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Introduction: Chronic musculoskeletal pain is a prevalent condition impacting
around 20% of people globally; resulting in patients living with pain, fatigue,
restricted social and employment capacity, and reduced quality of life.
Interdisciplinary multimodal pain treatment programs have been shown to
provide positive outcomes by supporting patients modify their behavior and
improve pain management through focusing attention on specific patient valued
goals rather than fighting pain.
Methods: Given the complex nature of chronic pain there is no single clinical
measure to assess outcomes from multimodal pain programs. Using Centre for
Integral Rehabilitation data from 2019–2021 (n= 2,364), we developed a
multidimensional machine learning framework of 13 outcome measures across
5 clinically relevant domains including activity/disability, pain, fatigue, coping and
quality of life. Machine learning models for each endpoint were separately
trained using the most important 30 of 55 demographic and baseline variables
based on minimum redundancy maximum relevance feature selection. Five-fold
cross validation identified best performing algorithms which were rerun on
deidentified source data to verify prognostic accuracy.
Results: Individual algorithm performance ranged from 0.49 to 0.65 AUC reflecting
characteristic outcome variation across patients, and unbalanced training data with
high positive proportions of up to 86% for some measures. As expected, no single
outcome provided a reliable indicator, however the complete set of algorithms
established a stratified prognostic patient profile. Patient level validation achieved
consistent prognostic assessment of outcomes for 75.3% of the study group (n=
1,953). Clinician review of a sample of predicted negative patients (n= 81)
independently confirmed algorithm accuracy and suggests the prognostic profile
is potentially valuable for patient selection and goal setting.
Discussion: These results indicate that although no single algorithm was
individually conclusive, the complete stratified profile consistently identified
patient outcomes. Our predictive profile provides promising positive contribution
for clinicians and patients to assist with personalized assessment and goal
setting, program engagement and improved patient outcomes.
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1. Introduction

Chronic musculoskeletal pain (CMP) is a prevalent condition

impacting 1.7 billion people globally and is the biggest

contributor (17%) to years lived with disability worldwide (1).

Patients experience debilitating pain, fatigue, and limited

mobility, causing reduced social activity, employment, and

quality of life. Patients with chronic pain often suffer long term

where all available interventions such as nerve blocks,

corticosteroid injections, spondylodesis, or pharmacological

treatments have been ineffective. Interdisciplinary Multimodal

Pain Treatment (IMPT) programs have been shown to provide

positive and sustained outcomes where all other modalities have

failed (2–4). The Centre for Integral Rehabilitation (CIR), a pain

rehabilitation clinic with seven locations in the Netherlands,

provides a 10-week IMPT program for patients with CMP

reporting promising positive outcomes (3, 5, 6). The CIR

program supports CMP patients in modifying their behavior and

assists with pain management by focusing patient attention on

specific value-based goals rather than fighting pain.

As patients referred to IMPT programs have exhausted all pain

management pathways, any minimal clinically important outcome

is notable, and improvements above 50% of patients treated at CIR

are remarkable. The CMP study group indicates particularly high

proportions of patient improvement across some outcome

dimensions including disability, where 85% of patients reported

improvement for the General Perceived Effect (GPE) disability

measure, pain, with improved GPE pain scores for 69% of

patients, and coping, where 86% of patients reported an

improved GPE coping outcome. Similar positive IMPT outcomes

have been reported and have shown sustained improvements in

the long term (2, 7–9).

Despite these positive outcomes, CMP is a complex

multidimensional condition with no single consistently reliable

endpoint and characteristic variation in outcome measures. For

this reason, we defined a framework of 10 clinical endpoints and

developed a corresponding profile of algorithms to assess new

patients referred for IMPT. Collectively, the framework of

machine learning models was used to develop a predictive

multidimensional patient profile to assist clinicians with patient

selection and individual goal-setting. The primary study question

was whether machine learning could assist clinical decision

support when assessing CMP patients for the IMPT program.

There are numerous examples of machine learning being

successfully implemented in clinical settings, including for

diabetes (10), prediction of low back pain (11), improvement of

back pain outcomes (12), self-referral decisions (13), and self-

management of low back pain (14). Machine learning methods

have been used to assess pain diagnosis and prediction of

developing chronic pain (15). These examples relate to earlier

diagnostic phases including imaging, where machine learning

methods have been shown to be well suited. Our patient study

group, by comparison, has all previously been diagnosed with

long-term CMP. We were not examining chronic pain diagnosis

but whether machine learning methods could contribute to the
Frontiers in Pain Research 02
prognostic identification of patients most likely to achieve

positive outcomes from the IMPT program. This is the first

research to our knowledge aimed at developing a machine

learning decision support framework for an IMPT program.

Our research project also considered how patient prognostic

algorithms could be implemented into IMPT practice. Although

machine learning methods have developed rapidly in healthcare,

they have been slow to enter clinical practice due to complex

“blackbox” abstraction and the need for thorough validation

prior to implementation (16). Evidence suggests that these

advancing methods have substantial potential to contribute to

individualized care, particularly if stratified for patient risk, so

clinicians can consider and avoid harm (17). In this context, we

have used commonly established classes of algorithms and

considered a recently developed clinician checklist of questions to

assist assessment of algorithm development, data quality,

validation and performance, risks, and ethical concerns (18). An

implicit focus of our research was to investigate how machine

learning models can assist clinical decision support to further

improve the patient outcome and IMPT program efficiency.

Although preliminary research indicates that the CIR program is

likely cost-effective (2), a predictive multidimensional patient

profile may assist clinicians and patients with assessment,

program engagement, and goal-setting and further contribute to

program effectiveness and related cost-effectiveness.
2. Methods

The study developed a framework of clinical endpoints to assess

the complex variation in outcomes reported by patients

participating in the CIR IMPT program. As there is no single

reliable IMPT outcome measure relevant for all patients, 10

clinical measures and 3 composite metrics were defined to assess

patient outcomes and provide the basis for supervised machine

learning across demographic and potential prognostic baseline

variables. The approach developed sequential stages of data

preprocessing, selecting data items with the highest prognostic

performance, training each machine learning model, and

validating algorithm accuracy against source patient data, see

Figure 1. In addition to patient-level validation of each of the 13

algorithms, compared to source data actual outcomes, an

independent clinician case file review was undertaken for a

targeted subgroup of patients, intentionally based on challenging

patient assessments where most predictive indicators were

negative (n = 81). This supplementary validation process aimed to

further verify algorithm accuracy and examine the potential value

of having the prognostic profile when assessing new IMPT patients.

The initial phase defined the framework of outcome measures

based on clinician advice. Each outcome metric was derived in the

patient study dataset to provide endpoints for the supervised

machine learning development. All 13 algorithms were then

separately trained across multiple classification models. This

provided two complete sets of algorithms; first, the best-

performing models for each of the 13 outcomes were used as the
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FIGURE 1

Diagram of methods, machine learning development, and algorithm validation process. Algorithm development was undertaken for multiple classification
models including decision trees, discriminant analysis, support vector machine (SVM), logistic regression, nearest neighbor, naive Bayes, kernel
approximation, ensembles, and neural networks. The best-performing model was selected for each of the 13 outcome measures.
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primary prognostic models. Second, although decision tree models

generally achieve slightly lower accuracy, they provide a visual

structure of threshold values across predictive variables. For this

reason, a complete second set of medium decision tree

algorithms was prepared for each of the 13 outcome measures

for supplementary algorithm validation and enhanced

transparency for clinician review of decision branch thresholds.
2.1. Patient study group

The IMPT study data include all patients accepted to the CIR

program over 3 years from 2019 to 2021 who completed the full

10-week intervention (n = 2,364). A high proportion of patients

were women (72.5%), consistent with IMPT populations in the

Netherlands (19). The mean (±SD) patient age was 43.8 ± 13.0

years. All patients were previously diagnosed with long-term

CMP and referred to the IMPT program following

comprehensive pain management investigations, typically over

multiple years. As study group patients have exhausted all

pharmacological or clinical interventions, any IMPT minimal

clinically important change for this cohort is considered significant.
2.2. CIR IMPT program

The CIR program comprises a treatment team of

physiotherapists, psychologists, and a physiatrist. The IMPT
Frontiers in Pain Research 03
program aims to improve the daily functioning, participation,

and quality of life of patients with CMP using a combination of

physical and psychosocial treatment methods, including

emotional awareness and expression therapy, pain neuroscience

education, acceptance and commitment therapy, graded activity,

exposure in vivo, and experiential learning through physical

training (5). Treatment phases cover 10-week participation in the

program including a start phase in week 1 (T0), an education

phase in weeks 2–3, a skills learning phase during weeks 4–10, a

mid-trajectory evaluation in week 5 (T1), and a final evaluation

in week 10 (T2). A subgroup of patients (around 12%) are

subsequently referred for further second treatment of 5–20 h,

following a 6-week break, with a final follow-up data point (T3).

The machine learning development is based on outcomes

between baseline at the entry to the program (T0) and the change

in each outcome measure at the completion of the full 10 weeks

(T2). This is the most effective timeframe to assess most outcomes,

as patients generally respond to treatment by T2, although further

improvements are reported in patients approved for extended

second treatment (T3). Further longitudinal data points are

reported at 3 months (T4), 6 months (T5), and 12 months (T6).

The current study did not assess timepoints beyond T2.
2.3. Data source and preprocessing

The patient dataset is collected by CIR for all patients with

chronic pain referred to the IMPT program, maintained by
frontiersin.org
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Asterisque (a software developer), and validated by Maastricht

University, Department of Rehabilitation Medicine. New patients

complete an online survey of baseline demographic and

questionnaire data at timepoint T0. There were variations in

sample sizes for each outcome due to the available study group

at timepoint T2 or missing data for patients not collected in the

initial study phases. The endpoints were developed as binary

indicators where one indicates a positive outcome when the

defined rule is met; otherwise, each outcome was defined as zero.

Data analysis and preprocessing were undertaken in STATA

V16.1. (StataCorp LP, College Station, TX, United States). All

records in the patient dataset were deidentified with a unique

patient number. Medical Research Ethics Committee Isala Zwolle

reviewed this study (case number assigned: 200510), and as all

patients have consented to the use of their data for research,

further ethics approval was not required.
2.4. Patient outcomes

CMP is a complex condition, and patient responses to the

IMPT program are often subjective and highly variable. There is

no clear clinical endpoint to reliably indicate a positive program

outcome. Some patients report positive improvements in one

domain and not in others. For this reason, we defined a set of 10

clinical endpoints across five clinically relevant domains, in line

with the complex assessment clinicians undertake with these
TABLE 1 Description of clinical measures and endpoint metrics.

Measure
domain group
number

Measurement
instrument

Measurement domain

1.1 PDI (20) Disability A sum
scores m

1.2 GPE disability <4 Disability Lower s

1.2a GPE disability <3 Disability Lower s

1.3 PSC (23, 24) Disability/activity The ave

C1 Measure 1.1 or 1.2 or
1.3

As above A posit

2.1 GPE pain Pain Lower s

2.2 NRS pain last week Pain Lower s

C2 Measure 2.1 or 2.2 As above A posit

3.1 NRS fatigue last week Fatigue Lower s

3.2 CIS (27) Fatigue A sum
scores m

C3 Measure 3.1 or 3.2 As above A posit

4 GPE coping Coping Lower s

5 SF-12 PCS (28) Health-related quality of life
physical component score

A physi
respons
Higher

PDI, pain disability index; GPE, general perceived effect; PSC, patient-specific complai

form quality of life survey physical component score; VAS, visual analogue scale.

GPE <3 indicates totally or much improved; GPE <4 indicates totally, much, or somew
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patients, see Table 1. The domains include (1) activity/disability,

(2) pain, (3) fatigue, (4) coping, and (5) quality of life (19).

Outcome measurement instruments are grouped within each

domain by the measure domain group number. Categories 1, 2,

and 3 are summarized by a group indicator defined as any one of

the endpoints within the group, denoted C1, C2, and C3,

respectively. This was included to reflect clinician practice where

a positive outcome in any one of the indicators within each group

is considered a positive result. The combined outcome framework

includes 10 separate clinical endpoints and 3 composite summary

indicators. Further details of the clinical outcome endpoints,

including measurement constructs and questionnaire response

scales, are provided in Supplementary Table 1.

Each endpoint is defined by either an absolute change in score,

a range of categorical outcomes, a percentage improvement, or the

effect size as measured by Cohen’s d. Cohen’s threshold was

defined as a large effect size of 0.8, as small and medium values

resulted in higher proportions of positive outcomes, which were

less balanced for algorithm training (25). Data analyses were

undertaken on mixed categorical and continuous variables, with

algorithm training based on derived binary outcomes indicating

improved (positive) or unimproved (negative) endpoint

calculations. The outcome thresholds are based on clinician

assessment practice, and some are described in existing literature,

as presented in Table 1.

A substantial proportion of study group patients attained

individual positive outcome measures ranging from 36.6% for
Measurement score Measurement metric
definition

score is calculated, ranging from 0 to 70. Lower
ean lower disability

A decrease of 9 or more points
(21)

cores mean more improvement Patients with scores 1, 2, or 3
are considered responders (22)

cores mean more improvement Patients with scores 1 or 2 are
considered responders (22)

rage of three VAS scores is calculated Effect size Cohen >0.8 (25)

ive outcome if any group 1 measures are positive Group 1 as above

cores mean more improvement Patients with scores 1, 2, or 3
are considered responders (22)

cores mean less pain Reduction of 30% compared to
the baseline (26)

ive outcome if any group 2 measures are positive Group 2 as above

cores mean less fatigue Reduction of 30% compared to
the baseline (26)

score is calculated, ranging from 20 to 140. Lower
ean less exhaustion

Effect size Cohen >0.8 (25)

ive outcome if any group 3 measures are positive Group 3 as above

cores mean more improvement Patients with scores 1, 2, or 3
are considered responders (22)

cal (PCS) component is calculated from weighted
es. The summary score ranges from 0 to 100.
scores mean better physical health

Effect size Cohen >0.8 (25)

nts; NRS, numeric rating scale; CIS, checklist individual strength; SF-12 PCS, short-

hat improved.
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fatigue during the last week to 86.3% for GPE coping. Most of the

endpoints indicate a positive program outcome, with 7 of the 10

measures achieved by more than 50% of patients. Additional

supplementary endpoints were examined in which the proportion

of positive outcomes was high to provide more balanced training

data and assess potential classification bias in samples. For

example, algorithm 1.2 GPE disability <4 is defined as a survey

response of “totally,” “much,” or “somewhat” improved, with

84.9% of patients meeting this threshold. The additional

algorithm 1.2a GPE disability <3 established a higher threshold

in which the response was reduced to “totally” or “much”

improved, providing a smaller 39.7% of positive patients. Both

measures represented different levels of a positive outcome and

were included to examine algorithm accuracy.
2.5. Prognostic variables and feature
selection

From a review of the patient dataset, 55 demographic and

potential prognostic variables were identified. All patient

variables considered to have potential prognostic value were

included for feature selection analysis to assess the most valuable

data items of each endpoint. Patient string variables stored as

text, such as patient comments, were highly variable and

therefore excluded as prognostic candidates. Most prognostic

data items were used for all clinical endpoints, with additional

supplementary data items used in clinician-selected measures,

consistent with the World Health Organization model for

rehabilitation. For example, for the quality-of-life endpoint using

the Short-Form (SF-12) physical component score, pain disability

index (PDI) and patient-specific complaints (PSC) were added as

prognostic factors as these are from different outcome

dimensions. This optimizes prognostic factors by eliminating

duplication of variables from dimensions related to the endpoint,

reducing covariation. Details of specific prognostic variables used

for each outcome measure are provided in Supplementary

Table 2.

From the 55 prognostic candidate variables, feature selection

algorithms were conducted separately for each clinical endpoint

using the MATLAB Statistics and Machine Learning Toolbox

(Release 2022b) to rank variables by predictive importance.

Feature selection has been shown to reduce model overfitting and

improve model accuracy and performance (29). Feature selection

testing was undertaken to assess multiple methods including

minimum redundancy maximum relevance, chi-squared,

ANOVA, and Kruskal–Wallis estimates. The resulting feature

selection was consistent across methods, and the minimum

redundancy maximum relevance algorithm was selected as the

standard used for all analyses across outcomes (30). Predictive

variables ranked lower than 30 had very low predictive power,

and results improved slightly when variables below 30 were

excluded. Details of feature selection rankings for each endpoint

are provided in Supplementary Table 3, with predictor

importance scores for each prognostic variable. Prognostic

variable descriptions and summary figures for the number of
Frontiers in Pain Research 05
times features selected across all 13 outcomes are provided in

Supplementary Table 4.
2.6. Machine learning methodology

As patient profiles reflect variations in the defined outcome

measures, all 13 algorithms were trained individually as

supervised classification models. Each clinical endpoint response

variable was then used to train multiple classifier algorithms

including decision trees, discriminant analysis, support vector

machines, logistic regression, nearest neighbors, naive Bayes,

kernel approximation, ensembles, and neural networks. Each

clinical endpoint was separately trained with the selected best 30

predictive variables for that individual outcome using the binary

response variable indicating an improvement in that endpoint or

not. All models were trained and cross-validated using five folds

of patient data to help avoid overfitting and estimate predictive

accuracy. This randomly divides the data into five equal

partitions, trains each algorithm on a training fold, and cross-

validates against validation folds to calculate the average

validation error and provide an estimate of predictive accuracy.

The model for each outcome measure with the highest accuracy

score was selected as the best-performing algorithm. These best-

performing machine learning models provide the clinician and

patient with each outcome measure across the stratified

prognostic profile, with a simple majority (positive or negative)

summary measure to gauge overall results.

Machine learning models are commonly considered to lack

transparency in how they produce results. To investigate

potential decision logic, we developed a second set of algorithms

using a medium classification tree model for each of the 13

measures. Classification trees can be generated as graphical

figures showing the decision rules of a classification problem, in

our case, the pathway to classify a positive outcome measure.

Patient study data preprocessing, outcome variable specification,

and calculations were undertaken in STATA V16.1. (StataCorp

LP, College Station, TX, United States). Final summary data of

the prognostic variables for each outcome were individually

extracted and exported to MATLAB R2022a for machine

learning analyses.
2.7. Statistical analysis

To assess model classification performance of each outcome

algorithm, a confusion matrix was calculated to examine true

positive rates (TPRs) and false negative rates (FNRs). Model

performance was calculated using the receiver operating

characteristic (ROC) area under the curve (AUC), accuracy

(number of correct predictions/total predictions), recall [true

positive rate (TPR)], specificity [true negative rate (TNR)],

precision [positive predictive value (PPV)], and F1 scores

(harmonic mean of precision and recall). The AUC curves

calculate the TPR compared to the FPR for different thresholds

of classification scores to assess the overall quality of each model.
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Although there is no universally accepted threshold for AUC

prognostic significance, AUC scores between 0.6 and 0.7 are

considered acceptable and between 0.5 and 0.6 are viewed as

poor, with 0.5 representing no prognostic value or equivalent to

a random guess (31).
2.8. Algorithm validation

An algorithm validation framework was developed using

deidentified baseline data from the patient dataset. Baseline

prognostic variables were re-extracted, and each algorithm model

was conducted to derive the predicted outcome for each patient

in each of the 13 outcome measures. This provided patient-level

validation of the prognostic accuracy of each algorithm compared

to the derived actual outcomes study group patients achieved.

Further metrics were calculated to verify each outcome measure

per patient and establish the number of the 13 outcomes that

were correctly validated. In addition to patient-level cross

validation, a supplementary sample of 81 patients recording

mostly negative outcomes was independently clinician-reviewed.

This additional validation was undertaken to verify predictive

results and investigate whether having the prognostic profile at

baseline assessment was potentially valuable for individual

patient selection and goal-setting.

There are two prognostic validation elements produced

through the machine learning models: First, the complete set of

individual prognostic outcomes is generated for clinician

assessment of new program patients. This includes accuracy

metrics for each outcome measure to indicate low or high true

positive or true negative models. Additionally, a simple summary

indicator is provided from the count of positive versus negative

prognostic outcomes to indicate a positive or negative majority.

This is not presented as a prescriptive indicator but a basic

grouping in which multiple measures consistently point to a

positive or negative patient outcome.
3. Results

Study group characteristics show a high proportion of female

patients (72.5%), see Table 2. The mean (±SD) patient age was

43.8 ± 13.0 years, with 35.9% over 50 and 11.7% over 60 years of

age. All patients referred to the CIR IMPT have been diagnosed

with CMP and classified through the Working Group on Pain

Rehabilitation in the Netherlands (Werkgroep Pijnrevalidatie

Nederland, WPN). Based on this rating of the complexity of pain

symptoms, the majority (85%) were assessed as WPN 3 chronic

pain syndrome and 14% as WPN 4 (maximal score), showing a

clear indication of psychosocial factors underlying and

maintaining pain and its associated disability. Based on the body

mass index (BMI), most patients were classified as overweight

(65.7%, BMI≥ 25) and 30.4% met the threshold considered obese

(BMI≥ 30), including 8.2% obesity class II (BMI≥ 35) and 3.5%

obesity class III (BMI≥ 40).
Frontiers in Pain Research 06
Most patients experienced pain in multiple anatomical

locations, with 89.9% reporting more than one and 38.9%

indicating more than five locations. Most patients (63.9%) also

reported being in paid employment, and 62.7% were using pain

medication.
3.1. Feature selection

The feature selection minimum redundancy maximum

relevance algorithm was conducted for each clinical endpoint,

and the 30 highest-ranking features were selected for each

classification model training. There is a minor variation in the

number of features across endpoints from 49 to 55, reflecting

diagnostic dimensions. Tests were undertaken for comparison

without feature selection using all 55 variables, and other feature

selection methods were also assessed and produced consistent

results. Reducing to the 30 most significant features for each

endpoint increased accuracy slightly and was more efficient.

Details of prognostic variables used for each outcome measure

are provided in Supplementary Table 2. Details of all 55

prognostic variables and the 30 selected for each model are

provided with minimum redundancy maximum relevance

ranking scores in Supplementary Table 3.

Although there is characteristic variation in the most predictive

features across each endpoint, three baseline prognostic variables

were selected for all models: (1) treatment control (How much

do you think your treatment can help your illness? Brief Illness

Perception Questionnaire), (2) worst pain last week (NRS), and

(3) disability pension/sick leave (response is no or five different

yes options). A further five variables were prominent and used in

92% (12 of the 13 models): (1) CIR location, (2) cognitive fusion

(Psychological Inflexibility in Pain Scale), (3) timeline (How long

do you think your illness will continue?), (4) coherence (How

much does your illness affect you emotionally? Brief Illness

Perception Questionnaire), and (5) depression (Hospital Anxiety

and Depression Scale (HADS)). Other prominent prognostic

factors were selected in over 75% (10 of 13) of models, including

hours per week of paid work, level of education, duration of pain

(6 categories), pain diagnosis, home adaptations, time willing to

spend on treatment, 6-min walking distance, and self-reported

work capacity (NRS 0–10). Age and gender were selected in

around half of the trained models, while patient BMI was not

selected in any, likely due to the high proportion of the study

group that was overweight, suggesting that BMI was not a

distinguishing factor for a positive program outcome. This shows

that feature selection helps adjust for imbalanced prognostic

variables such as the high proportion of female or overweight

patients. Summary details of selected variables across all 13

outcome models are provided in Supplementary Table 4.
3.2. What is a positive IMPT patient
outcome?

As referral to the program is a final pathway where all other

therapies have failed, a positive outcome for any patient in this
frontiersin.org
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TABLE 2 Study group demographic and baseline characteristics (n =
2,364).

% n

Gender
Male 27.5 649

Female 72.5 1,715

Age group (years)
<20 years 1.4 33

20–29 15.3 361

30–39 21.7 513

40–49 25.8 610

50–59 24.2 571

60 and over 11.7 276

Pain diagnosis
WPN 2 chronic pain syndrome 0.3 7

WPN 3 chronic pain syndrome 84.6 1,998

WPN 4 chronic pain syndrome 14.0 331

Other pain syndrome 0.9 21

Psychiatric disease 0.2 4

BMI group (kg/m2)
Less than 20 4.3 92

20–24.9 30.0 643

25–29.9 35.3 757

30–34.9 18.7 402

35–39.9 8.2 175

40 or over 3.5 76

Number of pain locations
1 10.2 231

2–5 51.0 1,159

>5 38.9 885

Living status
Alone 17.5 397

With partner 65.4 1,486

Living apart together 5.2 119

With parent(s) 6.5 148

Other 5.3 121

Highest level of education
No 0.6 14

Primary school 2.8 63

Pre-vocational secondary 13.8 312

Secondary vocational 44.2 1,003

Senior general secondary/Pre-university 7.1 162

Senior general secondary/Pre-university not finished 6.4 146

Higher professional/University 23.7 537

Postdoctoral 1.4 31

Paid employment
No 36.1 819

Yes 63.9 1,450

Duration of symptoms
0–3 months 1.1 24

3–6 months 6.3 144

6–12 months 13.1 298

1–2 years 17.0 386

2–5 years 24.7 561

More than 5 years 37.8 860

Use of pain medication
No 37.3 848

Yes 62.7 1,423

(continued)

TABLE 2 Continued

% n

Baseline scores Mean (SD) n
PDI 38.7 (12.3) 2,294

PSC 71.3 (13.7) 1,200

NRS pain 6.5 (1.8) 2,273

NRS fatigue 7.2 (2.0) 2,272

CIS 97.3 (22.2) 2,254

SF-12 PCS 30.9 (6.7) 2,284

WPN, classification of the Working Group on Pain Rehabilitation Netherlands

(Werkgroep Pijnrevalidatie Nederland) (32); BMI, body mass index; PDI, pain

disability index; PSC, patient-specific complaints; NRS, numeric rating scale; CIS,

checklist individual strength; SF-12 PCS, short-form quality of life survey physical

component score.

Minor variations in subgroup sample sizes were due to missing data. PSC was

introduced in 2020.
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cohort is notable. The high proportion of study group patients

achieving a positive result is exceptional, ranging from around

40% to above 85% across the 13 outcome measures, see Table 3.

The high proportion of positive outcomes in the training data

results in similarly high levels of predicted positive outcomes.

This is not a machine learning weakness but due to the

imbalanced proportion of positive or negative outcomes, as

reflected in the corresponding true positive and true negative

rates. As expected, the algorithms replicate and generally amplify

the imbalanced training data so that high proportions of patients

with a positive outcome measure result in equally or higher

predicted true positive rates. Patient-level validation of positive

and negative algorithm results shows that the proportions of

each outcome are consistent with estimated true positive and

true negative rates, see Supplementary Table 5. In practice, the

prognostic profile results will present algorithm accuracy figures

for clinician reference. In summary, the results show that

although there is expected variation in each outcome measure,

the algorithms establish prognostic indicators which collectively

build a stratified positive or negative patient assessment profile.
3.3. Performance of the machine learning
models

As expected, no individual clinical measure produced a single

reliable prognostic indicator to consistently predict a positive

program outcome, see Table 3. This is in line with the complex

multidimensional clinician assessment process, which does not

rely on a single baseline patient questionnaire but uses each

prognostic indicator to develop a patient profile. Similarly, our

framework of machine learning indicators was not anticipated to

produce a single prescriptive measure. The algorithm-estimated

accuracy scores reflect the high variation in individual outcomes,

with 9 of the 13 measures within the indicative AUC range

between 0.6 and 0.7 considered “acceptable” and the remaining 4

models below 0.6 and viewed as having “poor” prognostic

discrimination.
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TABLE 3 CMP machine learning pilot—algorithm results.

Outcome measure (algorithm type) N % Positive AUC Accuracy Recall TPR Specificity TNR Precision PPV F1 score
1.1 PDI (ENS-SD) 2,002 58.2 0.63 0.61 0.89 0.23 0.61 0.73

1.2 GPE disability <4 (ENS-BT) 1,657 84.9 0.53 0.85 1.00 n/a 0.85 0.92

1.2a GPE disability <3 (SVM-L) 1,657 39.7 0.65 0.63 0.32 0.83 0.56 0.41

1.3 PSC (SVM-CG) 990 70.1 0.49 0.70 1.00 n/a 0.70 0.82

C1 1.1 or 1.2 or 1.3 (ENS-SD) 2,036 84.9 0.64 0.85 1.00 n/a 0.85 0.92

2.1 GPE pain (ENS-BT) 1,654 68.7 0.62 0.69 0.97 0.09 0.70 0.81

2.2 Pain NRS (LR) 1,645 42.4 0.65 0.62 0.37 0.81 0.59 0.45

C2 2.1 or 2.2 (ENS-BT) 1,655 72.6 0.60 0.73 0.98 0.06 0.73 0.84

3.1 Fatigue NRS (ENS-SD) 1,642 36.3 0.61 0.64 0.09 0.96 0.56 0.15

3.2 CIS total (ENS-SD) 1,949 52.3 0.60 0.57 0.72 0.42 0.57 0.64

C3 3.1 or 3.2 (SVM-FG) 1,788 61.5 0.52 0.61 1.00 n/a 0.61 0.76

4 GPE coping (LR) 86.3 0.64 0.86 1.00 0.02 0.86 0.93

5 SF-12 PCS (KNB) 59.7 0.58 0.60 0.94 0.10 0.61 0.74

CMP, chronic musculoskeletal pain; AUC, area under the curve; TPR, true positive rate; TNR, true negative rate; PPV, positive predictive value; machine learning endpoint;

PDI, pain disability index; GPE, global perceived effect; PSC, patient-specific complaints; NRS, numeric rating scale; CIS, checklist individual strength; SF-12 PCS, short-

form quality of life survey physical component scale. Machine learning model in brackets: ENS-SD, ensemble subspace discriminant, ENS-BT, ensemble boosted trees;

SVM-L, support vector machine linear; SVM-CG, support vector machine coarse Gaussian; LR, logistic regression; SVM-FG, support vector machine fine Gaussian;

KNB, kernel naive Bayes. n/a, not applicable due to imbalanced endpoint data.

Results are based on the highest estimated accuracy across all tested algorithms.
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3.4. Classification decision trees and
algorithm transparency

The second set of developed algorithms used a medium

classification tree model for each of the 13 outcome measures to

generate graphical figures showing the decision rules and

threshold values at each branch. The model accuracy scores were

marginally lower than the best-performing algorithms, but the

results produced similar patterns for estimated true positive and

true negative rates, see Table 4. The decision trees were

clinician-reviewed to assess branch structures and leaf node

thresholds. Overall, the classification trees did not provide further

insight into how results were derived. This is because the

branches establish multiple combinations of decision point

values. Although it was possible to follow a rule pathway and

obtain a positive or negative result, the branches were contingent
TABLE 4 CMP machine learning pilot—algorithm results—supplementary me

Outcome measure % Positive AUC Accuracy
1.1 PDI 58.2 0.57 0.59

1.2 GPE disability <4 84.9 0.57 0.83

1.2a GPE disability <3 39.7 0.60 0.59

1.3 PSC 70.1 0.58 0.66

C1 1.1 or 1.2 or 1.3 84.9 0.56 0.84

2.1 GPE pain 68.7 0.59 0.67

2.2 Pain NRS AVP3 42.4 0.56 0.55

C2 2.1 or 2.2 72.6 0.58 0.71

3.1 Fatigue NRS AVP5 36.3 0.55 0.59

3.2 CIS total 52.3 0.55 0.53

C3 3.1 or 3.2 61.5 0.56 0.58

4 GPE coping 86.3 0.60 0.85

5 SF12 PCS 59.7 0.53 0.58

CMP, chronic musculoskeletal pain; AUC, area under the curve; TPR, true positive rate;

PDI, pain disability index; GPE, global perceived effect; PSC, patient-specific complain

form quality of life survey physical component scale.
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on multiple tree levels and did not provide generalized useful

threshold values for individual outcome measures. The

classification trees did, however, provide a supplementary view of

combinations of prognostic variables. For example, decision

branches showed positive outcome threshold combinations for

high anxiety and low depression scores, see Supplementary

Image 1. The decision tree shows the algorithm path to a

positive outcome of a baseline HADS anxiety score of 12 (which

is indicative of a heightened level of anxiety) combined with a

HADS depression score of <6 (not indicative of any sign of

depression). This is not a common profile and could make the

clinician aware that addressing specific fears by using exposure

in vivo could be highly relevant. These types of secondary

associations could provide supplementary insights to tailor

further algorithms or develop further composite metrics for the

basis of ongoing reinforced machine learning.
dium classification trees.

Recall TPR Specificity TNR Precision PPV F1 score
0.86 0.21 0.60 0.71

0.97 0.02 0.85 0.91

0.36 0.73 0.47 0.41

0.90 0.10 0.70 0.79

0.98 0.05 0.85 0.91

0.93 0.09 0.69 0.80

0.37 0.69 0.47 0.41

0.95 0.09 0.73 0.83

0.24 0.80 0.40 0.30

0.79 0.25 0.54 0.64

0.87 0.12 0.61 0.72

0.97 0.05 0.87 0.92

0.91 0.09 0.60 0.72

TNR, true negative rate; PPV, positive predictive value; machine learning endpoint;

ts; NRS, numeric rating scale; CIS, checklist individual strength; SF-12 PCS, short-
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3.5. Validation of patient profile of
algorithms

As there was not expected to be an individual clear prognostic

outcome measure, supplementary validation was undertaken to

examine how the profile of algorithms would perform for new

patients. We did this by re-extracting the prognostic variables

from the source training data and conducting the 13 algorithm

models for each patient, developing a cross validation compared

with derived actual outcomes for each measure.

There is variation in the number of outcomes reported for each

patient as an additional outcome measure (PSC) was introduced

during the study period. To test the overall direction of the

algorithms, we first developed a basic indicator where most

outcomes were either positive or negative. This was derived

across all patients irrespective of the number of available

outcomes, for example, where seven outcomes were available for

a patient, with four positive ones indicating a majority. The

resulting validation per patient compares the majority positive or

negative indicator for outcomes with the corresponding majority

indicator for the prognostic measures. The algorithms produced

predictive outcomes for all 13 models for all study group

patients, whether they had reported all outcomes or not.

The actual patient outcome indicator and the separate machine

learning indicator were then compared to validate which patients

had a consistent assessment, see Table 5. This simple majority-

based perspective of the algorithm profile validated 1,470 patients

(75.3%) with the same majority indicator. Of the patients

confirmed with algorithm versus actual study data outcomes,

most (1,330; 90.5%) were positive majority outcomes and 9.5%

were majority negative outcomes. This is consistent with the high

proportion of positive patient outcomes in the training data and

the resulting algorithms’ high true positive values. This provided

a validation sample (n = 1,953) that excluded patient outcomes

where an even number did not provide a majority one way or

the other.

The initial validation did not examine which specific outcome

measures were positive or negative, as it was not possible to
TABLE 5 Algorithm validation by the proportion of positive patient
outcome measures.

Algorithm
validation

Positive
(majority)

Negative
(majority)

Total
validated

Confirmed with study
data outcome

1,330 140 1,470 75.3%

90.5% 9.5% 100.0%

Different to study data
outcome

476 7 483 24.7%

98.6% 1.4% 100.0%

Total predicted positive
or negative

1,806 147 1,953 100.0%

92.5% 7.5% 100.0%

Based on patients with a majority or minority of positive outcome measures in

study group, n= 1,953. Positive is defined as the number of positive measures >

the number of negative measures. Source patient data includes variations in the

number of outcome measures due to incomplete data; patients with an even

number of measures that were equally positive or negative are excluded as no

defined majority indicator. Machine learning models generate a complete set of

13 prognostic measures for all patients but are only possible to validate for

patients with a majority indicator in baseline data.
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crosscheck individual outcomes where data were not available.

Most patients reported data for 12 or the complete 13 clinical

endpoints (1,524; 78%), see Table 6. This shows the distribution

of how many outcomes were available for the 1,470 patients

validated, where most prognostic outcomes were confirmed

against a corresponding majority in the source study dataset.

The next phase of validation focused on the subgroup of

patients for which 13 complete outcome data were available (n =

958, shaded row), see Table 6. For this subgroup, each

prognostic algorithm was individually validated with the

corresponding outcome from the study dataset for each patient.

So, if the predicted PDI was the same for both algorithm and

dataset outcomes, whether positive or negative, this was flagged

as valid for each of the 13 measures. The total number of

validated algorithms for each patient was then counted,

providing a patient matrix with the number of positive predicted

outcomes and the number of individual validated measures for

the same patient, see Table 7. The top section (left side light

gray area) shows negative majority outcomes of seven or more,

and the right-hand section (light gray area) indicates a majority

of validated outcomes of seven or more. These results, validated

on individual algorithms for the subgroup with complete data,

are consistent with the simple majority indicator for the full

study group. The number of patients with a validated negative

majority is 81 (8.5%, dark shaded section) compared to 9.5% for

the full study group sample.
3.6. Clinician validation review

The final validation step was to undertake an independent

clinician case file review of the validated negative sample of 81

patients. This sample was chosen as a particularly challenging

subgroup to identify, given the generally high proportion of

positive outcomes. The deidentified patient codes from the study

dataset were provided for clinician reidentification and review of

each patient. This individual verification of algorithm

performance confirmed that half of the patients (40/81; 49.4%)

did not achieve an improvement or insufficient improvement to

be clinically significant. The remaining half of patients reported

various indicative or subjective outcomes for further review and

ongoing outcome measure development. Collectively, the

stratified prognostic profile appears to be potentially valuable for

clinician assessment, selection of new patients, and consideration

of setting individual patient goals.
3.7. IMPT prognostic patient profile

The final machine learning framework provides the full set of

13 algorithms for each patient, establishing a stratified profile

across outcome dimensions, see Figure 2. This includes

estimated accuracy figures, true positive and negative rates for

each algorithm, and the summary outcome count indicator. The

profile also reflects the common situation in which patient

assessment is not clear, as for most CIR program patients. The
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TABLE 6 Number of patient outcomes available in the study dataset.

Total outcomes Algorithm validation confirmed Different from study data outcome Total patients % positive % By outcomes
1 2 3 5 40.0% 0.3%

2 4 6 10 40.0% 0.5%

3 14 8 22 63.6% 1.1%

4 80 57 137 58.4% 7.0%

5 156 24 180 86.7% 9.2%

6 8 2 10 80.0% 0.5%

7 1 0 1 100.0% 0.1%

8 8 5 13 61.5% 0.7%

9 4 1 5 80.0% 0.3%

10 16 7 23 69.6% 1.2%

11 20 3 23 87.0% 1.2%

12 426 140 566 75.3% 29.0%

13 731 227 958 76.3% 49.1%

Total 1,470 483 1,953 75.3% 100.0%

Gray shading: patient validation subgroup where complete 13 outcome data were available (n= 958).
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prognostic algorithm outcomes could be presented to assist

clinicians with patient assessment, along with demographic and

baseline prognostic variables. The left-hand section (solid black

border) shows content available at patient assessment, with

baseline variables, the predictive positive or negative outcomes

for each measure, and the summary majority positive or negative

scores. In this example, the right-hand section illustrates one of

the clinician-reviewed patients with the study dataset outcomes

and whether each algorithm was validated with a correct

prediction. For this patient, the majority of algorithms (10/13)

indicated negative outcomes. Predictions for each of the 13

algorithms were correctly confirmed with outcome data

(Figure 2, dashed right-hand section), and individual clinician

case file review for this patient verified that there had been no

improvement from IMPT in this case.

The prognostic patient profile may assist clinicians in a few

ways. In some cases, this could support assessment where the

outcome is clearly positive or negative across dimensions. For

mixed positive and negative outcome profiles, this subgroup of
TABLE 7 Number of positive algorithm outcomes by the number of validated

Count algorithm
positive

Count algorithm
negative

Number o

4 5 6
1 12 0 0 0

2 11 0 0 0

3 10 0 0 0

4 9 0 0 0

5 8 0 0 0

6 7 0 0 0

7 6 0 2 12

8 5 0 5 7

9 4 3 5 2

10 3 0 2 6

11 2 0 0 0

12 1 0 0 0

13 0 0 0 0

Total 3 14 27

Patient validation subgroup where complete 13 outcome data were available (n= 958
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patients might benefit from further, more detailed assessment in

particular dimensions or discussion of setting more specific

program goals in target outcome measures. It is also a

consideration that patients with a negative majority or mixed

profile could form a supplementary assessment phase of the

program where needed, for example, to undertake an initial pilot

support of, say four weeks, for an interim review of progress

before approval to proceed in the full 10-week program.
4. Discussion

We developed our pilot machine learning framework knowing

that outcomes for programs supporting patients with CMP are

highly variable and no single measure exists to consistently

classify positive results. Clinicians assessing and developing

individual patient support programs for this complex cohort

consider multiple baseline dimensions and detailed patient

backgrounds. There is no single reliable clinical measure to assess
outcomes.

f validated outcomes (algorithm = actual outcome)

7 8 9 10 11 12 13 Total
0 0 0 0 0 2 0 2

0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 3

0 0 2 3 3 3 0 11

0 2 4 4 4 6 3 23

2 4 5 12 9 7 3 42

8 7 19 17 20 5 3 93

9 35 36 40 37 12 4 185

12 14 38 39 47 24 10 194

8 17 25 45 54 45 18 220

1 1 2 8 27 25 19 83

0 0 1 0 12 34 25 72

0 0 0 0 3 7 20 30

40 80 132 169 217 170 106 958

).
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FIGURE 2

Example patient prognostic profile and validation with actual study data results. PDI, pain disability index; GPE, global perceived effect (disability); PSC,
patient-specific complaints; NRS, numeric rating scale; CIS, checklist individual strength; SF-12 PCS, short-form quality of life survey physical
component score. PDI, PSC, pain, fatigue, and CIS improvement are indicated by lower scores. GPE <3 indicates totally or much improved, GPE <4
indicates totally, much, or somewhat improved. TPR, true positive rate; TNR, true negative rate; patient data section is shown for illustrative purposes
representing the 55 baseline prognostic variables and values that would appear on the patient profile.
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IMPT patient outcomes or therefore to provide an individual

prognostic basis to identify patients most likely (or unlikely) to

benefit from IMPT. In this context, our research was motivated

by whether machine learning methods across several outcome

measures could be combined to develop a stratified prognostic

patient profile as a clinical decision support tool. The aim was to

investigate whether collective algorithm models could, in some

way, replicate the complex multidimensional assessment process

clinicians undertake. In summary, we defined and developed our

framework of 13 outcome measures and derived study group

outcomes for each metric. These were then used to individually

train each algorithm using the best 30 of 55 independently

selected prognostic variables for each endpoint. We have

reported and summarized prominent variables across all models

and calculated estimated algorithm accuracy and error metrics
Frontiers in Pain Research 11
using established random fivefold partitioning of the data. To

verify results, we have developed a complete process of cross

validation that retrospectively implemented each of our 13

algorithms on the deidentified source study group data by

extracting only the prognostic variables that would have been

available for baseline assessment.

As expected, the results of each of our 13 clinical endpoints and

composite metrics confirmed that no individual outcome measure

provided a consistently significant basis to assess newly referred

patients. The individual experience of pain, fatigue, or restricted

mobility is complex, and patient-reported program outcomes are

perhaps subjective. Clinicians report patients completing the CIR

program who are highly positive and feel they benefited from the

program, but they often report mixed outcome measures across

follow-up questionnaire domains. For this reason, the initial
frontiersin.org
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phase of the study was to define our ten clinical endpoints across

the five relevant domains, as well as the three composite metrics.

This was the starting point for assessing outcomes in the patient

study dataset and develop target measures for supervised training

of the algorithms.

Machine learning methods have been rapidly established in

medical research with wide applications where clear clinical

endpoints are identified, and large patient datasets are available

to train algorithms. Applications of these methods have not

surprisingly focused on areas where machine learning has clear

strengths such as complex pattern recognition of well-labeled

data. These types of machine learning applications have been

used in chronic pain research, examining, for example, diagnostic

imaging and assessment of patients suffering pain likely to

progress to long-term chronic conditions (15, 33–35). Our

machine learning study is novel as our CIR study group has

already been diagnosed with CMP, and our patient cohort does

not have a clear single outcome measure from IMPT

participation. Our primary study question was whether machine

learning could contribute to clinician assessment and patient

discussions by establishing a prognostic stratified patient profile.

Our study aimed to leverage baseline patient questionnaires

that are collected prior to patient assessment through an online

portal. If algorithm-based predictors are of value, they could be

made available in preparation for IMPT screening assessment as

a prognostic patient profile. This would provide the basis for

IMPT team discussions between the patient, psychologist,

physiotherapist, and clinician (physiatrist) involved in the

assessment process and decision of whether or not to start

treatment. This could potentially assist clinicians and patients

with individualized planning of goals through further utilizing

detailed baseline data already available.
4.1. Complexity of measuring IMPT
outcomes

Our research was motivated by the positive outcomes reported

by many patients of the CIR program. As this chronic pain cohort

has exhausted all available interventions, often over several years, it

is significant to have any individual patient report clinically

meaningful improvements from the 10-week program. The high

proportion of patients completing the program reporting one or

more positive outcomes, over 50% and as high as 85% for some

outcome measures, is remarkable (3). However, IMPT outcomes

are highly variable across multiple patient-reported dimensions,

which clinicians assess to establish a baseline patient profile. In

this context, our machine learning approach aimed to mimic a

multidimensional approach to develop the collective set of

stratified prognostic indicators to assist clinicians to assess new

patient IMPT referrals.

Outcome heterogeneity is not a weakness in IMPT

measurement; it reflects the complexity of clinical practice when

assessing these patients with chronic pain. From our defined

framework of 13 outcome measures, many patients achieve a

majority of positive or negative indicators, while most report a
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mix. For this reason, our prognostic profile was not developed

as a prescriptive clinical decision tool focused on a single metric.

The framework of outcomes and thresholds for minimal

clinically important change was based on clinical practice and

published literature, as presented in Table 1 and Supplementary

Table 1. Ongoing research is investigating refinement of IMPT

outcome measures; for example, current practice defines a nine-

point change in PDI as clinically meaningful, but nonlinear

thresholds dependent on baseline score may provide improved

accuracy across patients. Research investigating minimal

clinically important change based on PDI baseline thresholds is

in progress.
4.2. Improving IMPT patient outcomes

Having defined our framework of 13 IMPT patient outcome

measures, the focus was to investigate whether machine learning

could assist clinicians in improving patient outcomes further.

Our study has emphasized the patient-focused nature of IMPT

outcomes and the fundamental importance of active patient

involvement in program planning. Patient engagement in the

program approach, commitment to potential challenges, and the

effort needed to change established beliefs and behaviors are

critical to collaboratively designing individualized goals and

building the skills and ability to learn to live with their chronic

pain. The patient-focused perspective is fundamental to IMPT

and similarly central to the design of the prognostic profile and

how it might benefit patient pathways and outcomes. Our

approach was not to develop a prescriptive algorithm-based

metric that would categorically indicate whether a patient was

suitable for IMPT or not. As we have presented, patient outcome

heterogeneity is characteristic of IMPT programs and clinician

assessment is complex and multifaceted. The implicit study

question was whether machine learning could replicate a

prognostic multidimensional patient profile across our 13

outcome measures.

While the prognostic profile does not aim to produce a

composite indicator to suggest IMPT inclusion or exclusion,

many patient results produced a consistent positive or negative

outcome majority. This provides the overarching perspective of

the profile and possible pathways of how patient outcomes might

be improved. If the majority of prognostic outcomes are positive,

the patient assessment direction is encouraging, and, in many

cases, it is expected to be consistent with a preliminary review.

In this scenario, the prognostic profile could help verify

preliminary clinician assessment and provide the stratified

outcome measures to help facilitate clinician and patient

discussion of specific program goals. Our example patient profile

illustrates the prognostic prediction for each of our 13 outcomes,

grouped across the five measurement domains, as presented in

Figure 2. This example shows that most predicted outcomes are

negative, suggesting that this patient may be unlikely to benefit

from the IMPT program. As part of our algorithm validation

process, we intentionally chose to examine this challenging

subgroup where most indicators were negative and where each
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algorithm was correctly validated against actual patient outcomes.

From this targeted subgroup of 81 negative profiles, a separate

clinician case file review confirmed that half of the patients did

not achieve a clinically significant improvement, with the

remaining half reporting mixed outcomes for further review. Our

patient profile example was included in the clinician case file

review and confirmed that this patient did not go on to achieve a

clinically meaningful improvement. The open question is

whether this result could have been different if the prognostic

profile was available at baseline assessment to feed into goal-

setting and discussion of realistic expectations of program success.

The prognostic measures also present estimated accuracy for

each outcome, for clinician consideration, given that some

algorithms were trained on high proportions of positive endpoints

and therefore reflected equally high true positive or true negative

rates. This is not an algorithm weakness but an expected

replication of commonly observed patient characteristics. The

accuracy metrics are provided for transparency and perhaps

mirror clinician considerations where very likely attributes are

discounted in the overall assessment profile. We have reported all

measures investigated in our study, irrespective of individual

algorithm accuracy. Further research could refine the profile

summary, perhaps by developing supplementary composite

indicators weighted by algorithm accuracy.
4.3. Helping develop treatment plans

Detailed baseline assessment of the prognostic patient profile is

anticipated to better support clinician and patient collaborative

discussion, planning, and goal-setting. In our patient example,

where most prognostic algorithms indicated a negative outcome,

this is not necessarily intended to discourage a patient from

entering the program. Excluding patients is not the objective;

improving patient outcomes for all referred patients is the

primary goal. This said, if a prognostic profile of consistently

negative outcomes is discussed with a patient, they may feel that

they do not wish to proceed with the IMPT path of treatment.

The program requires substantial commitment over 10 weeks, so

patients need to be comfortable with their expected investment

in time and related prospects of success. Further, in cases

indicating negative profiles, clinicians observe that some patients

struggle with IMPT and can become despondent when they fail

to make progress and may progressively feel discouraged.

Helping reduce IMPT intake for some patients who are unlikely

to benefit remains an important consideration but would be

decided, as always, through clinician and patient discussion.

Based on our study group, the proportion of patients with a

consistently negative leaning profile is relatively small, at around

9% of new patient assessments.

The assessment and patient discussion may be more nuanced

in the case of mixed predictive profiles of positive and negative

outcomes. For example, clinicians report that some patients

request treatment through the IMPT program, even when

baseline assessment suggests that the likelihood of positive results

is low. Some patients are aware of IMPT positive outcomes and
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have genuine intent to pursue similar positive progress for their

chronic pain. These patients could review the prognostic profile

with the clinician and discuss the reasons why the program

might not be effective for them. This potentially feeds back into

patient engagement, where realistic targets could be considered.

Perhaps negative prognostic profiles will motivate some patients

to reassess IMPT commitment and actively encourage the

process of setting (and then achieving) program goals. A further

consideration might be introducing an interim pilot IMPT phase

of, say 4 weeks, to allow patients to demonstrate their motivation

to take responsibility and achieve their goals. Interim results

could then be reviewed with the clinician at the end of the 4

weeks to reassess and agree about proceeding into the complete

standard 10-week program.

The prognostic profiles could also assist clinicians across

program locations, areas of clinical focus, and ongoing

development or refinement of multidimensional outcome

measures. The framework provides the foundation for the

reiterative development of new prognostic factors and outcome

measures, potentially used to retrain algorithms as additional

endpoints. The prognostic framework of measures may also assist

with the consistency of standardized baseline assessment. Also,

periodically, new or improved measures could flow through to

IMPT teams, especially if the program is being expanded to new

locations and new centers. Our current prognostic framework is

the starting point, and it is envisaged to continue to develop with

ongoing outcome measurement research. The addition of new or

refined clinical endpoints is separate from ongoing reinforced

machine learning that can be retrained periodically as further

patient data becomes available from new patients and new

treatment centers to further validate and refine algorithms.
4.4. IMPT prognostic factors

We took an open approach to selecting prognostic variables to

train each algorithm. In addition to including core data items based

on clinician advise, we also expanded the prognostic factor pool by

including all variables available in the study group dataset

considered to have potential predictive value. We took this wider

approach as the full set of 55 candidate variables was subject to

subsequent minimum redundancy maximum relevance feature

selection. This process reduced the number of features to 30

variables with the highest prognostic value for each algorithm, so

prognostic factors varied across each model. Our set of machine

learning prognostic variables included data items reported in

current evidence of regression-based IMPT prognostic factors

(36, 37). Summarizing across all 13 algorithms resulted in three

baseline prognostic variables relevant for all models and five

variables relevant for 92% of models. Other prognostic factors

were selected in more than 75% of models. Age and gender were

selected in around half of the trained models, while patient BMI

was not selected in any. These results are partly in line with a

recent meta-analysis of prognostic factors for IMPT, a Swedish

cohort study based on conventional regression methods

examining improved functioning following interdisciplinary
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rehabilitation (36, 37), and regression-based prognostic variables

for chronic low back pain conservative treatment indicating two

pretreatment significant predictive factors of employment status

and having mild to moderate disability (38, 39).

Remarkably, some variables were previously not identified,

such as CIR location, which means that despite a protocolized

treatment that can be individualized, outcome success is

dependent on the location where a patient is treated. This calls

for further analysis. Furthermore, the worst pain intensity and

cognitive fusion do seem to matter, which might be due to the

fact that a big part of the CIR treatment uses Acceptance and

Commitment Therapy, which helps the patient to defuse the

pain and accept it. Also, very interesting is the influence of age,

gender, and duration of pain, which previously have not been

identified. Further, pain catastrophizing, one of the most often

mentioned prognostic factors, was only relevant in four of the 13

models. The mix of prognostic variables suggests that machine

learning feature selection may help reduce or offset the bias of

imbalanced baseline characteristics. The algorithms focus on

prognostic significance for each outcome, so the high proportion

of female or overweight patients, for example, did not result in

corresponding high prognostic importance. This is also

interesting as it indicates that machine learning-based research

can help overcome some potential bias. For example, clinicians

have observed medical advisor reluctance to offer IMPT to

patients with chronic pain who have a BMI over 35. Our results

clearly show that excluding patients from IMPT based on

bodyweight is not supported by evidence, consistent with our

machine learning prognostic profiles, which are not influenced

by BMI.
4.5. Improving program outcomes and
efficiency

As the program provides 10 weeks of individualized intensive

support, it is a high-cost intervention, and the interdisciplinary

teams take time to develop and scale to increase capacity and

geographical reach. A supplementary study question was whether

our machine learning prognostic patient profile could potentially

assist clinicians in further optimizing current capacity through

supporting patient selection and individual goal-setting. Well-

established health economic evaluation methods help assess

efficiency by comparing intervention costs with program

effectiveness in improving patient health outcomes. Preliminary

research indicates the CIR program is likely cost-effective (2),

and related types of chronic pain interventions have also been

reported to be cost-effective (40).

Evaluating the cost-effectiveness of the IMPT program reflects

the complexity of the intervention, variation across multiple

outcome measures, and the related heterogeneity of patient

outcomes. Despite this, further improvement in a small

proportion of patients’ selection and goal-setting could

potentially contribute to the effectiveness and related cost-

effectiveness of the IMPT program. Health economic methods

are being developed to examine personalized interventions such
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as the individualized IMPT program (41–43). This presents a

further potential direction for assessing stratified heterogeneous

outcomes, perhaps providing more targeted subgroups for

ongoing machine learning endpoints and refined algorithms in

the prognostic patient profile. This work could potentially help

illuminate especially effective (and cost-effective) subgroups

otherwise masked when evaluating the program across total

study group average treatment effects.

Improved IMPT outcomes, including a faster return to work,

have been reported through multidisciplinary interventions

compared to brief interventions (44) and increased work days in

patients with nonacute nonspecific low back pain (45). There is

anecdotal evidence in the patient study group of successfully

returning to work following positive outcomes from the IMPT

program. Given the average patient age of 44 years, many have

the prospect of decades of productive working life ahead.

Although employment pathways are subject to longitudinal

follow-up, preliminary observation immediately following IMPT

completion indicates that around 200 patients from the study

group had fully returned to work (n = 2,364; ∼8%). Furthermore,

50.3% reported a clinically meaningful increase in self-rated work

capacity up to 1 year post-treatment. Current longitudinal

follow-up of CIR patients is assessing these self-rated work

capacity results and indicates the improved outcomes are mostly

sustained at 12 months postprogram (6). If this return-to-work

proportion is validated and potentially scaled to countrywide

coverage in the Netherlands, the IMPT program could potentially

increase around fourfold, suggesting a possible return to career

pathways for several hundred patients. Program longitudinal

follow-up also verifies the sustained positive improvements across

all outcome measures including health-related quality of life (6).

These types of program results represent potentially significant

benefits from a societal perspective. Ongoing health economic

evaluation could further investigate the upfront IMPT investment

in the context of these types of system-wide benefits, which are

often diffused, difficult to measure in financial terms, and may

be sustained over future years. An overarching societal health

economic perspective is important as IMPT funding in the

Netherlands is provided through healthcare insurance entities,

whereas substantial ongoing positive outcomes may result in the

wider healthcare system, government support agencies,

employment sectors, taxation collection, and other quality of life

and social benefits.
4.6. Clinical decision support for IMPT

Alongside developing our 13 outcome measures and prognostic

patient profile, we have considered throughout the project how this

type of machine learning decision support could be implemented

to assist clinicians and patients. Despite the accelerating pace of

development in machine learning methods in healthcare,

introduction into clinical practice remains challenging due to the

“blackbox” perception and the need to carefully validate results

prior to implementation (16, 46). With this in mind, we

considered potential implementation through close clinician
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collaboration across all phases of the project. This has included

clinician guidance and discussion at all stages of development

including approach and definition of outcome measures,

algorithm model features, multiple layers of result validation, and

frequent discussion on how our machine learning prognostic

patient profile might assist clinicians and patients in practice. It

seems intuitive but recent research emphasizes that clinician

expert involvement in design and development phases of

machine learning-based predictive support systems should be

explicitly reported to establish the integrity of results and help

overcome implementation challenges (47).

The blackbox impression of machine learning is often cited as

an obstacle to implementation with the argument it is not

acceptable to base clinical decisions on mechanisms where the

causal pathway is not clearly understood. Core machine learning

methods are well established, and the theory of classification

algorithms used in this study is well documented as for

alternative advanced statistical and regression model methods

(48). Medical practice routinely adopts clinical trial evidence

based on sophisticated statistics, and clinicians are not expected

to prove causal pathways of all methods. The same applies to

commonly undertaken medical interventions; for example, in

pain management, the exact molecular mechanisms behind

general anesthetic drugs are not well understood but widely used

as the effectiveness, risks, and dosage control are well established

in clinical practice (49). In a similar perspective, we developed an

additional layer of validation based on a comparison of our

prognostic algorithms with source patient outcome data to

produce a subgroup sample of results for clinician review.

Irrespective of proving how algorithms function, we wanted an

independent practical test of whether they contribute to

prognostic patient assessment. We selected the most challenging

subgroup of 81 patients with mostly negative prognostic

measures as they had already received different noneffective

treatments and were identified as complex (WPN3 and WPN4,

meaning that psychological and social factors are contributing to

moderate to high levels of their pain and disability). This group

is also challenging because our outcome measures, as defined,

achieved high proportions of positive outcomes for one or more

of the clinical endpoints. This imbalance in training data results

in corresponding high levels of true positive predictions making

negative outcomes more difficult to identify. As the profile

includes some measures where outcomes are more balanced or

predominantly negative, it appears that the collective profile is

still able to make a prognostic contribution. This independent

validation confirmed that half of the 81 patients had not

achieved a positive change and the remaining half reported

mixed results for further assessment. This is a significant result

as correctly predicting any patient in this complex subgroup at

baseline assessment would be considered positive, and

identification of half the group is exceptional. Correctly

validating this substantial proportion of our intentionally

targeted negative outcome sample was an intriguing finding. This

highlights the potential prognostic profile value if it had been

available for these patients during baseline assessment, as it was
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confirmed they did not go on to achieve positive outcomes from

the program.

Continuing on the goal of potential clinical implementation

and establishing confidence in the prognostic profile, we

considered a recently developed a clinician checklist to help

assess the suitability of machine learning applications in

healthcare (18). This research provides 10 questions clinicians

can ask without having to be experts in machine learning

methods including the purpose of the algorithms, data quality

and quantity, algorithm performance and transferability to new

settings, clinical intelligibility of outcomes, how they might fit

with patient workflow and improving outcomes, risks of patient

harm, and ethical, legal, and social concerns. The purpose of our

algorithms is to provide our prognostic patient profile at baseline

assessment. The patient dataset has been developed and

maintained by the CIR that manage the IMPT program giving

confidence in data quality and providing a large sample of

patients from 2019 to 2021 (n = 2,364). We have presented

algorithm performance measures with each algorithm for

clinician reference across the profile. Transferability of algorithms

to a new setting is not relevant as we have individually trained

all 13 algorithms for use in our prognostic IMPT profile. Results

are presented in the stratified profile across outcome dimensions

to assist intelligibility, with a binary positive or negative indicator

based on a predicted clinically significant outcome for each

measure, as shown in Figure 2. As discussed above, we have

considered how the prognostic profile could be used in practice

to improve patient outcomes. As the patient profile is not

presented as a prescriptive decision tool, patient care decisions

are always with the clinician, so the patient risk from the

algorithms is not a material concern. Also, IMPT is not a high-

risk intervention but a personalized support program where all

other clinical options have been exhausted. In line with low

patient risk from the profile algorithms, and patient decisions

remaining with the clinician and patient, there are no significant

ethical, legal, or social concerns with the use of the prognostic

profile (50).

Separately, we examined machine learning implementation

issues including transparency of algorithms, and biases in

supervised methods for machine learning in chronic pain

research (15, 51). There are recognized concerns that machine

learning methods may conceal how algorithms are influenced

through bias in training data sources (52). For our project, we

are not using large linked administrative data, and as our patient

study dataset is collected and managed by CIR, we are confident

the source training data are accurate. We have considered the

respective advantages of machine learning in our context

including strengths in diagnosis, classification, and related

predictions, as well as challenges with data preprocessing,

algorithm model training and refinement with respect to the

actual clinical problem (53), and how machine learning may

influence clinician treatment selections (54). To our knowledge,

this study is the first research applying machine learning to

prognostically assess IMPT patient outcomes at baseline and

through our multidimensional framework of 13 measures.
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Overall, although no single outcome measure provided a

reliable indicator, the collective 13 algorithms established a

stratified, prognostic patient profile across the five clinically

relevant domains. Even though no single algorithm was assessed

as having high levels of accuracy, patient-level validation showed

that the collective profile achieved consistent prognostic

assessment of original source outcomes for three-quarters

(75.3%) of the study group.

We see multiple potential benefits from predictive indicators as

a clinician decision support tool during baseline patient

assessment. Our study has presented examples of how the

prognostic patient profile could support assessment where the

outcome is clearly positive or negative across outcome

dimensions and mixed positive and negative outcome profiles. In

summary, we have considered throughout the project how this

prognostic profile might be implemented as a clinical decision

support tool to assist with IMPT patient assessment and goal-

setting and potentially contribute to further improvement in

patient outcomes.
4.7. Limitations

The most prominent characteristic of the study is the inherent

heterogeneity and complexity in IMPT patient outcomes. The

intricacy of CMP results in substantial variation across outcomes,

and there is no established consensus in some measures. We

developed 10 clinical endpoints in the patient dataset based on

clinical practice and clinician expert advice. Some patients report

improvements in a specific measure and not others, and the

psychometric associations are not clearly understood.

The prognostic machine learning models reflect the complex

clinician assessment process and consideration of patient-specific

program management pathways. This is not a design limitation,

and we have intentionally targeted this complex study group to

investigate potential clinical decision support through our

multidimensional framework of algorithms.

The defined clinical endpoints resulted in a high proportion of

positive results for many outcome measures. This produced

imbalanced training patient datasets, impacting the capacity of

the algorithms to distinguish between positive and negative

outcomes. Furthermore, the current project is based on patient-

reported outcome measures, which are often complex and

subjective. For these reasons, the endpoint framework was

developed to provide sufficient multiple dimensions and reduce

dependence on some individual less accurate models.

Machine learning classification models are pattern recognition

models based on response variables without the inference of

causality. Separately, we used all potential prognostic variables

available in the patient dataset, and not only based on current

evidence of regression-based prognostic factors. We believe that

this approach is more likely a strength than a limitation, but we

recognize that including a high number of prognostic variables in

machine learning can lead to overfitting of models and

potentially reduced predictive performance of algorithms when

used with new patient data. We consider that our approach of
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reducing prognostic factors to the 30 best-performing variables

per model through feature selection and fivefold cross validation

in algorithm training has minimized overfitting but acknowledge

as a potential limitation in machine learning.

The patient study group data include only patients who have

been referred to and participated in the CIR program. A

comparison group or data for patients referred to the program

that did not proceed is not currently available. Finally, relating to

the health economic perspective of IMPT, reliable employment

data are not presently available for this study and require

ongoing longitudinal follow-up to verify the return to work rates

and whether employment outcomes are sustained in the long term.
4.8. Ongoing and future research directions

This is a preliminary machine learning study to develop and

assess a pilot framework of predictive indicators for our

prognostic patient profile. The project has established promising

results and provides the foundation for ongoing future research

in multiple directions. Ongoing longitudinal follow-up and

collection of new patient data will further validate the accuracy

of the pilot algorithm models. The ongoing data may be used for

the refinement of clinical endpoint measures as well as source

data for reinforced algorithm training, which may further

improve predictive models over time as more data become

available.

Potential refinement or development of additional outcome

measures, for example, nonlinear PDI thresholds using baseline

scores, will potentially provide the basis for retraining algorithms

or providing new supplementary profile prognostic models.

Potential additional machine learning models could examine

IMPT time series data using more advanced neural network

models. The prognostic algorithms could be developed as a

standalone module or potentially integrated with baseline data

available in the CIR IMPT online patient portal to provide a

pilot decision support tool for clinicians when assessing new

patients.

There are also multiple possible extensions for further health

economic cost-effectiveness modeling, integrating potential

patient outcome improvements, subgroup analysis of patient

heterogeneity, and extended societal perspectives. This further

health economic research could assess significant anecdotal

benefits along medium- and longer-term pathways where patients

resume higher function, achieve a return to employment or faster

return to employment than otherwise, and have improved quality

of life.
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