic pain, which are more closely

linked to patterns of rsFC observed during prolonged tonic pain

(91, 116). Prior work directly comparing responses to acute

experimental pain between healthy adults and chronic pain

populations highlight consistent involvement of similar key brain

regions (i.e., the “Pain Matrix”) in both acute and chronic pain,

but more recent large-scale meta-analyses failed to identify any

coherent patterns of regional dysfunction that reliably distinguish

patients with chronic pain from healthy control subjects (117,

118). Other studies that examined spontaneous fluctuations of

clinical pain suggest that recruitment of separate brain regions

involved in reward and stimulus valuation (e.g., nucleus

accumbens and medial prefrontal cortex) may be unique to the

chronic pain state and even predict the likelihood of

transitioning from subacute to chronic pain (119–123). Apkarian

and colleagues have interpreted this pattern of central changes in

chronic pain as evidence for two central hypotheses: that chronic

pain is associated with (1) plastic reorganization of circuits that

fundamentally alters the central processing of pain and enriches

the sensory experience with emotional and cognitive links, and

(2) a transition in the locus of pain from an external threat to a

highly salient internalized disease state (115).
2.4. Summary

Theoretical accounts linking patterns of neural activity with the

experience of pain conclude that understanding pain networks in

terms of nociceptive processing alone fails to address how

sensorimotor aspects of pain are enriched with cognitive and

affective features in the chronic pain state (38, 43, 64, 94, 115).

Models based on the “Pain Matrix” offer compelling

interpretations for observed patterns of brain activity and their
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modulation by contextual variables (124). However, these models

fall short when translating insights from acute experimental pain

to circuit-level dysfunction in chronic pain. With respect to

analgesic brain stimulation, these models suggest several testable

hypotheses about which brain regions should be targeted and

through which domains brain stimulation may be effective.

Combining network analysis with targeted brain stimulation has

great potential to enrich correlative human brain imaging data

with causal evidence (8, 14, 125). In subsequent sections, we

integrate prior experience with brain stimulation for pain with

the region and network-level hypotheses summarized below.

Because stimulation can variably inhibit or excite brain activity,

and because mechanisms underlying such tissue effects are

poorly understood, we offer hypotheses for both phenomena

(126, 127).
2.5. Testable Hypotheses

I. If brain stimulation inhibits local activity and creates a virtual

lesion (127), then stimulation of loci within defined pain

transmission circuits (e.g., thalamus and somatosensory

cortex) should inhibit pain.

II. Excitatory brain stimulation that activates brain loci associated

with pain suppression, especially opioidergic PAG and regions

with known connections to PAG (41), should inhibit pain.

III. Stimulation of loci from circuits linked to functionally distinct

processing domains should have separable effects on the

sensory, emotional, and cognitive aspects of pain.

IV. Network dysfunction models of chronic pain (13, 38, 94, 115,

128) predict that stimulation at various loci within a network

should elicit similar pain outcomes.

3. Prior brain stimulation for chronic
pain identifies multiple viable targets
and mechanisms for pain relief

Various neuromodulation strategies are described for brain-

based treatment of neuropsychiatric disorders and chronic pain.

Deep brain stimulation (DBS) involves neurosurgical

implantation of intracranial electrodes for direct electrical

stimulation of specific brain regions and is currently FDA

approved to treat movement disorders, epilepsy, and obsessive-

compulsive disorder (OCD, through humanitarian exemption),

with additional evidence of benefit in major depressive disorder

(MDD) and chronic pain (129–132). While fundamental

mechanisms of action of DBS for pain are not clearly defined, it

is postulated that stimulation could modulate neural activity via a

temporary lesion effect or through direct excitation of

surrounding structures (126, 127). Transcranial magnetic

stimulation (TMS) is a more recently developed non-invasive

neuromodulation technique that utilizes magnetic fields to induce

electrical currents beneath the skull (133). TMS can excite or

inhibit superficial cortical structures depending on the frequency

of stimulation (134–136). High frequency (i.e., >5 Hz) excitatory

repetitive TMS (rTMS) is currently FDA-approved as a treatment
Frontiers in Pain Research 05
for MDD at left dlPFC (137) and for OCD at dorsomedial PFC/

ACC (138). There is accumulating evidence that high frequency

rTMS at primary motor cortex (M1) can be effective for chronic

neuropathic pain in select patients (6, 7, 139). MRI-guided low-

intensity focused ultrasound (MRgFUS or LI-FUS) is an

emerging form of non-invasive neuromodulation that is capable

of precisely modulating brain activity in deep subcortical regions

that are out of reach of conventional TMS probes (4, 5, 140,

141). Additional stimulation modalities such as transcranial

direct current stimulation (tDCS) are described for chronic pain

but are excluded from the present targeting discussion

considering their more limited spatial precision.
3.1. Periaqueductal gray (PAG) and
periventricular gray (PVG)

PAG is a midbrain nucleus that extends along the cerebral

aqueduct from the locus coeruleus to the posterior commissure.

PVG is the diencephalic extension of PAG rostral to the

posterior commissure. Whereas PVG was the putative

stimulation target in most early DBS trials, most preclinical

antinociception literature focuses on PAG. Limited post-mortem

evaluations found that similar analgesic responses could be

obtained from stimulation in both regions, even within a single

patient, and that final electrode locations often differed slightly

from planned trajectories (i.e., PVG directed contacts within

PAG, and vice versa) (142). We therefore combine our

discussion of both regions in this section. PAG was the first

brain region to be implicated in endogenous pain modulation

and has subsequently been linked to additional homeostatic

functions including autonomic control, aversive learning, and

coordination of defensive escape/avoidance behaviors (143–151).

A substantial body of preclinical evidence convincingly shows

that PAG stimulation is antinociceptive (41, 83, 143, 144, 149,

152). Small case series of PAG/PVG DBS for chronic pain

reported variable response rates, which may reflect the broad

range of stereotactic hardware, targeting coordinates, stimulation

parameters, and follow-up times in prior studies (Tables 1, 2).

Stereotactic implantation of DBS electrodes is typically performed

contralateral to pain, targeting the level of the superior colliculus

2–3 mm lateral to the third ventricle, corresponding with the

expected location of the PVG (Table 2). In most prior studies,

final electrode position is informed by intraoperative awake

macrostimulation using a range of parameters titrated to

analgesic effect (172, 178, 179). Subjectively, stimulation of the

PAG/PVG elicits a warm sensation that displaces pain in the

affected area, a response that has been used to guide final

electrode position (160, 180). Other studies have used objective

neurological signs such as head bobbing or ocular deviation for

target determination (173, 177). Prior studies that reported

frequency-dependent effects during macrostimulation found that

lower frequency stimulation between 5 and 50 Hz elicited

analgesia or pleasant paresthesia, whereas larger stimulation

amplitudes and higher frequencies >50 Hz were associated with

adverse experiences such as hyperalgesia or anxiety (Figure 1B)
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TABLE 1 Stimulation parameters and response rates for prior DBS studies targeting chronic pain.

Pain subtype
(# patients)

Stimulation parameters Response rate (pain
reduction in cohort; pain
survey administered)

Follow up
time

Type of study References

Single target
VPL/

VPM
Neuropathic pain (5) 100–120 Hz, 1–1.5 mA 80% (NR) Range 3–24

months
Case series (153)

Neuropathic pain (16) 200–450 µs pulse width, 5–50 Hz,
0.5–5 V

NR (52.8% median; VAS) 36 months Case series (154)

Neuropathic pain (12) 200–450 µs, 5–50 Hz, 0.5–5 V NR (69.6% average; VAS) 12 months Case series (155)

Neuropathic pain (10) NR 60% (>80%; VAS) Range 2–18
years

Case series (156)

Neuropathic pain (1) 100 µs pulse width, 99 Hz, 0.1 mA,
cycling: 30 s ON, 10 s OFF

100% (50%; VAS) 16 months Case report (311)

Neuropathic pain (18) 150–210 µs pulse width, 20–135 Hz 73% (NR) NR Case series (157)

PAG/
PVG

Neuropathic pain (2) NR 100% (62.5% average; VAS) Average 16
months

Case series (158)

Neuropathic pain (16) 150–450 µs pulse width, 5–80 Hz,
2.5–5 V

NR Average 20.6
months

Case series (159, 160)

Neuropathic pain (4) 25–75 Hz, 2–5 V NR Right after
stimulation

Case series (161)

Neuropathic pain (4) 120–210 µs pulse width, 25–30 Hz,
2.8–3.5 V

75% (NR) up to 31
months

Case series (162)

VS/ALIC Neuropathic pain (10) 60–210 µs pulse width, 130 Hz, 1–
6 V

11% (>50%; VAS) 24 months Double-blind,
randomized, placebo
controlled, crossover

(163)

PLIC Neuropathic pain (4) 60–150 µs pulse width, 20–60 Hz, 1–
4.5 V

75% (>40%; VAS) 12 months Case series (164)

ACC Neuropathic pain (2) 130 Hz 100% (NR) 4 months Case series (165)

Neuropathic pain (16) 450 µs pulse width, 130 Hz, 4–6.5 V 33% (24.5% average; VAS) Average 13.2
months

Case series (166)

Neuropathic pain (24) 450 µs pulse width, 130 Hz, 4–6.5 V 45.5% (60.3% average; NRS) 6 months Case series (167)

Neuropathic pain (9) 450 µs pulse width, 130 Hz, 4–5.5 V NR (37.9% average; VAS) 18 months Case series (168)

M1 Neuropathic pain (2) 60 µs pulse width, 40 Hz, 2.5 V 100% (45% average; VAS) 40 months Case series (169)

Neuropathic pain (6) 450 µs pulse width, 15 Hz, 5 V 16% (NR) Up to 31
months

Case series (162)

CMpf Neuropathic pain (28) NR 75% (>50; NR) Median 14
months

Case series (312)

Multi target
CMpf

and/or
PAG/PVG

Neuropathic pain (3) PAG/PVG: 60–110 µs pulse width,
10 Hz, 3.5–4.5 mA; CMpf: 60–90 µs
pulse width, 128–132 Hz

100% (65.9% average; VAS) 36 months Case series (170)

Neuropathic pain (3) PAG/PVG: 90–120 µs pulse width,
5–10 Hz, 1–5 V; CMpf: 60–90 µs
pulse width, 70–150 Hz, 2–2.5 V

NR (41% average; VAS) Average
27 min

Case series (313)

CMpf
and/or VPL/
VPM

Neuropathic pain (40) 210 µs pulse width, 130 Hz, 0.5–
1.5 V (VPL/VPM) or 2.0–3.0 V
(CMpf)

55.6% (>50% average; VAS) 48 months Case series (171)

PAG/
PVG and/or
VPL/VPM

Neuropathic pain (1) NR 100% (60%; VAS) 8 months Case series (158)

Neuropathic pain (7) NR 57.1% (34% average; VAS) 6 months Case series (159, 160)

Neuropathic pain (85) 200–450 µs pulse width, 5–50 Hz,
0.5–5 V

66.1% (50.3% average; VAS) 3 months Case series (172)

Neuropathic pain (34) PVG: 120–450 µs pulse width, 5–
30 Hz, 0.8–4.5 V; VPL: 60–400 µs
pulse width, 10–50 Hz, 0.7–4.4 V

76% (54% average; VAS) Average 18.5
months

Case series (173, 174)

Neuropathic pain (15) NR NR (42% average; VAS) Average 27
months

Case series (173, 174)

Neuropathic pain (36),
nociceptive pain (10),
NR (4)

NR <50% (NR) 12 months Multicenter open label (175)

Neuropathic pain (18) 60–450 µs pulse width, 5–50 Hz,
0.3–5.8 V

NR Average 34
months

Case series (176)

Neuropathic pain (7) NR 57.1% (34% average; VAS) 6 months Single patient
randomized controlled
trial

(159, 160)

(Continued)
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TABLE 1 Continued

Pain subtype
(# patients)

Stimulation parameters Response rate (pain
reduction in cohort; pain
survey administered)

Follow up
time

Type of study References

Multi target
Neuropathic pain (21) 60–250 µs pulse width, 25–120 Hz,

up to 10 V
23.8% (>50%; VAS) 12 months Case series (177)

Neuropathic pain (8) 5–35 Hz PVG: 75% (NR), VPL: 50% (NR) 1 week Case series (178)

Neuropathic pain (54),
nociceptive pain (2)

PVG: 210 µs pulse width, 40–70 Hz;
VPL: 210 µs pulse width, 60–90 Hz

39.2% (>50%; VAS) Average 3.5
years

Case series (179)

Neuropathic pain (11) 100–500µs pulse width, 2–60 Hz, 0–
10 V

100% (NR) 12–36
months

Case series (180)

Articles were identified by reviewing two systematic review articles on DBS for chronic pain and removing duplicates (2, 181). ACC, anterior cingulate cortex; CMpf,

centromedian parafascicular thalamic nucleus; M1, primary motor cortex; PAG, periaqueductal gray; PVG, periventricular gray; PLIC, posterior limb of the internal

capsule; VPL, ventral posterolateral thalamus; VPM, ventral posteromedial thalamus; VS/ALIC, ventral striatum/anterior limb of internal capsule; NR, not reported; NRS,

Numeric Rating Scale; VAS, Visual Analogue Scale. Available from the References (2, 126, 129, 132, 145, 148, 153–212).
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(177, 179). Although preclinical work strongly suggests that PAG-

mediated analgesia is opioid dependent, clinical experience with

PAG/PVG DBS suggests that stimulation may produce analgesia

through both opioidergic and non-opioidergic mechanisms (186,

213, 214). Notably, PAG/PVG stimulation has also been reported

to improve neuropsychiatric outcomes like mood, anxiety, and

quality of life (176). Despite the use of intraoperative

macrostimulation to elicit favorable prognostic symptoms and

signs (which may account for structure-function variability across

patients), stimulation of PAG/PVG nonetheless elicits highly

variable and often incomplete analgesia (Table 3). The

dissociable pain relieving and anxiogenic effects of low and high

frequency acute stimulation are suggestive of distinct activation

of antinociceptive vs escape/avoidance circuitry at different

frequencies. To our knowledge, this has not been shown in

humans. There may be alternative explanations (e.g., variability

of local neuronal populations along the dorsoventral and

rostrocaudal PAG/PVG axes) that are difficult to evaluate

without the benefit of precise coordinates or detailed post-

operative imaging from prior studies [but see (142)]. Taken

together, the frequency dependence of analgesic PAG/PVG

stimulation supports Hypothesis II, which together with

widespread effects on sensory, affective, and cognitive pain

processing domains suggests that PAG stimulation either

enhances pain suppression or exerts widespread network effects.
3.2. Sensory thalamus

The sensory thalamus is composed of the ventral posterior

lateral nucleus (VPL) and ventral posterior medial nucleus

(VPM), which receive somatotopically organized afferent fibers

from the spinothalamic tract and project to primary

somatosensory cortex, as well as cognitive and limbic association

areas (190). The central location of thalamus within pain

transmission circuits made it an attractive early candidate for

neuromodulation. Thalamic DBS emerged as one of the first

viable applications for neuropathic pain in the 1970s but

ultimately fell out of favor after two multicenter trials failed to
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meet efficacy criteria and industry partners largely abandoned

their pursuit of FDA approval (189). These trials were

subsequently criticized for the inclusion of heterogeneous chronic

pain etiologies and lack of appropriate follow-up, which may

have contributed to observed inefficacy (3). DBS target

determination for thalamic stimulation takes advantage of the

known mediodorsal somatotopic organization of the

ventroposterior thalamus, such that VPM as the target for facial

pain and the VPL for body or limb pain (154). Anatomically,

VPM trajectories are typically 2 mm towards the midline and

anterior to the posterior commissure relative to the VPL

trajectory (Table 2). Several case series report acute analgesic

effects from thalamic stimulation when pain is supplanted with

paresthesia upon stimulation (Figure 1B). As with prior PAG/

PVG DBS studies, this finding is often used to inform the final

electrode position (153, 154, 158). However, despite the use of

macrostimulation to ensure that stimulation effects localize to the

painful anatomical region, personalized targeting alone is

insufficient to ensure adequate analgesia (172, 179). Thalamic

stimulation is generally ineffective for thalamic and central post-

stroke pains, and across pain disorders, response rates and pain

relief estimates are comparable to PAG/PVG DBS (Table 3).

Adverse effects of stimulation ranged from reports of increased

pain to dystonic movements caused by internal capsular

stimulation (172, 179). The variability of outcomes with thalamic

DBS suggests that stimulating pain transmission circuits, even

when confirmed by positive sensory phenomena in the affected

region, is insufficient to reliably modulate the overall experience

of chronic pain, especially for neuropathic pain resulting from

central (i.e., brain) injury (Hypothesis I).
3.3. Anterior cingulate cortex (ACC)

ACC is a heterogeneous midline cortical structure implicated in

a range of emotional, cognitive, and motivational functions (79,

215). ACC exhibits a gradient of rsFC along its rostrocaudal axis

ranging from affective and evaluative regions like OFC and

amygdala anteriorly to action planning regions like frontal eye
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TABLE 2 Stereotactic techniques used by DBS studies targeting chronic pain.

Region Targeting location Targeting hardware Imaging References
VPL 10–13 mm lateral to posterior commissure, macrostimulation 2 mm above to

5 mm below calculated target
Leksell frame Stereotactic CT fused

to preoperative MRI
(154)

14 mm lateral to the intercommissural line at the level of the intercommissural
plane and 10 mm posterior to the midcommissural point

Riechert-Mundinger frame and
Zamorano-Dujovny semi-arc

Stereotactic CT fused
to preoperative MRI

(171)

10–13 mm posterior to the midcommissural point and between 5 mm below to
2 mm above it

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(172)

6–8 mm posterior to the midcommissural point and 10–14 mm lateral, at the level
of the anterior-posterior commissure line

NR Stereotactic CT fused
to preoperative MRI

(176)

14–17 mm lateral to the midline at the level of the anterior-posterior commissure,
2–3 mm anterior to the posterior commissure

Leksell frame Preoperative MRI (177)

10–13 mm posterior to the midcommissural point between 2 mm above and
5 mm below it, 14–18 mm lateral to midline,

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(178)

12 mm lateral and 5–8 mm posterior to the midcommissural point at the level of
the anterior-posterior commissure

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(160, 173)

12–14 mm lateral and 0–2 mm anterior to the posterior commissure Leksell frame Stereotactic CT fused
to preoperative MRI

(155)

3–5 mm anterior to the posterior commissure, 0–2 mm above the
intercommissural line, and 12–18 mm lateral to midline

Leksell frame Preoperative MRI (179)

2–3 mm anterior to posterior commissure at the level of the anterior-posterior
commissure, 14–17 mm lateral to midline

Leksell frame Preoperative MRI (210)

11–15 mm lateral to the posterior commissure NR NR (157)

VPM 12 mm lateral to intercommissural line at the level of the intercommissural plane
and 10 mm posterior to midcommissural point

Riechert-Mundinger frame and
Zamorano-Dujovny semi-arc

Stereotactic CT fused
to preoperative MRI

(171)

10–13 mm posterior to the midcommissural point and between 5 mm below to
2 mm above it

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(172)

12 mm lateral to midline and 6–8 mm posterior to midcommissural point in the
plane of the AC-PC line

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(159, 160)

12–13 mm lateral to the midline at the level of the anterior-posterior commissure,
2–3 mm anterior to the posterior commissure

Leksell frame Preoperative MRI (177)

3–5 mm anterior to the posterior commissure, 0–2 mm above the
intercommissural line, and 10–12 mm lateral to midline

Leksell frame Preoperative MRI (179)

PAG/
PVG

2–3 mm lateral to third ventricle at the level of the posterior commissure and
10 mm posterior to the midcommissural point

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(172)

<10 mm below anterior-posterior commissure line, 3 mm lateral to lateral
boundary of aqueduct and third ventricle

NR Stereotactic CT fused
to preoperative MRI

(176)

<10 mm below the anterior-posterior commissure line, 5 mm lateral to lateral
boundary of aqueduct and third ventricle

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(159, 160)

2 mm lateral to the medial wall of the third ventricle at the level of the anterior-
posterior commissure, 2–5 mm anterior to the posterior commissure

Leksell frame Preoperative MRI (177)

10 mm posterior to the midcommissural point at the level of the anterior-
posterior commissure, 3–4 mm lateral to the midline

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(178)

2–3 mm lateral to the wall of the third ventricle, 2 mm anterior to the level of the
posterior commissure, with most distal tip in the superior colliculus

Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(173, 174)

2–3 mm anterior to the posterior commissure, 2 mm lateral to the wall of the
third ventricle, and 2 mm above and below the intercommissural line

Leksell frame with Zamorano-
Dujovny semi-arc

Preoperative MRI (179)

8.2 mm posterior to the anterior commissure, 4.2 mm lateral to the midline,
1.1 mm superior to the level of the anterior-posterior commissure

NR NR (165)

CMpf 8 mm lateral to intercommissural line at the level of the intercommissural plane
and 8 mm posterior to the midcommissural point

Riechert-Mundinger frame and
Zamorano-Dujovny semi-arc

Stereotactic CT fused
to preoperative MRI

(171)

1.5 mm anterior to the posterior commissure at the level anterior-posterior
commissure line, 1.5–2.5 mm lateral to the wall of the posterior third ventricle

NR NR (312)

VS/ALIC 3–5 mm anterior to junction of ALIC and anterior commissure Leksell frame Stereotactic CT fused
to preoperative MRI

(163)

PLIC 16.7–24.4 mm lateral to the midline at the level of the anterior-posterior
commissure, 4.5–5.9 mm posterior to the midcommissural point

Riechert-Mundinger frame Stereotactic CT fused
to preoperative MRI,
DTI

(164)

ACC 20 mm posterior to the anterior tip of the frontal horns of the lateral ventricles Cosman-Roberts-Wells frame Stereotactic CT fused
to preoperative MRI

(166, 167)

20 mm posterior to the anterior tip of the frontal horns of the lateral ventricles Maranello frame Stereotactic CT fused
to preoperative MRI

(168)

20 mm posterior to the anterior margin of the lateral ventricles in the midsection
of the gyrus

NR NR (165)

(Continued)
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TABLE 2 Continued

Region Targeting location Targeting hardware Imaging References
M1 Cortical region anterior to central sulcus with electrode in extradural space NA NA (169)

Paddle electrodes placed over the precentral gyrus in the epidural space NA NA (210)

Only studies from Table 1 explicitly describing targeting techniques for specific brain regions were included. ACC, anterior cingulate cortex; CMpf, centromedian

parafascicular thalamic nucleus; M1, primary motor cortex; PAG, periaqueductal gray; PVG, periventricular gray; PLIC, posterior limb of the internal capsule; VPL,

ventral posterolateral thalamus; VPM, ventral posteromedial thalamus; VS/ALIC, ventral striatum/anterior limb of internal capsule; CT, computed tomography; MRI,

magnetic resonance imaging; NA, not applicable. Available from the References (2, 126, 129, 132, 145, 148, 153–212).
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fields (FEF) and premotor cortex posteriorly (201, 202, 206). ACC

DBS extends from prior experience with bilateral stereotactic

cingulotomy for refractory pain, which was found to elicit

profound and specific improvements in the affective and

motivational aspects of chronic pain (216). ACC has more

recently gained favor as a means of targeting the burden of

suffering largely driven by the affective domain of chronic pain

(2, 217). Spooner reported the first case of bilateral ACC DBS

targeting an area 20 mm posterior to the anterior tip of the

lateral ventricles in the midsection of the gyrus and reported

slight improvements in pain visual analog scores (VAS)

compared with PAG stimulation in the same patient (165). Intra-

operative stimulation at 130 Hz did not yield any apparent

sensory phenomena or pain relief (Figure 1B). Since then, most

case series stimulating the ACC for neuropathic pain have

applied high frequency (130 Hz) stimulation, noting variable

initial responses and generalized loss of efficacy at longer follow-

up times. Some of these studies have targeted the cingulum white

matter bundle instead of overlying cortex (168). Patients

receiving ACC DBS across multiple studies describe their pain as

less emotionally unpleasant even if sensory/discriminative

judgements about pain remain intact (unpublished personal

communication to PS). Accordingly, ACC stimulation has been

associated with significant improvements in several measures of

quality of life and social functioning (167, 168). These findings

support the hypothesis that disparate brain circuits may be

involved in processing different domains of pain processing

(Hypothesis III). Compared with more spatially restricted

anatomical structures like PAG and Thalamus, ACC is a much

larger and more structurally and functionally heterogeneous

region, which may account for the slightly lower response rates

and pain reduction effect sizes seen in prior studies (Table 3).
3.4. Ventral striatum (VS)/internal capsule
(IC)

DBS of the ventral striatum and anterior limb of the internal

capsule was motivated by prior work linking VS with the

affective domain of pain processing and by the proven efficacy of

VS/IC DBS for other comorbid neuropsychiatric conditions such

as OCD and MDD (196, 198, 205). VS dysfunction and

connectivity with prefrontal cortex is an established biomarker of

pain chronification and is therefore a particularly attractive

candidate stimulation location for patients with chronic pain

(121–123, 218). However, a recent double-blind randomized
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sham-controlled trial targeting these regions did not meet its

primary endpoint of greater than 50% pain intensity reduction in

more than 50% of patients. As with prior ACC DBS, targeting

VS/IC did show significant improvement in several outcome

measures quantifying the affective dimension of pain (Figure 1B)

(163). Results of ACC and VS DBS studies suggest that

convergent effects on pain affect can result from stimulating

separate areas of a subnetwork involved in affective processing

(Hypothesis IV). However, it remains unclear whether patients

that respond to stimulation at one site within a critical network

would exhibit similar outcomes at the other site within that

network, and whether stimulation of both regions simultaneously

would have synergistic effects.
3.5. Primary motor cortex (M1)

Motor cortex stimulation (MCS) first emerged as a viable target

for chronic pain after the serendipitous discovery that M1

stimulation reduced bursting activity in the ischemic penumbra

of a feline thalamic stroke model (219). Despite early clinical

success of MCS, pain outcomes are similarly unreliable as with

other DBS targets (220–222). In the 1990s, TMS began to

reproduce and predict potential benefits of MCS with non-

invasive stimulation of M1 contralateral to pain (223–225). M1

continues to be among the most effective invasive and non-

invasive stimulation targets for pain (6, 7, 139, 226), but is not

yet FDA approved for this indication in the US. Although the

exact mechanisms of pain relief from M1 stimulation are

unknown, several hypotheses are proposed (88, 220). High-

frequency excitatory M1 rTMS combined with brain imaging

suggests that M1 stimulation elicits activity in a distributed

network of brain regions implicated in pain processing,

including: thalamus, PAG, insula, ACC, and the medial PFC

region implicated in pain chronification (122, 227, 228). MCS

excites PAG in preclinical models (229) and elicits endogenous

opioid release in ACC and PAG in humans that is in turn

correlated with pain relief (230). Analgesia from M1 TMS, like

PAG/PVG DBS (in certain cases), is naloxone reversible (231,

232). There is some evidence that M1 stimulation is best for pain

involving the contralateral face and arm and performs less well

for lower extremity and widespread pain syndromes, suggesting

somatotopic effects (233, 234). Overall, despite its omission from

most circuitry models of chronic pain, M1 stimulation activates a

network of pain-relevant brain regions that predict clinical

improvement in pain scores. Most recently, this same region was
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TABLE 3 Summarized clinical effects at popular deep brain stimulation (DBS) targets.

Average pain reduction Responder ratesa

Mean (%) SD (%) Studies (patients) Mean (%) SD (%) Studies (patients) Criteria

Single target
VPL/VPM 60.8 12.4 2 (28) 78.3 16.7 3 (43) >50–80%

PAG/PVG 62.5 - 1 (2) 87.5 17.7 2 (6)

ACC 40.9 18.1 4 (49) 59.5 35.6 3 (42)

VS/ALIC - - - 11 - 1 (10) >50%

M1 45 - 1 (2) 58 - 1 (8)

Multi target
CMpf and/or PVG 65.9 5.02 2 (6) 65.9 5.02 2 (6)

PAG/PVG and/or VPL/VPM 45.7 10.8 6 (149) 64.9 26.9 8 (220)

Single target posterior limb of the internal capsule (PLIC) and centromedian parafascicular thalamic nucleus (CMpf) are excluded. ACC, anterior cingulate cortex; M1,

primary motor cortex; PAG, periaqueductal gray; PVG, periventricular gray; VPL, ventral posterolateral thalamus; VPM, ventral posteromedial thalamus; VS/ALIC, ventral

striatum/anterior limb of internal capsule; SD, standard deviation.
aResponse thresholds are variably defined. Some studies use percent relief criteria, whereas others include response thresholds such as “satisfactory reduction in

symptoms” or “decision to keep implanted pulse generator”.
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shown to be a common network hub linking brain lesions that

cause pain, suggesting that M1 may be a network target with

diffuse influence over other implicated brain regions (128).

Although this is an attractive hypothesis, the limited benefit of

M1 for widespread and lower extremity pains argues for a more

specific somatotopic mechanism.
3.6. Other targets

A variety of cortical regions have been explored as targets for

chronic pain using high frequency rTMS. The left dorsolateral

prefrontal cortex (dlPFC) is a neocortical structure involved in

higher order cognitive and executive functions and component

of the salience RSN. It is an established FDA-approved rTMS

target for refractory major depressive disorder (MDD) and has

been studied for a range of pain conditions (7, 137). Its direct

role in pain processing is unclear, but activity in this region

has been linked to selective attention to nociceptive stimuli

(42). Meta-analyses of left dlPFC rTMS suggest no reliable

benefit for chronic pain, although there is some evidence that

left dlPFC may be effective for certain widespread pain

conditions like fibromyalgia, mTBI headache, and pain with

comorbid MDD (6, 139, 208, 235–237). One recent study

evaluated rTMS at the dACC and posterior Insula (pIns)

regions implicated in sensory and affective pain processing

using a double-cone TMS coil design capable of stimulating

deeper cortical structures (238). Although dACC stimulation

reduced self-reported anxiety and pIns stimulation modulated

experimental pain detection thresholds, neither target was

clinically efficacious for chronic pain. This pattern of results

offers further support for the assertion that regions implicated

in nociceptive processing may not be viable analgesic targets in

chronic pain and that modulation of emotional processing

alone may not meaningfully improve the experience of pain.

However, it is also possible that the relative loss of precision

with rTMS at deeper targets may be contributing to the lack of

clinical efficacy.
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3.7. Multi-target stimulation

If the experience of pain relies on parallel processing in

distributed brain networks, multidimensional pain relief may

require simultaneous targeting of separate subnetworks.

Motivated by earlier findings that thalamic DBS outcomes were

better for patients with deafferentation pains (e.g., rhizotomy,

spinal cord injury) and PAG/PVG DBS outcomes were better for

nociceptive pain (e.g., cancer), Hosobuchi and colleagues

hypothesized that simultaneous stimulation of both regions

would lead to more comprehensive pain improvements (180). All

eleven patients in the cohort reported satisfactory pain relief and

continued to use DBS as their primary therapeutic modality at

longer follow ups. Although limited by the absence of blinding

and control stimulation, these findings suggest that simultaneous

targeting of pain transmission and modulation pathways may be

more effective than single-target stimulation. Combined acute

stimulation of the PAG/PVG and the centromedian

parafascicular (CMpf) nucleus of the thalamus, a thalamic

nucleus implicated in attention and arousal, was show to relieve

pain by an average of 41% within 30 min that lasted 2 h (209). A

follow-up study by Hollingworth et al. investigated dual

frequency DBS of the PAG/PVG and CMpf, demonstrating 100%

response rate with 65.9% average VAS pain intensity reduction in

three patients with medically refractory chronic pain at 3 years

post implantation (Table 3) (170). While these results have yet

to be replicated in larger sample sizes with blinded, randomized,

and controlled study designs, they imply that simultaneously

targeting regions involved in distinct aspects of pain processing

may be more efficacious that single site DBS.
3.8. Summary

Despite the anatomical precision afforded by pain’s

somatotopic representation, stimulation of targets along defined

transmission, central processing, and descending modulation

pathways have failed to yield consistent relief across patients.
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Importantly, although prior case series of DBS have personalized

electrode targets for individual patients using objective signs and

subjective sensory reports during intra-operative

macrostimulation, outcomes across all defined targets remain

modest and unreliable (Table 3). Thus, although nociceptive

stimuli may enter awareness through defined pathways, the

multidimensional experience of pain that drives the burden of

suffering may be difficult to capture by stimulating individual

regions of interest to pain processing. Our review of prior brain

stimulation highlights that while stimulation of individual regions

rarely leads to complete relief, different domains of pain

processing can be selectively manipulated by stimulating specific

regions (e.g., affective domain improvements with ACC and VS

stimulation). Importantly, emerging multi-target stimulation data

suggest that stimulation of hubs from distinct networks may

overcome some of the limitations of stimulating individual brain

regions (13, 170, 180). However, even multi-target stimulation of

popular brain regions only works for a minority of patients.

Overall, prior experience with DBS and TMS for chronic pain

supports two key observations: (1) no single brain region is

universally efficacious for pain relief, yet (2) convergent relief can

be obtained at a variety of stimulation locations. Taken together,

these results highlight that a personalized network-informed

approach to stimulation that seeks to simultaneously modulate

multiple regions or subnetworks involved in distinct aspects of

pain processing may lead to more reliable effects on the multi-

dimensional experience of pain.
4. Network informed brain stimulation
for neuropsychiatric disorders

Before turning to new targeting methods, it is first useful to

review established fMRI-guided brain stimulation methods. The

gradual development of rTMS targets for major depressive

disorder (MDD), beginning with a single dysfunctional left

dlPFC region and culminating in the development of rsFC-

informed targets, highlights that network-informed stimulation

can improve clinical outcomes. The selection of a consensus

depression-relevant subgenual ACC (sgACC) region with which

to explore rsFC with candidate rTMS targets was ultimately the

key first step toward viable personalized neuromodulation for

MDD (239). Although PAG and sensorimotor cortex are

proposed as viable consensus targets for chronic pain (13, 128),

rsFC with these regions has not yet been linked to improved

stimulation outcomes. Below we discuss the strengths and

weaknesses of existing targeting methods in MDD before

proposing a novel approach that replaces a priori defined regions

of interest with regions informed by individual network topologies.
4.1. TMS for depression supports
network-informed targeting

The FDA-approved left dlPFC target for MDD was initially

motivated by prior observations that left dlPFC lesions increase
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the risk of depression and that metabolism in this region

increases with successful antidepressant treatment (136, 240,

241). Variable outcomes across early rTMS studies began to

highlight that heterogeneity in clinical response was at least

partially driven by variability in the underlying left dlPFC

anatomical target, which is among the most structurally and

functionally variable brain regions across individuals (27, 29, 242,

243). Subsequent studies sought to improve the consistency of

stimulation across patients by targeting a region 5 cm anterior to

the location where stimulation elicited a reliable finger twitch

(137). Variability in head size motivated yet more precise

measurements, guided by the 10–20 electroencephalogram (EEG)

montage, to identify a patient-specific left frontal F3 point (244).

Although the “Beam-F3 approach” has not been shown to be

more clinically efficacious than the 5 cm point in head-to-head

trials, it more consistently engages the left dlPFC and is therefore

the method currently endorsed for clinical use in MDD by the

Clinical TMS society (8, 245). More recent attempts to transition

from coarse scalp landmarks to individual coordinates derived

from group-level comparisons between MDD and healthy

controls have unfortunately not led to any substantive

improvement in clinical outcomes (8).

Variability in the specific location of the left dlPFC stimulation

target across prior studies ultimately proved fruitful for subsequent

mechanistic studies seeking to characterize network parameters

associated with favorable clinical outcomes (14, 17, 106, 239,

246). Across prior rTMS trials, rsFC between the stimulated left

dlPFC target and a region of sgACC routinely implicated in

depression was reliably correlated with improvement in

symptoms (125, 247, 248). This key finding motivated more

recent attempts to use rsFC with sgACC to prospectively identify

the “best” dlPFC region to stimulate for depression (15, 17).

However, there are notable caveats to this approach. First, prior

studies have compared rsFC estimates within a restricted dlPFC

search space. It is therefore unclear whether the dlPFC target

identified using rsFC with sgACC is the best treatment location

for MDD, or whether there may be alternative brain regions

outside of dlPFC where stimulation is more efficacious. Second,

correlations between clinical outcomes and rsFC in most prior

studies were generated using a large normative sample of healthy

adults without depression, from a standardized open-source

“connectome” dataset (58, 239, 249). In other words, although

coordinates used to generate rsFC estimates were derived from

individual patients, the resulting rsFC parameter for each set of

coordinates was estimated using a separate large, unaffected

sample group.

The use of large normative samples to explore network

properties of neuromodulation targets is motivated by limitations

of the fMRI BOLD signal, which is characterized by low signal-

to-noise ratio (SNR), poor signal coverage in a variety of

structures of interest (especially orbitofrontal cortex and inferior

temporal lobes), and low temporal resolution (1.5–2 s in most

studies), which together pose significant barriers to generating

reliable and valid estimates for individual patients (58, 59).

Averaging across large samples improves statistical power, which

is linked to more stable parameter estimates but assumes
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homogeneous structure-function relationships across patients

(250–252). Using large normative datasets to generate rsFC

estimates has dramatically advanced our understanding of the

network-level correlates of behavior and yielded powerful new

methods to understand a variety of neuropsychiatric conditions

that may be better understood as “circuitopathies” (241, 249, 253,

254). However, the same group that first identified

anticorrelation with sgACC as a predictor of left dlPFC rTMS

efficacy also showed that the estimated dlPFC target derived

from individual subject data diverged from the group average

prediction (255). Although subsequent studies testing the

generalizability of estimates derived from the normative

connectome highlight that datasets from affected clinical

populations yield similar estimates (17, 106, 128, 254) and that

the direction and magnitude of sgACC rsFC estimates derived

from individual subject data are similar to population estimates

(15), it remains unclear whether population level estimates of

network organization will translate to prospective target selection

for individual patients.
4.2. Precision neuroscience may inform
personalized stimulation

Although single-subject fMRI applications have been fraught

with potential methodological confounds, more recent technical

developments in MRI acquisition and preprocessing have

improved both the SNR and temporal resolution of acquired

fMRI data. Specifically, multi-band fMRI acquisition protocols,

and more recently, multi-echo fMRI (among other preprocessing

advancements) have been shown to improve the reliability of

single subject network estimates (24, 256). Serial imaging studies

of highly sampled individuals suggest that approximately 10 min

of data are needed to estimate reliable networks in individual

patients using these methods (256), compared with

approximately 45 min using standard acquisition techniques (23,

257). These emerging single-subject applications, often termed

precision fMRI (pfMRI), provide a viable counterargument to

recent high-profile indictments against the inferential power of

population-level fMRI analyses, which suggest that thousands of

patients are required to identify reliable brain behavior

relationships (23, 252, 258). Together with pervasive

heterogeneity in preprocessing and deficient statistical methods

across the fMRI literature (259, 260), such power concerns are

thought to be contributing to a widespread generalizability crisis

in neuroscience (261). However, it seems equally likely that noisy

and unreliable estimates at the group level are a direct

consequence of averaging across important individual differences

in brain organization (23, 262, 263). Indeed, brain networks are

highly variable from person to person (26–28, 243), but generally

consistent within individuals (22, 24, 25, 30, 31). Recent work

combining individualized network estimates with MRI-guided

dlPFC rTMS underscores that targeting the same anatomical area

engages different functional regions and RSNs in different

patients, providing further support for the assertion that

individual estimates are more likely to yield reliable targeting
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estimates for neuromodulation (19, 23). The critical importance

of personalized targeting finds additional support in the cognitive

neuroscience literature, where targeting TMS with individual

subject fMRI data leads to significantly greater effect sizes across

a range of behavioral experiments compared with anatomical,

group-level functional, and scalp landmark based targeting

approaches (264).
4.3. Applications of precision
neuromodulation

There are few clinical targeting implementations that validate

group-level estimates with individual subject data (11, 15) and

fewer still that have used baseline rsFC to guide prospective

targeting for individual patients (9, 16, 19). To our knowledge,

only one group has successfully used individual subject fMRI

data to prospectively generate a targeting prediction for

subsequent TMS (9, 16). Although emerging data from the

Stanford Neuromodulation Therapy (SNT) protocol suggests that

personalized targeting estimates may improve outcomes for

patients with MDD, the authors incorporate two parallel

advances to conventional TMS protocols that limit attribution of

benefit to personalized targeting. Patients receiving SNT receive a

novel and higher dose intermittent theta burst TMS protocol that

alone may explain the impressive remission rates, greater than

75%, seen in the study. This approach was compared with sham

stimulation, but not active stimulation of a control target, leaving

considerable uncertainty regarding the specific contribution of

personalized targeting to the overall result. Moreover, although

the SNT method uses individual patient fMRI data to generate

targeting estimates, the search space for the personalized target is

constrained by both the key sgACC region and planned dlPFC

stimulation region, such that the targeting algorithm refines

dlPFC placement to optimize sgACC connectivity but does not

allow for identification of alternative targets outside of the

established dlPFC search space. Thus, while the method offers

compelling evidence that precision is key to optimize targeting,

there are currently no reliable methods to identify optimal sites

from a brain-wide list of potential candidates.
4.4. Summary, caveats, and emerging
applications to chronic pain

Experience with hypothesis-driven target selection in MDD

suggests that rsFC with a single region of a priori interest (i.e.,

sgACC) can explain a substantial amount of variability in

treatment outcomes. Prior work suggests that using a single

depression-relevant sgACC region to generate rsFC estimates

may also be a viable means to generate prospective, rsFC-based

targeting estimates for individual patients. Results linking rsFC

between efficacious TMS and DBS targets across neuropsychiatric

disorders suggests that identifying a network of relief (i.e., rsFC

patterns that link all effective sites across stimulation modalities

and exclude ineffective ones) should facilitate more consistent
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stimulation outcomes for patients with a variety of disorders (13).

However, this model would predict that sgACC should be an

effective DBS target, yet only 4 of 6 patients obtained benefit in

the first sgACC DBS study (265). Moreover, a larger multi-center

sgACC DBS trial was halted for underperformance relative to the

preceding open label trial. Remission rates for the sgACC DBS

target in subsequent open label reports were around 30% (266,

267). Even more difficult to reconcile are the markedly higher

remission rates seen in the SNT rTMS trial that used sgACC to

identify a personalized left dlPFC target. As above, results from

SNT may reflect the higher “dose” of electrical stimulation

inherent to the theta-burst protocol, or unique stimulation

parameters of rTMS relative to DBS, but may also reflect the

specific rsFC method used to derive the dlPFC target. Rather

than using rsFC with the consensus sgACC region of interest, a

hierarchical agglomerative clustering algorithm was used to

identify unique functional sgACC subunits based on patterns of

brain-wide connectivity. Next, optimal dlPFC connectivity with

each subunit was used to inform the final rTMS target. Such an

approach may overcome structure-function limitations inherent

to using a single group-average sgACC region for all patients. It

is also possible that whole-brain agglomerative clustering may be

unintentionally identifying dlPFC nodes based on as-yet

unknown global network properties that have little to do with

specific connections between sgACC and dlPFC.

In chronic pain, PAG and sensorimotor cortex (M1/S1) are

proposed as viable candidate network hubs for rsFC-based

targeting, akin to the established sgACC region in MDD (13,

128). However, as reviewed in Section 3, stimulation at both

PAG and M1 elicits variable analgesia (Table 3). Although prior

work predicts that M1 rTMS should be more efficacious than left

dlPFC rTMS for patients with chronic pain expressly because

M1, but not dlPFC, is significantly anticorrelated with PAG in

the normative connectome dataset, there are reports of clinical

pain benefit from left dlPFC rTMS for individual patients and

dozens of reports of rTMS at M1 showing modest pain relief and

relatively low responder rates, especially for widespread and

lower extremity pain conditions (6, 7, 139). Incidentally, the M1

stimulation target with best evidence for clinical efficacy across

pain conditions already overcomes several targeting limitations

posed by other neuropsychiatric disorders. Targeting M1 requires

elicitation of an observable motor response in the affected

(contralateral) extremity for each patient, similar to

personalization with intraoperative macrostimulation in PAG and

Thalamic DBS [see (6, 139, 220) for review]. M1 stimulation

reliably engages a distributed network of pain-relevant regions

(227, 228, 230) and has recently been shown to modulate

between network connectivity between the DMN and salience

networks (268), highlighting multiple viable network mechanisms

for analgesia. Moreover, interindividual variability in

representations of acute pain are greatest in midline prefrontal

regions commonly implicated in the transition to chronic pain

(32, 34) and lowest in regions like M1 (29). Despite these

advantages, response rates for M1 TMS are highly variable,

modest, and often short-lived. The lack of viable network

informed targets for chronic pain and failure of even the best
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contemporary targeting models in other disorders for a

substantial subset of patients highlights the clear need for

alternative strategies to identify more robust and generalizable

network-informed imaging biomarkers for brain stimulation (36).

We propose that our emerging understanding of the profound

interindividual variability in functional networks demands a

personalized approach that uses individual subject fMRI data to

generate predictions of individually optimized stimulation targets

(23, 269, 270). The dearth of reliable neural correlates of chronic

pain in clinical populations and the observation that both intrinsic

RSNs and patterns of evoked activity to pain are profoundly

variable across individuals suggest that any attempt to identify a

single optimal brain region for analgesic stimulation will fail for a

substantial number of patients. Although it is attractive to consider

the possibility that a small number of viable targets may be

generalizable across patients, seeking to manipulate single brain

regions or even single networks may be overly reductive, as this

approach largely ignores the substantial contribution of dynamic

interactions between brain regions to perception and behavior (99,

100). Considering the apparent limitations of selecting brain

regions based on rsFC with a subset of defined anatomical regions

of interest, we hypothesize that a truly network-informed approach

to stimulation should instead consider the overall topology of the

network to identify personalized regions where stimulation is most

likely to have a widespread impact on pain-relevant regions and

subnetworks. This approach fundamentally reframes the

characteristics of an “ideal target” away from specific

neuroanatomical regions defined at the population level and

toward estimates that carry more information about the overall

structure and organization of individual brains (i.e., topology) to

characterize the functional role of each candidate region within the

overall network. Below we elaborate on this approach and review

novel network analysis methods that may be more robust to

variability in network topology across individuals.
5. Modeling network dysfunction in
pain to inform biomarker development

An emerging network neuroscience literature using mathematics

from graph theory has established powerful methods to characterize

integrated local and global network organization unconstrained by

the specific anatomical location of the component parts of the

system. A variety of complex systems—ranging from

transportation and telecommunications infrastructure to metabolic

and neural networks—are intuitively represented and analyzed

using mathematics from graph theory (271–276). Graphs are

constructed from nodes consisting of individual units in the system

(e.g., airports, neurons) and edges consisting of connections

between units (e.g., flights, axons). The key advance of graph

theory over conventional approaches to estimating rsFC (i.e., with

RSNs) is representing brain regions as nodes and rsFC between

pairs of regions as edges in a graph in order to facilitate the

computation of a variety of neurobiologically meaningful summary

estimates that simultaneously capture properties of individual

regions and their relationship to the overall network topology
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(277). To generate a network graph, rsFC between all pairs of nodes

(i.e., regions) is used to construct a correlation matrix, which is then

normalized, thresholded, and binarized to construct a network graph

that visually represents the entire system (Figures 2A–E). A variety

of widely available open-source toolkits are then used to estimate

region and network level parameters from the network graph (271,

277, 278). Notably, graph theory can be used to represent a broad

range of related network properties, including structural

connections estimated from white matter integrity between

regions, functional connections estimate with rsFC between

regions, and regional transcriptomes, among other emerging

applications (271). Here, we primarily focus on functional

networks defined with rsFC for consistency. A comprehensive

summary of the graph terms relevant for network neuroscience is

beyond the scope of the current review, but fall into measures of

integration, segregation, and centrality. We suggest that the reader

review (277) for a detailed description of network terms and their

functional significance and (279) for a summary of graph theory

applications in chronic pain.
FIGURE 2

Calculating graphs from fMRI data to estimate network parameters. (A) Resting
parcellation of nodes sampling the entire brain. (B) Representative BOLD timese
(r) between each pair of nodes to generate edges reflecting resting state functi
all possible pairs of regions is represented as a correlation matrix. (D) The mos
of rsFC values) are used to construct a network graph consisting of above thres
represented as a graph, generated using the methods outlined in A–D. (F) Com
community (i.e., module) consisting of color-coded groups of nodes that a
communities. Network modularity can be calculated by comparing within- a
detected, with colors corresponding to the four pain processing subnetwo
data-driven and need not correspond pre-defined sensory, affective, cog
communities, additional parameters like participation coefficient can be cal
this example, a central node from the pain modulatory subnetwork (green in
candidate connector or integrator hub (dark red). Peripheral nodes in each su
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Of particular interest to studies of large scale network

organization and precision neuromodulation is the concept of

modularity, which describes the functional segregation or

clustering of nodes (i.e., brain regions) into subnetworks (i.e.,

modules or communities) that have stronger connections with

nodes in the same module than with nodes in other modules

(Figure 2F) (272, 274, 277, 280, 281). Community detection

algorithms (e.g., Louvain, Infomap) are applied to thresholded

network graphs to identify synchronous subnetworks

characterized by many within-module connections and fewer

between-module connections (281, 282). Modularity and

community structure are universal organizing principles of

complex biological systems (190, 275, 278, 281). Highly modular

networks exhibit functional segregation, and subnetworks

estimated from rsFC data reliably correspond with separate

canonical RSNs involved in different aspects of cognition (e.g.,

somatosensory, limbic, attention, and default mode networks)

(100, 101). Critically, network graphs produce valid and reliable

estimates at the single subject level (23, 101, 283) and prior work
state blood-oxygen-level-dependent (BOLD) signals are extracted from a
ries from each node are used to calculate Pearson correlation coefficients
onal connectivity (rsFC) between regions. (C) Z-transformed rsFC between
t significant functional connections in the graph (typically the top 2%–10%
hold nodes and edges. (E) An example of an entire brain network topology
munity detection algorithms (e.g., Infomap, Louvain) assign each node to a
re more strongly connected with each other than with nodes in other
nd between-module connections. In this example, four communities are
rks shown in Figure 1A. Note that community detection algorithms are
nitive, and regulatory subnetworks. (G) Once nodes are assigned to
culated to identify nodes connected to many different communities. In
panel F) is maximally connected to all four communities and is an ideal
bnetwork are least hub-like (light pink).
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has shown that modularity has prognostic value in predicting

individual differences in treatment outcomes (284).

The decomposition of brain networks into functionally

specialized modules enables the identification of highly

connected hub nodes that are well situated to support integrative

processing across the entire network (272, 280, 283). Hub nodes

with high participation coefficient (PC), also termed the “diverse

club”, have the most diverse connectivity across the network’s

functional modules and are therefore well-suited to integrate

activity between distinct subnetworks (280, 283, 285).

Participation coefficient takes a maximal value for nodes that

have an equal number of connections to each separate module in

the network (Figure 2G). In humans, brain regions with hub-like

characteristics facilitate integrative processing across distributed

functional subnetworks and support modular network

organization (285). Nodes with high PC also promote dynamic

network reorganization to accommodate evolving task demands

and their recruitment predicts task performance (286, 287).

Damage to nodes with high PC impairs the modular architecture

of human brain networks (288) and is a common predictor of

disease severity across neuropsychiatric disorders ranging from

Alzheimer’s disease to chronic pain (289). Further, targeted

disruption of network hubs with personalized fMRI-guided TMS

markedly impairs cognitive and integrative function, providing

additional causal evidence of the importance of hubs to large

scale network integration (257).

Notably, whereas “hubs” of the pain matrix described in

Section 2 are defined based on a priori functional attributions to

implicated brain regions (i.e., regions of particular importance),

hubs in a network graph are derived from the observed

correlational structure of the studied network. There is

substantial overlap between network hubs identified using data-

driven community detection algorithms and putative Pain Matrix

hubs, including ACC and aIns, which may reflect the fact that

many pain-relevant regions are in higher-order association areas

(280, 283). Importantly, the overlap between graph hubs and

Pain Matrix hubs provides a viable alternative fifth network

hypothesis with which to understand clinical stimulation effects

at prior DBS and TMS targets. Because network “hubs” are more

likely to be members of many distinct pain-relevant subnetworks,

stimulating hub regions should have widespread effects on the

multidimensional experience of chronic pain. Thus, we

hypothesize that clinical benefit at any given target may reflect

the “hub-ness” of the underlying target region.
5.1. Evidence for impaired network
integration and hub disruption in chronic
pain

The application of graph theoretical methods to chronic pain

has begun to reveal widespread changes in network topology that

are shared across pain etiologies but notably distinct from healthy

populations (279). Pain networks defined based on intracranial

physiologic responses to pain are inherently modular and segregate

into subnetworks that reflect known pain processing domains
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(290). A variety of established graph theory terms describing

network topology and the roles of individual nodes (e.g.,

Thalamus) have been shown to correlate with clinical pain metrics,

including pain intensity, duration, and pain-related disability,

suggesting that graph terms are behaviorally relevant (279).

Studies evaluating specific graph theory parameters across

chronic pain conditions and species suggest that disruption of

modular network organization is associated with emergence of

the chronic pain state (291, 292). Direct comparisons of the full

range of available graph terms between chronic pain populations

and healthy cohorts and between different chronic pain

conditions are limited by substantial variability in methods and

reporting across the small number of available studies; however,

there is an emerging consensus that global network changes and

integrated local/global estimates like participation coefficient can

more reliably distinguish patients with chronic pain from healthy

controls. Specifically, chronic pain of various etiologies is

associated with characteristic disruptions in the way that network

hubs interact with multiple functional modules, leading to an

emerging hypothesis that chronic pain is a state of dysfunctional

network integration (291, 292). Global summary terms like the

hub disruption index (HDI) and whole brain degree rank order

disruption (KD) were developed to quantify how graphs

constructed in individual subjects diverge from a normative

comparison population. Consistent HDI and KD changes have

been observed in patients with chronic pain of various etiologies

and in rodents with nerve-injury induced neuropathic pain,

suggesting that, across species and pain conditions, well-

connected regions become less well-connected in chronic pain.

Overall, HDI and KD analyses indicate that regions with hub-like

characteristics (e.g., high participation coefficient or network

centrality) are less hub-like, indicating that the emergence of

chronic pain represents a fundamental shift in the identity of

important network hubs within a modular network architecture.

Taken together, prior work suggests that network-informed

stimulation at personalized regions with hub-like characteristics

should restore network integration and reduce chronic pain.

However, applications of graph theory to clinical pain conditions

are still in their infancy and it seems likely that a weighted

combination of different graph parameters may be required to

identify reliable stimulation sites in chronic pain (293).
6. Summary and future directions

The graph theory framework outlined above represents a

fundamental reframing of precision medicine away from specific

neuroanatomical targets defined at the population level toward

data-driven, individualized local and global network estimates

that are more reliably implicated in the pathogenesis of chronic

pain. As with prior region and RSN models, combining network

graphs with targeted stimulation can begin to support a causal

link between the characteristics of specific network nodes (i.e.,

brain regions), global network organization, and the experience

of chronic pain. We propose that studies of clinical

neuromodulation should routinely employ pre/post brain
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imaging measures to facilitate network analysis and better ascertain

mechanisms of clinically efficacious brain stimulation for

individual patients, consistent with IMMPACT recommendations

for clinical trials in chronic pain (57, 294, 295).

One key advantage of the graph theory approach over

measurements of activity and connectivity derived from the

BOLD signal is that it dramatically expands the types of

information that can be estimated from a network. New

applications of graph theory in network neuroscience are

continually evolving. Whereas static network graphs provide a

snapshot of network organization, recent advances in dynamic

network analysis are beginning to show how network topologies

evolve and change with learning and intervention (286, 296–

298). Dynamic time-varying graph analyses may in turn facilitate

a variety of analyses ranging from estimation of node

promiscuity (i.e., membership in multiple distinct functional

modules over time) to linking dynamic reorganization of

networks to experiential states, such as high and low pain (99).

Dynamic analyses may also be used to explore the state-

dependence of neuromodulation targets depending on the

context of stimulation, which builds upon the who and where

questions of stimulation with additional information about when

stimulation is most likely to be effective.

Associating specific network topologies with clinically-relevant

states (e.g., high and low pain) will also facilitate more advanced

analyses of network controllability, which describe how

stimulating a subset of key nodes might drive a network toward

a desired state (i.e., low-pain) (299–302). Such an approach could

be undertaken through off-line identification of specific regions

that reliably transition a given patient into a low pain state (i.e.,

identifying network characteristics of the pain-relieving node) or

by recording real-time pain ratings during brain imaging to

determine whether fluctuations in clinical pain are accompanied

by temporally linked dynamic shifts in network organization. It

is likely that combining these two levels of analysis will be

required to build a comprehensive precision network model

capable of predicting which regions are most likely to induce

favorable state transitions for individual patients (e.g., from high

to low pain).

Although graph theory has previously linked network

reconfiguration dynamics with behavior following learning or

intervention (284, 287), to our knowledge it has never been used

to evaluate candidate brain regions for therapeutic stimulation.

We hypothesize that deploying precision network neuroscience

and graph theory to trials of therapeutic brain stimulation will

enable a deeper understanding of the networks that contribute to

the experience of pain and facilitate the identification of more

effective personalized stimulation targets. The parallel emergence

of valid and reliable methods for single subject fMRI and an

expanding array of graph theory tools for network neuroscience

offer great promise to advance our understanding of the network

correlates of pain and relief. However, taking full advantage of

the considerable opportunities presented by ongoing trials of

neuromodulation for pain will require careful attention to

methods for data collection, analysis, interpretation, and

dissemination. To conclude, we offer recommendations for future
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neuromodulation research to facilitate network analyses and

ongoing development of circuit-based treatments for pain.
7. Recommendations for future
research

7.1. Data collection

1. Collect sufficient data to generate precision network estimates.

a. At minimum, studies should acquire high resolution T1-

weighted anatomical sequences for co-registration, diffusion

tensor imaging (DTI) sequences for estimating structural

white matter connections, and resting state fMRI (rs-fMRI)

sequences for estimating functional brain networks, ideally at

a field strength of 3 T (36, 57, 295). A discussion of the full

range of sequences and parameters is beyond the scope of the

present article, but we provide some “minimum necessary”

acquisition guidelines below. We suggest that investigators

establishing new imaging protocols follow guidelines from

large consortia like the Adolescent Brain Child Development

(ABCD) study, which has ready-to-use protocols for most

Siemens, GE, and Philips scanners (303).

i. Anatomical: 3D T1-weighted images with at least 1 mm ×

1 mm× 1 mm resolution (approx. 5–7 min acquisition time).

ii. White Matter (DTI): at minimum including one unweighted

image (i.e., T2 or b = 0) and at least 6 diffusion-weighted

images with orthogonally oriented gradients. We recommend

using a high angular resolution diffusion imaging (HARDI)

protocol with at least 60 orthogonal diffusion directions and

multiple gradient strengths for improved white matter tract

tracing performance (approx. 6–10 min acquisition time).

iii. Functional MRI: Optimization of fMRI parameters often

involves trade-offs between spatial and temporal resolution,

with specific protocols customized to the population and

brain regions of interest. Most contemporary fMRI protocols

have spatial resolution of 2–3.5 mm3 and temporal

resolution (defined by the TR, or repetition time, to acquire

one full brain volume) of around 2 s (304). Precision

network estimates require ∼45 min of data using

conventional rs-fMRI sequences (i.e., TRs of 2–3 s) and

∼10–15 min using multi-band fMRI (which reduces TR to

∼800 ms) and multi-echo fMRI (which acquires up to 4

separate brain volumes per TR, each with different SNR

characteristics) (23, 256).

2. Collect data over multiple sessions or during real-time

symptom ratings.

a. Linking experiential pain states with dynamic network graphs

can improve understanding of brain-behavior relationships

(99).

7.2. Data analysis

1. Follow consensus guidelines for data preprocessing and analysis

to facilitate comparison with prior work (305–307).
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2. Use appropriate parameters to generate valid network graphs.

a. Use standard parcellations to define nodes (i.e., brain regions)

that ensure adequate coverage of brain areas of interest and

correspond with functional units of brain organization (101, 308).

b. Apply rsFC thresholds to ensure that edges are sufficiently

sparse to generate meaningful and interpretable graphs,

typically including only the top 10% of connections

(101, 278, 281).

7.3. Data interpretation

1. Follow consensus guidelines for reporting data acquisition and

analysis parameters for functional brain imaging studies (309).

2. Ground interpretations in extant network models of

pain perception such that each study can support or

refute available hypotheses to guide community consensus

(38, 43, 94, 115, 310).
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