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Adeno-associated virus-mediated
gene transfer of arginine
decarboxylase to the central
nervous system prevents opioid
analgesic tolerance
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Kelsey R. Pflepsen3, Lalitha R. Belur4, R. Scott McIvor4,
Lucy Vulchanova2, George L. Wilcox2,5,6 and
Carolyn A. Fairbanks2,3,5*
1Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN,
United States, 2Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States,
3Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States,
4Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN,
United States, 5Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States,
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Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic
tolerance, dependence, and self-administration when given by both central
and systemic routes of administration. Endogenous agmatine has been
previously detected in the central nervous system. The presence of a
biochemical pathway for agmatine synthesis offers the opportunity for site-
specific overexpression of the presumptive synthetic enzyme for local
therapeutic effects. In the present study, we evaluated the development of
opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle
control or intrathecally delivered adeno-associated viral vectors (AAV) carrying
the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-
hADC-treated mice were each further divided into two groups which received
repeated delivery over three days of either saline or systemically-delivered
morphine intended to induce opioid analgesic tolerance. Morphine analgesic
dose-response curves were constructed in all subjects on day four using the
warm water tail flick assay as the dependent measure. We observed that pre-
treatment with AAV-hADC prevented the development of analgesic tolerance
to morphine. Peripheral and central nervous system tissues were collected and
analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC
pre-treatment prevented the development of analgesic tolerance to a high
dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-
agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2
analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here
the effects of AAV-mediated gene transfer of human ADC (hADC) in models
of opioid-induced analgesic tolerance. This study suggests that gene therapy
may contribute to reducing opioid analgesic tolerance.
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1 Introduction

Opioid pharmacotherapy remains an important option for

individuals with chronic pain arising from critical illnesses that

are not alleviated by non-opioid or non-pharmacological pain

management approaches (1, 2), particularly for malignant

chronic pain. However, a panel of complex side effects

accompanies long-term opioid pharmacotherapy, including, but

not limited to, the development of opioid analgesic tolerance (1,

2). The development of analgesic tolerance for patients on

chronic opioid therapy can result in significant dose escalation

(3) resulting in increased adverse side effects (4), a need for

more invasive delivery approaches, or the inability to adequately

control pain [ceiling effect (5)]. Multiple strategies are used with

varying success for these patients, such as opioid rotation, drug

holiday, or inclusion of adjuvant analgesics such as ketamine (5).

The application of ketamine as an analgesic adjuvant strategy

(1, 2) to reduce the induction of opioid analgesic tolerance is

based on the well-established observation that antagonism of

NMDA receptors reduces the development of opioid analgesic

tolerance (6). More than thirty years of pharmacological studies

have shown that antagonism of the NMDA receptor (6–10) or

inhibition of the nitric oxide synthase (NOS) enzyme (10–12)

inhibits the induction of opioid-induced analgesic tolerance.

Agmatine was discovered in the central nervous system (CNS)

in 1994 (13), closely followed by the cloning of its synthetic (14)

and degradative enzyme systems (15) that are also expressed in

CNS. Subsequently, neuropharmacological investigations have

converged on an inhibitory role for agmatine in multiple models

of behavioral neural plasticity (16). We and others have shown

that agmatine inhibits the induction of opioid analgesic tolerance

when given either systemically (17) or centrally (18–20). Evidence

suggests that agmatine antagonizes the NMDA receptor (21, 22)

and/or inhibits the NOS enzyme (21, 23–25) to exert its inhibition

of opioid analgesic tolerence.

Since agmatine is a naturally occurring product with a

presumptive synthetic enzyme that is expressed in the central

nervous system (26), an opportunity arises to design an

agmatine-based gene therapy with site-directed expression within

the CNS. Toward this end, we developed an adeno-associated

viral vector (AAV) that carries the presumptive synthetic gene

for agmatine (27). We have demonstrated that AAV viral vectors

delivered by intrathecal injection distribute through the central

nervous system (28) and provide robust gene transfer to sensory

neurons at all levels of the neuraxis (29). We have also shown

that intrathecal delivery of an AAV vector containing the gene

for human arginine decarboxylase (AAV-hADC) leads to

persistent alleviation of neuropathic pain in rodents (27).

Since opioid analgesic tolerance and neuropathic pain and are

both dependent on NMDA receptor activation (30) and agmatine

reduces both neuropathic pain (31, 32) and opioid analgesic

tolerance (18–20), we hypothesized that intrathecal delivery of

AAV-hADC would reduce the induction of analgesic tolerance to

opioids. To test this hypothesis, the development of chronic

systemic morphine analgesic tolerance or acute intrathecal
Frontiers in Pain Research 02
endomorphin-2 analgesic tolerance was compared between AAV-

hADC-treated mice and vehicle-injected controls.
2 Materials and methods

2.1 Research subjects

All subjects were 20–25 g adult male ICR-CD1 mice (Envigo,

Madison, WI). All experiments were approved by the University

of Minnesota Institutional Animal Care and Use Committee.
2.2 Chemicals

Morphine sulfate was a gift from the National Institute on

Drug Abuse. Endomorphin-2 (ENDO-2, YPFF) was synthesized

by the University of Minnesota’s microchemical facility,

Minneapolis, MN. Agmatine sulfate and NMDA were obtained

from Sigma Chemical (St. Louis, MO) and dissolved in 0.9% NaCl.
2.3 AAV vectors

The development of the human ADC-containing vector was

previously described (27). The vector titer was 8.24 × 1012vector

genomes/ml (vg/ml) for AAV5-hADC and 6.37 × 1012 vector

genomes/ml (vg/ml) for AAV9-hADC which was diluted 1:3 in

saline for afinal injected titer of 2.1 × 1012 vector genomes/ml (vg/ml).
2.4 Gene expression by RT-PCR

2.4.1 PCR method used in AAV5-hADC
experiments

Total RNA extraction and qualitative PCR has been previously

described by Peterson and colleagues (27) and was based upon the

method reported by Seybold and colleagues (33). The sequences of

the primers used are as follows: AAV5 experiments: hADC forward

primer: GCCTTGGACCTGTACTTCCC; hADC reverse primer:

CTGGTCCGTGGATGGTTTCT.

2.4.2 PCR method used in AAV9-hADC
experiments

Total RNA was extracted from tissue using RNAzol RT.

Reverse-transcription (RT). Four hundred micrograms RNA was

reverse-transcribed in RT master mixture (final concentrations:

2.5 mM MgCl2, 1× PCR Buffer II, 10 mM dithiothreitol, 1.25 μM

random hexamers, 50 U RNase inhibitor, 250 µM dNTP and

75 U MMLV reverse transcriptase; Applied Biosystems/Life

Technologies, Grand Island, NY) in a volume of 20 µl. The

reactions were incubated at 25 °C for 10 min followed by 42 °C

for 20 min followed by 65 °C for 3 min, cooled on ice and stored

at −20 °C until used for PCR. Two microliters of RT product is

added to PCR master mixture (final concentrations: 1×
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Lightcycler 480 SyBr green mastermix and 300 nM of each primer

in a final volume of 20 µl and pipetted into a well of a 96-well plate

(hADC forward primer: GTACCCGAGACCTGCTGAAG; hADC

reverse primer: GGACCAACTCCATCTCTGCC). The plate is

then inserted into a Lightcycler 480 II (Roche) and a PCR

program was run. The program consisted of one cycle of 95°C

for 8 min (polymerase activation) followed by 55 cycles of: 95 °C

for 15 s, 60 °C for 15 s and 72 °C for 15 s. Following

amplification, the built-in thermal melting (Tm) and second

derivative maximum (to determine quantification cycle, Cq)

programs were also run. The PCR products and data were

analyzed using 1.5% agarose gel electrophoresis, Lightcycler 480

software v.1.5, Photoshop CS v.5.1 and GraphPad Prism

v6f software.
2.5 Thermal nociception assay

Thermal nociception was assessed with the warm water

(52.5°C) tail immersion assay (18, 20, 34). The time that lapses

between the mouse tail entering the water to the mouse flicking

its tail is the dependent measure. Initial tail-flick latencies were

taken on each individual mice prior to treatment (for a sample

of n = 42, mean = 3.32 s, and S.D. = 0.65 s). Each subject’s

baseline value was used as an internal control. The maximum

possible effect (%MPE) was calculated accordingly: %MPE =

(postdrug latency− predrug latency)/(cutoff− predrug latency) ×

100%. A maximum score of 100% was given mice that do not

flick their tails prior to a cutoff of 12 s. Twelve seconds is the

maximum time for the tail to be allowed to remain in the water

at that temperature in order to prevent thermal injury.
2.6 Rotarod assay

After two training sessions, mice were permitted to walk for a

maximum of 300 s on an accelerating (4–40 rpm) rotarod (Ugo

Basile, Varese, Italy). The dependent measure was the time spent

remaining on the rotarod. We statistically compared the mean

time that each subject remained on the rotarod across the four

treatment groups using a one-way ANOVA with Tukey’s post hoc

test for comparisons between multiple groups.
2.7 Dose-response analysis

At least 3–4 doses were included in the development of each

dose-response curve for each experimental group. The ED50

values and 95% confidence intervals (CIs) of drugs were

calculated by parametric linear regression analysis of the log

dose–response curves. These methods have been previously

described (35). These calculations were performed using

FlashCalc, a pharmacological statistics program written by Dr.

Michael Ossipov, University of Arizona, Tucson, AZ.
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2.8 Intrathecal injections

The AAV-hADC viral vectors or vehicle (0.9% normal saline)

were given intrathecally (i.t.) by lumbar puncture in awake mice as

previously described (36, 37). In order to conserve the AAV5-

hADC vector we modified the delivery method (38). The needle

(30-gauge, 0.5-inch) was connected to a length of PE10 tubing,

which was itself connected to a second needle (a 30-gauge,

0.5-inch) that was fitted to a 50-µl Luer-hub Hamilton syringe.

For both AAV-hADC experiments, 10 µl of the injectate which

was comprised of 8.24 × 1012 viral vector genomes/ml (AAV5) or

2.1 × 1012 vector genomes/ml viral vector genomes (AAV9) were

injected intrathecally. The injection was performed by gently

grasping the hip bones of the rodent and inserting the needle

(bevel side up) at about a 45° angle centered on the iliac crest.

The penetration of the dura is accompanied by a reflexive flick of

the tail. After intathecal delivery, the mice were returned to the

animal housing area where they stayed until the the opioid

analgesic tolerance experiment was initiated. Extraction of spinal

cord, fourth ventricle choroid plexus, midbrain (PAG), and DRG

for RT-PCR took place on the last day of the experiment after all

analgesic testing had been completed.
2.9 Chronic morphine analgesic tolerance
induction

Baseline tail flick latencies were taken on all mice prior to drug

exposure. Mice acquired analgesic tolerance to morphine following

repeated administration of subcutaneously delivered morphine

over the course of three days. A single injection of morphine was

delivered on day 1 (3 mg/kg) followed by three injections daily at

9 am, 5 pm, and 11 pm on Days 2 (3 mg/kg) and 3 (5 mg/kg). A

total of seven subcutaneous injections were delivered over the

course of the induction schedule. A cohort of control mice

received an equivalent number of subcutaneous saline injections at

the same time as the morphine treatment groups. All injections

were given in a volume of 100 µl/10 grams. Cumulative dose-

response curves of morphine were then constructed in both the

morphine pre-treatment and saline pre-treatment groups in the

following way: a single dose of morphine was injected, and the tail

flick latency was assessed at 30 min after injection. A second dose

of morphine was delivered and the process repeated. Doses were

delivered in this manner until a complete dose-response curve was

constructed in each treatment group.
2.10 Acute endomorphin-2 analgesic
tolerance induction

Baseline tail flick latencies were assessed for all mice prior

to drug exposure. Mice developed analgesic tolerance to

endomorphin-2 (ENDO-2) following a single intrathecal

injection of a large dose (10 nmol, 5 µl) of ENDO-2. A cohort of

control mice were injected with an equivalent volume of
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intrathecal saline (5 µl) at the same time as the ENDO-2-treatment

groups. Thirty minutes later, tail flick latencies were measured to

verify that the responses were comparable to their baseline

latencies. Cumulative dose-response curves of ENDO-2 were then

constructed in both the ENDO-2 pre-treatment and Saline pre-

treatment groups in the following manner. A single dose of

ENDO-2 was injected, and the tail flick latency was taken at

2.5 min later (the peak analgesic time point). A second dose of

ENDO-2 was delivered and the process repeated. Doses were

delivered in this manner until a complete dose-response curve

was constructed in each treatment group.
2.11 Intrathecal NMDA scratching and biting
nocifensive behavioral assay

Intrathecal delivery of NMDA (0.3 nmol) results in biting and

scratching of their hindlimbs that lasts for 1 min (39). These

behaviors are counted and represent the dependent measure for

this assay. Other agents intended to modify these behaviors may

be co-administered with the NMDA or given as an intrathecal

pre-treatment. In the present study, agmatine was given as a co-

administration with NMDA. The anti-agmatine IgG was given as

a five minute pre-treatment to the NMDA+ agmatine combination.
2.12 Agmatine immunoneutralization

In these experiments, either normal guinea pig IgG (150 ng) or

anti-agmatine IgG (150 ng) was injected intrathecally five minutes
FIGURE 1

Study timeline: morphine tolerance in animals pre-treated with AAV5-hADC
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prior to the intrathecal injection of ENDO-2 (10 nmol), which was

given to induce acute ENDO-2 tolerance. These IgGs were raised

in-house and previously characterized and reported (20, 27, 31).

Cumulative dose-response curves were performed 30 min after

the ENDO-2 tolerance-inducing injection, as previously described

in section 2.10.
3 Results

3.1 AAV5-hADC treatment prevents the
acquisition of morphine analgesic tolerance

We proposed that expression of hADC in central nervous

system reduces the acquisition of opioid analgesic tolerance. To

test this hypothesis we compared the development of opioid

analgesic tolerance in mice that had been injected before with

either saline or AAV-hADC. The experimental plan is

summarized in Figure 1.

Briefly, eight weeks after intrathecal delivery of saline or AAV5-

hADC, the two groups were each divided into four experimental

groups. Specifically, the saline-treated group and the AAV5-

hADC-treated groups were each separated into two additional

cohorts that received repeated doses of either morphine or saline

over a 3 day period (Experimental Days 56–58, Figure 1). The

following day (Experimental Day 59) all four subject groups were

subcutaneously injected sequentially with increasing doses of

probe morphine (1, 3, 10, 20 or 30 mg/kg.) mice. Probe dose-

response curves for morphine were then constructed and the
.

frontiersin.org

https://doi.org/10.3389/fpain.2023.1269017
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE 2

Effects of AAV5-hADC pre-treatment on acquisition of analgesic tolerance to morphine. Analgesic dose-response curves to acute subcutaneous (s.c.)
probe morphine on Day 4 following repeated subcutaneous injection of either saline (blue triangles) or morphine (red inverted triangles). (A) Controls:
Repeated s.c. injections of morphine (inverted red triangles) decreased acute probe morphine potency and efficacy compared with subjects
repeatedly injected with saline (blue triangles), indicating induction of chronic morpine analgesic tolerance. (B) AAV5-hADC-treated subjects:
Repeated s.c injections of morphine (inverted red triangles) demonstrated equivalent potency and efficacy compared with subjects repeatedly
injected with saline (blue triangles), indicating that induction of chronic morpine analgesic tolerance did not occur in this experimental group.
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ED50 values and confidence intervals compared between the saline-

injected and morphine-injected groups for each cohort (AAV5-

hADC and vehicle pretreatment groups).

As expected, repeated injections of s.c. morphine produced an

approximate 3-fold rightward shift in the probe morphine dose-

response curve compared to the probe morphine dose-response

curve in the group that received repeated s.c. injections of saline

(control group) in the cohort of mice that had previously

received an intrathecal injection of saline (control to the AAV-

hADC) (Figure 2A, Table 1). The rightward shift in the ED50

values confirms the induction of systemic morphine tolerance in

control conditions. In contrast, when mice were pre-treated with

intrathecal AAV5-hADC, repeated injections with s.c. morphine

did not produce a shift in the probe morphine dose-response

curve compared to those repeatedly injected with s.c. saline

(Figure 2B). The ED50 values for morphine were equivalent

between the two repeated injection groups (Table 1). The

observation of no shift in the morphine dose-response curves

indicates that morphine tolerance did not develop in subjects

treated with AAV5-hADC.
TABLE 1 ED50 values for the dose-response curves in Figure 2.

Figure 2 8 week
intrathecal

Pre-treatments

Probe morphine ED50

Values
(95% C.I.) (mg/kg s.c.)

Potency
change

Panel Treatment
groups

Saline-
treated

Morphine-
treated

ED50 Mor-
treated/
ED50 Sal-
treated

A Saline 8.9 (7.3–11) 24 (21–27) 2.7

B AAV5-hADC) 10 (7.9–13) 12 (10–14) 1.2
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3.2 AAV5-hADC treatment does not impact
rotarod performance

One day following completion of the morphine tolerance

experiment, mice were assessed on the rotarod for any motor

deficits. None was noted in any treatment group (Figure 3).
3.3 AAV5-hADC treatment results in hADC
expression in the sensory system

Rodents express a form of ADC that is distinct from that of the

human sequence. Since a human form of ADC was introduced, we

are able to distinguish hADC from native mouse ADC (27).

Therefore following conclusion of the rotarod experiments,

subjects were sacrified and various tissues extracted and

processed for presence of hADC mRNA by real-time PCR.

hADC mRNA was detected in lumbar and cervical spinal cord

and dorsal root ganglion tissue, choroid plexus (4th ventricle)

and periaqueductal gray. The tissue distribution and the

percentages of AAV5-hADC expressed in these tissues are

summarized in Table 2.
3.4 AAV9-hADC treatment prevents the
acquisition of morphine analgesic tolerance

To determine whether the prevention of opioid tolerance in

AAV-hADC-treated mice was generalizable to a second AAV

serotype, we performed a similar experiment using an AAV9-

hADC vector. In this case, we tested the subjects for opioid

analgesic tolerance at approximately six weeks after AAV9-hADC
frontiersin.org
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FIGURE 3

Rotarod assay of motor dysfunction/sedation. Comparison of rotarod performance in mice on Experimental Day 60 following treatment with (1)
intrathecal saline and subcutaneous saline (blue bars, n= 9), (2) intrathecal saline and subcutaneous morphine (red bars, n= 9), (3) intrathecal AAV-
hADC, and subcutaneous saline (blue striped bars, n= 12), and (4) intrathecal AAV-hADC and subcutaneous morphine (red striped bars, n= 12).
There were no differences between groups as determined by a one-way ANOVA (F(3, 38) = 0.3967, p= 0.76) followed by Tukey’s post hoc test for
multiple comparisons between groups.

TABLE 2 AAV5-hADC: percentage of subjects expressing hADC mRNA in diverse tissues.

Tissue region Periaqueductal gray
(PAG)

Choroid plexus
(4th Ventricle)

Cervical
DRG

Cervical spinal
cord

Lumbar
DRG

Lumbar spinal
cord

Post-AAV5-hADC injection
(n = 16)

50% (8 of 16) 87% (13 of 15) 75% (12 of 16) 81% (13 of 16) 81% (13 of 16) 88% (14 of 16)

FIGURE 4

Study timeline: morphine tolerance in animals treated with AAV9-hADC.

Churchill et al. 10.3389/fpain.2023.1269017
treatment and then repeated the experiemnt at approximately 12

weeks post treatment. The general experimental design is as

featured in Figure 4.

Briefly, six weeks following intrathecal delivery of either saline

or AAV9-hADC, the two groups were each divided further into

four experimental groups as described in Figure 4. The saline-
Frontiers in Pain Research 06
treated group and the AAV9-hADC-treated groups were each

separated into two additional groups that received repeated doses

of either morphine or saline over a 3 day period (Experimental

Days 41–43). The following day (Experimental Day 44) all four

subject groups were subcutaneously injected sequentially with

increasing doses of probe morphine (1, 3, 10, 20 or 30 mg/kg.)
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https://doi.org/10.3389/fpain.2023.1269017
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Churchill et al. 10.3389/fpain.2023.1269017
mice. Probe morphine dose-response curves were then constructed

and compared between the saline and morphine-injected groups

for each cohort (AAV9-hADC and saline pretreatment groups).

In the intrathecal saline pre-treatment group, repeated

injections of s.c. morphine produced a 1.7-fold rightward shift in
FIGURE 5

Effects of AAV9-hADC pre-treatment on development of morphine toleran
morphine on Day 4 following repeated subcutaneous injection of either
Post-Vehicle (Saline) or AAV9-hADC I.T. injection. (A) Controls: Repeated s.
morphine potency and efficacy compared with subjects repeatedly injecte
analgesic tolerance. (B) AAV9-hADC-treated subjects: repeated s.c injection
potency compared with subjects repeatedly injected with saline (blue tri
(C, D) Twelve Weeks Post-Vehicle (Saline) or AAV9-hADC I.T. injection. C
decreased acute probe morphine potency and efficacy compared with sub
of chronic morphine analgesic tolerance. (D) AAV9-hADC-treated sub
demonstrated equivalent potency and efficacy compared with subjects re
chronic morphine analgesic tolerance did not occur in this experimental gr

TABLE 3 ED50 values for the dose-response curves in Figure 5.

Figure 5

Treatment groups

Probe morphin
(95% C.I.) (m

Panel Saline-treated

6 week intrathecal pre-treatment
A Saline 9.8 (8.8–11)

B AAV9-hADC 9.2 (7.6–11)

12 week intrathecal Pre-treatments
C Saline 9.9 (8.5–12)

D AAV9-hADC 8.5 (7.4–9.6)
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the probe morphine dose-response curve (Figure 5A) relative to

the probe morphine dose-response curve in the group that

received repeated s.c. saline (control group). Repeated morphine

injections increased the acute morphine ED50 value (Table 3).

Similarly, when mice were pre-treated with intrathecal
ce. Analgesic dose-response curves to acute subcutaneous (s.c.) probe
saline (blue triangles) or morphine (inverted red triangles). Six Weeks
c. injections of morphine (inverted red triangles) decreased acute probe
d with saline (blue triangles), indicating induction of chronic morphine
s of morphine (inverted red triangles) decreased acute probe morphine
angles), indicating induction of chronic morphine analgesic tolerance.
ontrols: Repeated s.c. injections of morphine (inverted red triangles)

jects repeatedly injected with saline (blue triangles), indicating induction
jects: repeated s.c injections of morphine (inverted red triangles)
peated injected with saline (blue triangles), indicating that induction of
oup.

e ED50 Values
g/kg s.c.)

Potency change

Morphine-treated ED50 mor-treated/ED50 sal-treated

17 (14–21) 1.7

14 (12–18) 1.5

21 (18–24) 2.1

11 (9.8–13) 1.3
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AAV9-hADC, repeated injections with morphine produced a 1.5-

fold shift in the acute probe morphine dose-response curve when

compared to those repeatedly injected with s.c. saline

(Figure 5B). In this experiment, repeated morphine injections

increased the acute morphine ED50 value in the AAV9-hADC-

treated group to nearly the same magnitude as the control group

(Table 3). We speculate that the six week pre-treatment was

insufficient for AAV9-hADC delivered at a titer of 2.1 ×

1012 vector genomes/ml to manifest the effect. Therefore, we re-

tested the same subjects at 12 weeks post-injection in the same

morphine analgesic tolerance induction schedule (Figures 5C,D).

In the control mice, repeated injections of s.c. morphine

produced a 2.1-fold rightward shift in the probe morphine dose-

response curve relative to the probe morphine dose-response

curve in the group that received repeated s.c. saline (Figure 5C).

Repeated morphine injections doubled the acute morphine ED50

value (Table 3). This result demonstrates that morphine tolerance

developed in the control group, as expected. In contrast, repeated

injections with morphine produced a 1.3-fold shift in the probe

morphine dose-response curve compared to those repeatedly

injected with s.c. saline in the mice pre-treated with AAV9-

hADC (Figure 5D, Table 3). The observation of no shift in the

morphine dose-response curve indicates that morphine tolerance

did not develop in subjects treated with AAV9-hADC, similar to

what was observed in the AAV5-hADC treated subjects

represented in Figure 2.

As in Figure 2, the subjects were sacrificed and various tissues

extracted and processed for presence of hADC mRNA by real-

time PCR. hADC mRNA was detected in cervical and lumbar

dorsal root ganglion tissue and choroid plexus (4th ventricle).

The tissue distribution and the percentages of AAV9-hADC

expressed in these tissues are summarized in Table 4.
3.5 Agmatine immunoneutralization
prevents AAV5-hADC-mediated inhibition
of opioid analgesic tolerance

We used an immunoneutralization strategy to determine

whether the prevention of opioid tolerance in AAV5-hADC-

treated mice was due to an effect of the intended product,

agmatine. The impact of intrathecal delivery of an

immunoneutralizing antibody (anti-Ag IgG) was assessed in a

model of opioid-induced analgesic tolerance as previously

described (20). For this experiment, the opioid neuropeptide,

endomorphin-2 (ENDO-2) (YPFF) (40), was used as the

analgesic tolerance-inducing agent. It was previously

demonstrated (20, 41) that mice given higher intrathecal doses of
TABLE 4 AAV9-hADC: percentage of subjects expressing hADC mRNA in dive

Tissue region Periaqueductal gray (PAG) Choro
Post-AAV9-hADC injection (n = 20) 0% (0 of 20)

a2 samples were inadvertently loaded into the same tube and were not distinguishable.

positive.
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ENDO-2 (10–30 nmol, i.t.) develop acutely induced analgesic

tolerance. It was also shown previously that intrathecal

pre-treatment of an antibody raised to selectively target agmatine

(20, 31) (anti-Ag IgG) sensitizes mice to the development of

ENDO-2 analgesic tolerance induced by low doses (20). We used

the ENDO-2 model of acute opioid tolerance to test for the

effect of agmatine immunoneutralization in the hADC-treated

mice. The overall experimental design is summarized in Figure 6.

Approximately twelve weeks following intrathecal delivery of

either saline or AAV5-hADC, the two groups were each divided

into four experimental groups. The saline-treated group and the

AAV5-hADC-treated groups were each divided into two additional

groups that received a single intrathecal injection of either ENDO-

2 (10 nmol) or saline. ENDO-2 has a very short duration of action

(41). Thirty minutes after the initial high dose injection, mice were

tested cumulatively with increasing doses of ENDO-2. The tail

flick test was performed 2.5 min after the test injection. All four

subject groups were intrathecally injected sequentially with

increasing doses of probe ENDO-2 (1, 3, 10, or 20 nmol). Probe

ENDO-2 dose-response curves were then constructed and the

ED50 values and confidence intervals compared between the

saline-injected and ENDO-2-injected groups for each cohort

(AAV5-hADC and vehicle pretreatment groups).

In control mice that had received a single i.t. injection of saline

(as controls to AAV5-hADC), probe doses of ENDO-2 produced

dose-dependent analgesia in the tail flick test in mice that

received a single 30 min i.t. pre-treatment with saline. However,

probe ENDO-2 doses failed to produce analgesia in control mice

that had previously received a single high dose injections of i.t.

ENDO-2 (Figure 7A). These data confirm the induction of acute

ENDO-2 tolerance in control conditions. In contrast, when mice

were pre-treated with intrathecal AAV5-hADC, a single high

dose injection with i.t. ENDO-2 did not produce a reduction in

either efficacy or potency in the probe ENDO-2 dose-response

curve compared to those that received a single i.t. dose of saline

(Figure 7B). The ED50 values for ENDO-2 were equivalent

between the two injection groups (Table 5). The observation of

no shift in the ENDO-2 dose-response curves or no reduction in

efficacy indicates that ENDO-2 tolerance did not develop in

subjects treated with AAV5-hADC.

We used an immunoneutralization strategy to determine

whether the prevention of ENDO-2 acute tolerance by the

AAV5-hADC pre-treatment was due to an effect of agmatine. We

tested the impact of intrathecal delivery of an anti-agmatine IgG

on the prevention of opioid tolerance observed in AAV-hADC-

treated mice. We have previously shown that intrathecal delivery

of anti-agmatine IgG dose-dependently reverses agmatine-

mediated inhibition of scratching and biting nociceptive
rse tissues.

id plexus (4thVentricle) Cervical DRG Lumbar DRG
20% (4 of 20) 25% (5 of 20) 70–75% (14 or 15 of 20)a

The outcome was positive. Therefore, it was either 14 or 15 of 20 samples that were
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FIGURE 6

Study timeline: ENDO-2 tolerance in animals treated with AAV5-hADC.
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behaviors induced by intrathecal delivery of NMDA (20). To

perform the immunoneutralization experiment, we compared the

analgesic efficacy of probe ENDO-2 in AAV5-hADC-injected

mice that had all received a high dose of ENDO-2 but that had

also received an intrathecal pre-treatment of either anti-agmatine

IgG or control normal IgGs.

One group of AAV5-hADC-treated mice received an intrathecal

injection of normal guinea pig IgG (150 ng) prior to the high dose of

ENDO-2 that is used to induce acute tolerance. Similar to the result

of Figure 7B, the probe analgesic potency of ENDO-2 in these mice

was not reduced. These data suggest that the AAV5-hADC

pretreatment protected against the acquisition of ENDO-2

analgesic tolerance. In contrast, the probe analgesic potency of

ENDO-2 in AAV-hADC-treated mice that received a pre-

treatment of anti-agmatine IgG was greatly reduced (Figure 7C).

As a point of scientific rigor, we tested the anti-Ag IgG used in

Figure 7C for reversal of agmatine-mediated inhibition of NMDA-

evoked biting and scratching behaviors. NMDA (0.3 nmol) elicited

biting and scratching nociceptive behaviors which were attenuated

with co-administration with agmatine (10 nmol). In mice pre-

treated with anti-agmatine IgG (150 ng), the inhibitory effect of

agmatine was greatly diminished (Figure 7D). This outcome

verified the integrity of the anti-agmatine IgG aliquot that was

used for the immunoneutralization experiment. We interpret these

findings to mean that the anti-agmatine IgG immunoneutralized

the protective effect of the AAV5-hADC pretreatment in the

development of ENDO-2 analgesic tolerance, presumably through

rendering elevating agmatine unavailable to exert its effects.
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We have recently demonstrated that intrathecal delivery of an

AAV vector containing the gene for human arginine decarboxylase

(hADC) persistently reduces neuropathic pain in mice (27). The

present study reveals that intrathecal delivery of the same AAV

vector containing the hADC gene also prevents the acquisition of

analgesic tolerance to opioids in mice. It is noteworthy that the

effect was observed with two distinct opioid agonists (morphine

and endomorphin-2) and with two distinct AAV serotypes.

Both neuropathic pain and opioid analgesic tolerance share a

well-established dependence on the NMDA receptor/NOS

cascade (30). The presumptive product of hADC, decarboxylated

L-arginine or agmatine, is a known antagonist of the NMDA

receptor (22, 42) and the NOS enzyme (23). We have previously

shown that agmatine reduces neuropathic pain (27, 31, 32) and

prevents the development of opioid analgesic tolerance (18–20).

We have also demonstrated that agmatine reduces spinal long-

term potentiation evoked by high frequency stimulation (27).

The present observation of reduction of opioid tolerance by gene

transfer of hADC is consistent with the prior reported

pharmacology of agmatine.

To determine whether endogenous agmatine accounted for the

prevention of opioid tolerance observed in subjects treated with the

AAV-hADC, we used an immunoneutralization approach. We

observed that pre-treatment with an anti-agmatine IgG (but not

normal IgG) reversed the anti-opioid analgesic tolerance effect

observed in AAV-hADC-treated mice. Immunoneutralization
frontiersin.org
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TABLE 5 ED50 values for the dose-response curves in Figure 7.

Figure 7 12 week intrathecal Pre-treatments Probe Endo-2 ED50 Values (95%
C.I.) (mg/kg s.c.)

Potency Change

Panel Treatment groups Saline-treated ENDO-2-treated ED50 ENDO-2-treated/ED50 sal-treated
A Saline 6.0 (3.7–10) Not Calculable N/A

B AAV5-hADC 7.9 (4.5–14) 15 (7.6–29) 1.9

FIGURE 7

Effects of AAV5-hADC pre-treatment on the development of ENDO-2 tolerance. Analgesic dose-response curves to acute intrathecal (i.t.) probe
ENDO-2 30 min following a single acute injection of either saline (blue triangles) or ENDO-2 (red inverted triangles). (A) Vehicle-Treated Controls:
a single acute injection of ENDO-2 (inverted red triangles) decreased acute probe ENDO-2 potency compared with subjects injected with saline
(blue triangles), indicating induction of acute ENDO-2 analgesic tolerance. (B) AAV5-hADC-treated subjects that received a single i.t. injection of
ENDO-2 (inverted red triangles) demonstrated equivalent potency compared with AAV5-hADC-treated subjects subjects injected with saline (blue
triangles), indicating that induction of acute ENDO-2 analgesic tolerance did not occur when subjects where pre-treated with AAV5-hADC. (C)
AAV5-hADC-treated subjects injected with tolerance-inducing dose of ENDO-2. Subjects that received a pre-treatment with normal IgG (grey
triangles) demonstrated equivalent potency and efficacy compared with AAV5-hADC-treated that received a tolerance-inducing dose of ENDO-2
(Panel B, red inverted triangles). Subjects that received a pre-treatment with anti-agmatine IgG (inverted green triangles) demonstrated greatly
reduced probe ENDO-2 efficacy. (D) NMDA (0.3 nmol i.t) induces nociceptive behaviors (blue bar), which is reduced with co-injection with
agmatine (10 nmol, red bar). Pre-treatment with anti-agmatine IgG attenuates the effect of agmatine (green bar).
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strategies using scavenging antisera have been applied extensively

to characterize the actions of endogenous analgesic substances

(43–45) and recently endogenous pro-nociceptive substances

(46). A recent study also used an immunoneutralization

approach to evaluate pharmacological actions of a presumptive

endogenous NMDA receptor antagonist, serine histogranin,

arising from intraspinal delivery of an AAV2/AAV8 vector

carrying its synthetic gene (47). We previously demonstrated that

the structure-specific anti-agmatine immunoglobulin G (anti-Ag
Frontiers in Pain Research 10
IgG) dose-dependently reversed the pharmacological effects of

exogenously applied intrathecal agmatine in the NMDA test of

nocifensive scratching and biting behavior (20). Therefore, we

theorized that intrathecal delivery of the anti-Ag IgG antibody

would prevent the pharmacological activity of agmatine

presumed to be generated by the expression of hADC. In our

previous report (27) we demonstrated that hADC gene transfer

reduced tactile hypersensitivity arising from nerve injury. We

demonstrated that intrathecal anti-Ag IgG (but not normal IgG)
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transiently reversed the alleviation of mechanical allodynia

observed in AAV5-hADC-treated mice. We also observed that

anti-Ag IgG potentiated the magnitude of spinal long-term

potentiation induced in rat by low frequency stimulation (27),

presumably due to reducing the concentration of spinal agmatine

available to moderate excitation. Consistent with this observation,

in this present study, intrathecally delivered anti-agmatine IgG

(but not normal IgG) increased the magnitude of ENDO-2

analgesic tolerance induced by high dose spinal ENDO-2. These

observations support the proposal that elevated endogenous

agmatine contributes to the anti-neuroplasticity effects arising

from gene transfer associated with the AAV5-hADC treatment.

It is notable that agmatine robustly inhibits the development of

opioid-induced tolerance (17–19), but without motor toxicity

(31, 48), which is commonly associated with NMDA receptor

antagonists, such as MK801. Consistent with those prior findings,

AAV5-hADC-treated mice did not demonstrate altered

performance in rotarod compared to control subjects at the time

point assessed.

In our previous report (27) we detected hADC mRNA

expression in the sensory system (e.g., spinal cord and dorsal

root ganglia) and supraspinal regions (choroid plexus) following

intrathecal delivery of AAV-hADC vectors. In the present study

we similarly detected hADC mRNA in dorsal root ganglia, spinal

cord and choroid plexus, but also in periaqueductal gray (with

the hADC-AAV5 vector), a region important to opioid action.

Prior studies of the biodistribution of green fluorescent protein

immunoreactivity in spinal cord and DRG (29, 49, 50) suggest

that the AAV5 and AAV9 serotypes used in these experiments

differentially target sensory neurons. Additionally, following

intrathecal delivery of either AAV5 (49) or AAV9 (50), we have

observed expression of GFP in various regions of the brain,

including the choroid plexus, presumably from rostral diffusion

of the viral particles (49). Therefore, the mRNA expression data

presented here are consistent with the prior biodistribution

studies using the GFP marker following intrathecal delivery of

AAV5-GFP and AAV9-GFP. We speculate that hADC expressed

in sensory neurons terminating in the dorsal horn of the spinal

cord elevated agmatine production that exerted an effect similar

to exogenously injected agmatine in models of morphine

tolerance (18). Additionally, we further speculate that the

expression of hADC in epithelial cells of the choroid plexus

contributed to the elevation of agmatine via release of agmatine

into the cerebrospinal fluid (CSF). This could cause a broad

distribution of the molecule throughout the CNS that could act

in a manner comparable to that observed in prior

pharmacological studies demonstrating efficacy of i.c.v.-injected

agmatine in blocking morphine analgesic tolerance (19).

It has been established that co-administration of NMDA

receptor antagonists with opioids prevents the development of

opioid tolerance (6). This strategy has been used clinically to

“reset” a patient’s opioid analgesic efficacy and potency when

opioid analgesic tolerance has arisen (51, 52). However, initial

efforts to develop a combined preparation of opioid + NMDA

receptor antagonist have not yet advanced to practice (54). As

stated previously, what distinguishes agmatine from other
Frontiers in Pain Research 11
NMDA receptor antagonists/NOS inhibitors is that it is

endogenous and, therefore, may present a highly localized and

effective gene therapy to counter maladaptive neuroplasticity.

The present study features an application of gene transfer to

sensory neurons, the midbrain, and choroid plexus epithelial cells

using direct lumbar puncture. As gene therapeutics are further

developed, optimized, and translated into clinical applications,

intrathecal gene therapy as an adjuvant to chronic opioid

pharmacotherapy may become more broadly recognized as a

potentially effective pain management strategy.
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