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Nociceptor mechanisms
underlying pain and bone
remodeling via orthodontic
forces: toward no pain, big gain
Sheng Wang1, Ching-Chang Ko1 and Man-Kyo Chung2,3*
1Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States,
2Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore,
Baltimore, MD, United States, 3Center to Advance Chronic Pain Research, University of Maryland
Baltimore, Baltimore, MD, United States
Orthodontic forces are strongly associated with pain, the primary complaint
among patients wearing orthodontic braces. Compared to other side effects
of orthodontic treatment, orthodontic pain is often overlooked, with limited
clinical management. Orthodontic forces lead to inflammatory responses in
the periodontium, which triggers bone remodeling and eventually induces
tooth movement. Mechanical forces and subsequent inflammation in the
periodontium activate and sensitize periodontal nociceptors and produce
orthodontic pain. Nociceptive afferents expressing transient receptor potential
vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive
signals, leading to transcriptional changes in the trigeminal ganglia.
Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin
subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to
mediate orthodontic pain. Neuropeptides such as calcitonin gene-related
peptides and substance P can also regulate orthodontic pain. While
periodontal nociceptors transmit nociceptive signals to the brain, they are also
known to modulate alveolar bone remodeling in periodontitis. Therefore,
periodontal nociceptors and nociceptive molecules may contribute to the
modulation of orthodontic tooth movement, which currently remains
undetermined. Future studies are needed to better understand the
fundamental mechanisms underlying neuroskeletal interactions in
orthodontics to improve orthodontic treatment by developing novel methods
to reduce pain and accelerate orthodontic tooth movement—thereby
achieving “big gains with no pain” in clinical orthodontics.
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1 Introduction

The primary objective of orthodontic treatment is to correct malocclusion by moving

teeth within the alveolar bone. Orthodontic tooth movement due to the application of

force is often accompanied by side effects such as root resorption, periodontal disease,

pulp reaction, and orthodontic pain. Among these, pain is the leading complaint, with

90% of patients affected. Orthodontic pain is also one of the most common reasons for

reduced patient compliance and treatment discontinuation (2–4), with approximately

30% of patients having considered stopping treatment due to pain (5). Moreover,

orthodontic pain decreases patient health-related quality of life by impairing daily-life
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fpain.2024.1365194&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fpain.2024.1365194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpain.2024.1365194/full
https://www.frontiersin.org/articles/10.3389/fpain.2024.1365194/full
https://www.frontiersin.org/articles/10.3389/fpain.2024.1365194/full
https://www.frontiersin.org/articles/10.3389/fpain.2024.1365194/full
https://www.frontiersin.org/journals/pain-research
https://doi.org/10.3389/fpain.2024.1365194
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Wang et al. 10.3389/fpain.2024.1365194
activities such as eating and talking (6, 7). Unfortunately, the

clinical management of orthodontic pain is unsatisfactory.

Orthodontists often recommend treatment with nonsteroidal

anti-inflammatory drugs (NSAIDs) and most of the randomized

controlled trials studies orthodontic pain compared other

interventions with NSAIDs (8), which adversely affect the

efficiency of tooth movement (9). Therefore, it is essential to

improve our understanding of the mechanisms underlying

orthodontic pain at the molecular and cell biology levels to

develop new therapies for orthodontic pain that do not interfere

with tooth movement.

Orthodontic pain is primarily due to acute inflammation. The

self-limiting pain usually occurs approximately four hours after

placing the initial archwire, peaks around day one, gradually

decreases after three to seven days, and returns to the baseline

level in a month (1, 10, 11). During the first week, the patient’s

quality of life is affected in terms of difficult eating, impaired

talking, and oral ulcers. Once orthodontic forces are applied to

the teeth, compression and tension zones occur in the

periodontal ligament around the affected teeth. On the

compression side, inflammatory mediators are released from

resident immune cells, which further recruit circulating immune

cells (12–18). This aseptic inflammation is an essential element

for inducing osteoclastogenesis, leading to orthodontic tooth

movement on the compression side (19). Primary afferent

terminals within the periodontal ligament [a subpopulation of

trigeminal ganglia (TG) neurons] and pain pathways in the brain

have been determined. Nociceptors at the periodontal ligament

transduce mechanical stimulation from orthodontic forces and

chemical stimuli via inflammation, and nociceptive signals during

orthodontic treatment are transmitted through the TG

(Figure 1A). In this review, we highlight recent progress in

understanding primary afferent mechanisms leading to

orthodontic pain. As psychological factors such as anxiety, stress,

and environmental factors can also affect orthodontic pain

perception (20, 21), understanding central pathways involved in

orthodontic pain is also crucial–but has been reviewed elsewhere

(22). Orthodontic forces induce bone remodeling, which involves

the contributions of immune cells and their regulations of bone

cells in periodontium. This process is modulated by sensory

nerves and, therefore, nociceptive nerves at the site of

orthodontic force application should contribute to orthodontic

bone remodeling as well as orthodontic pain (Figures 1A,B).
2 Clinical factors influencing
orthodontic pain and its management

Various patient-related factors, including the patient’s age

(1, 23, 24), gender (1, 2, 10, 23–27), race (23, 28), and baseline

pain threshold (1, 23), affect orthodontic pain perception.

However, another systematic review found no effects of age and

sex on orthodontic pain (29).

The types of orthodontic appliances, such as separator

placements, archwire placements, fixed and removable appliances,

and growth modification appliances (including expanders and
Frontiers in Pain Research 02
headgear) also cause varying levels of pain and discomfort (4).

Currently, with the increasing use of self-ligation brackets and

clear aligners, clinicians have found that self-ligation brackets

produce less pain during extraction space closure compared to

conventional brackets (30). Clear aligners produces lower level of

pain and anxiety than fixed appliances during the first few days

of treatment (and for up to 3 months) (31).

Pain and discomfort occur once the initial archwire is placed

and last until bracket debonding. At the debonding appointment,

the removal force is greater for metal brackets than other types,

and pain tends to be greater in the anterior segments than

posterior ones in the upper and lower dental arch (32).

Currently, the most effective method to decrease orthodontic

pain is via analgesics. NSAIDs are often used to relieve

orthodontic pain by blocking the formation of prostaglandins

(23, 28). Pharmacological treatments are beneficial because of

their rapid and reasonably effective pain relief along with easy

over-the-counter access. However, pharmacological treatments

may potentially slow down the rate of tooth movement, cause

various adverse side effects, and offer only transient pain

alleviation. While pharmacological treatment is a mainstay for

orthodontic pain management in clinical orthodontics, there is

growing interest in exploring non-pharmacological interventions,

such as low-level laser therapy (LLLT), vibratory devices,

chewing adjuncts, brainwave music, cognitive behavioral therapy,

and post-treatment communication in the form of text messages

(33–35). The non-pharmacological approaches can be

advantageous due to their low risk of adverse side effects.

However, the analgesic efficacy of these non-pharmacological

approaches is inconclusive due to low evidence quality—although

LLLT was shown to reduce pain up to seven days after initial

archwire placement in a study (34, 36). A transcutaneous

electrical nerve stimulation-based device also shows analgesic

efficacy, which need more validation (37).
3 Primary afferent contributions to
orthodontic pain

3.1 Peripheral nerve innervations in the
periodontium

The periodontium is well-innervated by primary afferent

neurons. Early ultrastructural studies identified myelinated and

unmyelinated mechanosensitive nerve terminals within the

periodontal ligaments of humans and experimental animals

(38, 39). The periodontium is projected by multiple

mechanosensory afferents whose cell bodies are located in the TG

and mesencephalic trigeminal nucleus (40). Morphologically,

several kinds of nerve endings have been identified in the

periodontal ligaments of rat molars: nerve fibers with large Ruffini-

like endings, bundles of free nerve endings of unmyelinated axons,

and free myelinated axons (41). Single fiber recordings have shown

nerve terminals innervating the periodontal ligament that include

rapidly and slowly adapting Aβ-fibers, medium-diameter Aδ-fibers,

and small-diameter C-fibers (42–45). Retrograde labeling of
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FIGURE 1

Proposed primary afferent mechanisms of orthodontic pain. (A) Anatomy of trigeminal afferents (bottom) and mandibular premolar under orthodontic
pressure (top). Alveolar bone in the pressure side undergoes resorption. (B) Hypothetical neural-immune-skeletal interactions at the site of
orthodontic pressure. Primary afferent terminals and immune cells within periodontal ligaments can regulate alveolar bone through the
modulation of osteoclasts, which can also affect both neural and immune system. (C) Proinflammatory cytokines (e.g., interleukin 1β, tumor
necrosis factor), inflammatory mediators (e.g., prostaglandin E2, bradykinin), reactive oxygen metabolites (e.g., hydrogen peroxide, 8-hydroxy-2’-
deoxyguanosine) can activate and sensitize transient receptor potential vanilloid subtype 1 (TRPV1) and transient receptor potential ankyrin
subtype 1 (TRPA1). Their activation induces calcium influx into nerve terminals and triggers exocytosis of the vesicles containing calcitonin gene-
related peptide (CGRP) and substance P (SubP). Mechanical forces can activate Piezo1 in periodontal ligament (PDL) cells and osteoblasts, which
induces ATP release likely activating P2X3 receptor. Immune cells or osteoclasts can increase acids to activate acid-sensing ion channels 3
(ASIC3). Concerted activation of these cationic ion channels in the terminal can generate action potential, which is transmitted into brain and
leads to nociception. Created using Biorender.
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periodontal afferents has shown that periodontal trigeminal afferents

comprise small- to medium-diameter neurons. Neurochemically,

approximately 25% of periodontal afferents contain calcitonin

gene-related peptide (CGRP) and transient receptor potential

vanilloid subtype 1 (TRPV1). Periodontal afferents express various

chemical receptor molecules, which transmit noxious chemical

stimuli to the brain as a pain sensation. They also express

mechanosensitive ion channels, which transduce sensations of

pressure and stretching to the brain. These receptors and
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molecules, including TRPV1 (46–51), transient receptor potential

ankyrin 1 (TRPA1) (47, 48, 52), Piezo1 (48, 53–57), Piezo2 (48,

53), acid-sensing ion channel 3 (ASIC3) (58–61), purinergic

receptor (e.g., P2X3) (62, 63), are discussed below.

Sympathetic nerves, the component of the autonomic nervous

system, originate from the superior cervical ganglion, are closely

associated with the vasculature within the periodontium and

regulate blood flow. Sympathetic nervous system contributes to

wound healing in periodontal tissues (64, 65). While sympathetic
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nervous system regulates orthodontic tooth movement (66),

evidence supporting the roles of sympathetic nerves in

orthodontic pain is lacking and this review will focus on

nociceptive primary afferents.
3.2 Periodontal nociceptors

Orthodontic pain is initiated by orthodontic force applied

to the teeth. This force mechanically irritates periodontal

tissues, which subsequently induces a cascade of vascular and

chemical reactions, possibly affecting pain and bone

remodeling (reviewed in Long, et al. and Tang, et al. (7, 67).

The International Association for the Study of Pain (IASP)

defines nociceptor as “a high-threshold sensory receptor of the

peripheral somatosensory nervous system that is capable of

transducing and encoding noxious stimuli.” The term refers to

the nerve endings that initiate the transduction of noxious

stimuli. Periodontal nociceptors are nerve endings that

transduce noxious stimuli in the periodontium. Single-fiber

recordings in rats have shown that periodontal nociceptors in

the lower incisors are composed of thinly myelinated Aδ or

unmyelinated c-fibers. Unlike nociceptors in the oral mucosa

or tooth pulp (68), periodontal nociceptors are mostly Aδ

(approximately 90%) rather than c nociceptors (69). In rat

molars, most periodontal ligament units rapidly adapt, and

two-thirds are Aδ fibers (44). The Aδ nociceptors may

mediate immediate, sharp pain upon the application of

orthodontic forces. This initial pain is followed by delayed

pain, a major component of patient discomfort. Pain intensity

gradually increases four hours following the application of

orthodontic forces, peaking after 24 h, and lasts for days

(1, 10, 23, 27, 70). Orthodontic force loading in rat molars

reduces the mechanical threshold in behavioral assays and

action potential conduction velocity in single-fiber recordings

after 3–14 days (71). Such delayed pain may be derived from

peripheral sensitization of the periodontal nociceptor

terminals, as orthodontic forces induce inflammation in the

periodontium to produce an array of inflammatory mediators

and cytokines (7).
3.3 TRPV1-expressing nociceptors in
orthodontic pain

Retrograde labeling by injecting a tracer into mouse gingiva

has demonstrated that periodontal afferents are primarily small-

and medium-diameter neurons (46, 72). Among these, 23% are

CGRP-positive and 28% are TRPV1-positive. Non-peptidergic

nociceptors binding to isolectin B4 are rare among periodontal

afferents. Although TRPV1-expressing afferents mediate heat

pain in the skin, they also mediate mechanical hyperalgesia

from deep tissues such as muscles and joints (73–76). TRPV1-

expressing afferents also play a critical role in orthodontic

pain. Chemical ablation of TRPV1-expressing nociceptors

from the TG of mice by injecting resiniferatoxin (RTX) into
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the TG substantially reduces orthodontic pain-like behaviors.

Orthodontic forces increase mouse grimace scale scores

and reduce bite force after one and three days, which is

partially prevented by the ablation of TRPV1-expressing

TG neurons (46).

TRPV1-expressing nociceptors can also contribute to the

development of orthodontic pain. As TRPV1 and neuropeptides

are highly colocalized in periodontal afferents (46, 72), and nerve

terminals containing neuropeptides such as CGRP and substance

P (SP) are projected into periodontal ligaments (77, 78), the

activation of TRPV1-expressing nerve terminals by orthodontic

forces can induce the release of neuropeptides such as CGRP or

SP into the periodontal tissues. These neuropeptides play crucial

roles in vasodilation and the recruitment of immune cells to

damaged tissue (79). This neurogenic inflammation should then

initiate sterile inflammation, leading to orthodontic tooth

movement and peripheral sensitization. Therefore, interactions of

periodontal nociceptors, immune cells, and bone cells should be

critical for orthodontic tooth movement and pain (Figure 1B).

The roles of neuropeptides in orthodontic pain are discussed in

the sections below.

The results of a recent study indicate that TRPV1-

expressing afferents contribute to the plastic changes in gene

expression within the TG after applying an orthodontic force

in mice (50). Orthodontic forces changed the expression of

>1,200 genes in the TG after two days. These genes include

those implicated in pain processing, such as neuropeptides

(Adcyap1 and Gal), neurotrophins (Bdnf), neurotrophin

receptors (Gfra1), cytokines (Csf1 and Cx3cl1), cytokine

receptors (Cxcr4 and Tnfrsf1a), transcription factors (Atf3 and

Sox11), and ion channels (Trpa1 and Trpv2). The

contribution of these gene changes to orthodontic pain needs

to be determined in future studies. Gene ontology analyses

have shown increased cholesterol biosynthesis processes and

decreased organization of connective tissue and extracellular

matrix (50). Genes associated with synaptic organization and

overall ion channel activities, especially voltage-gated sodium

and potassium channels, are downregulated. The biological

pathways and differentially expressed genes in the TG after

orthodontic tooth movement resemble early changes following

peripheral nerve injury rather than craniofacial inflammation.

The implication of this finding is unclear, but orthodontic

forces may induce injury to the afferent terminals in the

periodontal ligament, which leads to transcriptomic changes

in the TG similar to those following nerve injury.

Interestingly, in mice with RTX injections into the TG to

ablate TRPV1-expressing sensory neurons, the transcriptomic

changes in the TG by orthodontic forces are eliminated (50).

However, this does not imply that orthodontic force-induced

transcriptomic changes are exclusively confined to TRPV1-

expressing nociceptors. Instead, neuronal inputs through

TRPV1-expressing nerves drive TG-wide transcriptomic

changes after an orthodontic force. Therefore, TRPV1-

expressing neurons are critical for transducing nociceptive

inputs and inducing neural plasticity in the TG, which

should contribute to orthodontic pain development.
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4 Role of ion channels in periodontal
nociceptors in orthodontic pain

4.1 Transient receptor potential ion
channels

TRPV1 is enriched in peptidergic afferents, most of which are

polymodal afferents (73). Its activation mediates the influx of

cations into the nerve terminals, followed by the firing of action

potentials, which leads to burning pain. Activation of TRPV1

also mediates the Ca2+ influx, which produces the release of

neuropeptides from afferent terminals. Inflammatory mediators

enhance TRPV1 function. Activation of receptors of multiple

inflammatory mediators such as prostaglandins, bradykinin, and

ATP invokes the activation of protein kinases. This, in turn,

phosphorylates TRPV1 to enhance the function of TRPV1,

which could increase pathological pain (73, 80, 81). Therefore,

local inflammation in the periodontium following orthodontic

tooth movement likely enhances the activation of TRPV1, which

increases the release of neuropeptides. TRPV1 expressed in

afferent terminals within the periodontal ligaments may also be

phosphorylated by hypoxia-inducible factor-1α, activated by local

hypoxia within the periodontal ligament (82, 83). Tissue

inflammation has upregulated the expression of TRPV1 in

nociceptive afferents in multiple preclinical models. Indeed,

TRPV1 is upregulated in the TG following experimental tooth

movement in rats, where the upregulation of TRPV1 peaked after

one day and returned close to baseline after a week, which

correlated with tooth movement-induced nocifensive behaviors

such as face-grooming (84). Local administration of TRPV1

antagonist in the periodontium reduces tooth movement-induced

nocifensive behaviors (85). Genetic knockout of TRPV1

attenuates spontaneous and bite-evoked pain after applying

orthodontic forces (46). Knockdown of TRPV1 in the TG also

reduces pain-like behaviors upon the application of orthodontic

forces (86). Thus, TRPV1 in periodontal nociceptors mediates

burning pain from orthodontic forces, and the inhibition of

TRPV1 may attenuate pain related to orthodontic tooth movement.

TRPA1, which is activated by mustard oil and endogenous

electrophiles such as hydrogen peroxide (H2O2) (73, 87, 88),

also contributes to neuropeptide release and neurogenic

inflammation. Thirty percent of TRPV1-expressing neurons

express TRPA1, while up to 97% of TRPA1-expressing sensory

neurons express TRPV1 (89), and the calcium influx TRPV1

causes can lead to the activation of TRPA1 (90). TRPA1

and TRPV1 play an integral role in neurogenic inflammation and

pain after noxious stimuli due to their high co-expression, and

the calcium influx caused by one can lead to the activation of the

other (91–93). TRPA1 contributes to mechanical paresthesia

caused by trigeminal neuropathic pain in mice downstream of

oxidative stress (94). Oxidative stress may induce pain via the

activation/sensitization of TRPA1 in the periodontium in a rat

tooth-movement model (52). The tooth movement induced

nociceptive behaviors, such as facial wiping, which matched the

level of 8-hydroxy-2’-deoxyguanosine, an oxidative stress marker
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in the periodontal ligament and dental pulp. This change

gradually diminished to the original level, which was related to

decreases in oxidative stress, probably due to the remodeling of

the periodontal ligament and alveolar bone (52). Orthodontic

force-induced local hypoxia and reduced fluid flow occur in both

periodontal tissue and dental pulp (95). Ischemia increases the

intracellular Ca2+ concentration by increasing the concentration

of protons and promoting TRPA1 activation (96, 97). Ca2+ influx

through TRPA1 in sensory neuronal soma and nerve terminals

can induce the release of neuropeptides, promoting the

inflammatory periodontal tissue response. The expression of

TRPV1 increases in the TG within a day (as an early response),

while the upregulation of TRPA1 gradually increases from day

one to day three as a late response during experimental tooth

movement in rats (47). Therefore, the combined inhibition of

TRPV1 and TRPA1 can additively attenuate orthodontic pain.
4.2 Mechanosensitive ion channels

Piezo1 and Piezo2 have emerged as important mediators in

various aspects of mechanotransduction (98). They convert

applied force into electrochemical signals critical for

proprioception, touch, and mechanical pain. Piezo1 is expressed

in non-neuronal tissues, such as the vasculature, bone, and heart,

and has been shown to sense different mechanical stresses, such

as compression and stretch. Piezo2 is exclusively expressed in

sensory neurons and is related to touch sensation and

mechanical pain.

Research concerning Piezo1 and Piezo2 in orthodontic tooth

movements has rapidly developed from in vitro to in vivo

studies. After exposure to mechanical loading in primary human

periodontal ligament cells, the expression of Piezo1 and markers

for osteoclastogenesis, such as receptor activator of nuclear kB

ligand and cyclooxygenase-2, were significantly increased (99).

Furthermore, grammostola mechanotoxin 4 (GsMTx4), a Piezo1

inhibitor, blocked osteoclastogenesis (99), suggesting Piezo1

contributes to mechanical stress-induced osteoclastogenesis. In

murine cementoblastic cells, the expression of Piezo1 was

decreased under a static compression force (100). Compression

force also decreases cementoblastic genes such as osteoprotegerin,

osteopontin, osteocalcin, and protein tyrosine phosphatase-like

member A (100), suggesting that Piezo1 may contribute to the

remodeling of cementum during tooth movement. When

hydrostatic pressure is applied to mesenchymal stem cells

(MSCs), Piezo1 is activated and plays a role in the cell fate

determination of MSCs (either osteoblast or adipocyte

differentiation) by regulating bone morphogenetic protein 2

expression (101). However, activation of Piezo1 by its agonist,

Yoda1, induces a Ca2+ response and activates cationic currents in

osteoblastic cells, followed by reduced proliferation that is

reversed by the knockdown of Piezo1 (102). Furthermore, the

C-terminus of Piezo1, which contains the R-Ras binding domain,

plays an essential role in Ca2+ influx and activation of the ERK1/

2 signaling pathway, suggesting that this domain is crucial for
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the mechanotransduction of osteoblastic differentiation in MSCs

(103). Piezo1 also plays a role in macrophage infiltrates in the

periodontal ligament via the Piezo1-AKT/GSK3b signaling-Cyclin

D1 axis during tooth movement (104) and mediating both

osteogenesis and osteoclastic activities on the tension side during

orthodontic tooth movement (54, 57, 105). However, in vivo

tooth movement models, the function of Piezo1 is controversial.

In rats, orthodontic tooth movement was modestly reduced by

the local injection of GsMTx4 into the alveolar bone (57). In

contrast, tooth movement was not altered in Piezo1 conditional

knockouts in mineralized tissue cells by Dmp1-cre (106).

The roles of Piezo1 and Piezo2 in orthodontic pain are

undetermined. Piezo1 is functionally expressed in the TG and

dorsal root ganglion neurons in rodents, a subset of which co-

express TRPV1 (107, 108). Yoda1, a Piezo1 agonist, induces the

release of CGRP from TG neurons (107). Therefore, Piezo1 in

peptidergic afferents may transduce mechanical pain during

orthodontic tooth movement. However, evidence that Piezo1 in

sensory neurons mediates mechanical pain is lacking. Instead,

Piezo1 expressed in non-neuronal cells may indirectly contribute

to pain. For example, Piezo1 expressed in keratinocytes regulates

mechanotransduction (109) and, when expressed in odontoblasts,

it may mediate nociceptive signaling through the release of ATP

by the activation of P2X3 in sensory neurons (110). The

activation of Piezo1 in human periodontal ligament cells by

Yoda1 increases intracellular Ca2+ and extracellular ATP (55).

Mechanically stimulated ATP released from human periodontal

ligament cells is inhibited by GsMTx4 or the knockdown of

Piezo1 (55), suggesting that Piezo1 in periodontal ligament cells

may contribute to purinergic signaling during orthodontic tooth

movement, leading to pain.

Piezo2 is expressed more abundantly in sensory neurons,

including low-threshold mechanosensitive neurons, as well as Aδ

and C nociceptors (111, 112). Piezo2 mediates innocuous touch

sensation and mechanical hyperalgesia following inflammation

and nerve injury (111, 112). Piezo2 is also expressed in TRPV1-

expressing nociceptors and mediates corneal mechanical pain,

visceral mechanical hypersensitivity, and mechanical hyperalgesia

in knee joint osteoarthritis (113–115). Therefore, Piezo2 in

TRPV1-expressing TG neurons may mediate orthodontic pain;

however, this needs to be determined in future studies.
4.3 Other nociceptive ion channels

Acid-sensing ion channels sense extracellular acidification.

Among this family, ASIC3 is predominantly expressed in the

peripheral nervous system and contributes to nociception. In

rats, 26% of ASIC3-expressing TG neurons co-express CGRP

(116). Orthodontic force could induce localized tissue acidosis at

the site of compression. Tissue inflammation can lead to the

accumulation of lactic acids, which causes prolonged acidosis

(117). Orthodontic forces induce the occlusion of the blood

vessels in the periodontal ligament on the compression side,

which leads to hypoxia (118). Hypoxia can then induce tissue

acidosis and regulate bone metabolism (119). The suppression of
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orthodontic pain-like behaviors by a pharmacological inhibitor or

genetic knockdown against ASIC3 has been reported in an

orthodontic tooth movement model in rats (58, 60). Orthodontic

force-induced upregulation of nerve growth factor in the

periodontium, which is retrogradely transported to the TG,

induces increased expression of ASIC3 (61). In another study,

inserting an elastic between the molars of rats acidified gingival

crevicular fluid (from pH 7.4 to 7) after one day (59). Buffering

periodontal acidification by repeated injections of phosphate-

buffered saline or a periodontal injection of the inhibitor of ASIC3

decreased mechanical hyperalgesia in the facial skin after elastic

insertion. However, in that study, elastic insertion did not change

the expression of ASIC3 in the TG but increased the

phosphorylation of ASIC3 in the periodontal tissues.

Extracellular ATP is an important signaling coordinator of

cellular responses to mechanical stimulation in bone (120). It

activates a group of purinergic receptors, of which P2X3 has

been implicated in orthodontic pain. Although the P2X3 receptor

is more often expressed in non-peptidergic TG neurons, a subset

of P2X3-expressing neurons also co-express CGRP and SP (121).

Orthodontic tooth movement upregulates the P2X3 receptor in

the TG, while an inhibitor of P2X3 reduces orthodontic pain-like

behaviors in rats (62). Orthodontic tooth movement in rats

upregulates the nociceptin/orphanin FQ-opioid receptor-like

receptor pathway in the TG, which exacerbates pain-like

behaviors and likely mediates P2X3 upregulation in TG neurons

(122, 123). Interestingly, the exposure of mice to static magnetic

fields decreases orthodontic pain-like behaviors, accompanied by

a decrease in the expression of P2X3 (124), supporting the roles

of P2X3 in orthodontic pain.
5 Role of neuropeptides in orthodontic
pain

SP and CGRP are the primary neuropeptides studied in

orthodontic pain. The increased expression levels in the

periodontal ligaments and dental pulp during tooth movement

are positively correlated with orthodontic pain, clarifying the role

of neurogenic inflammation in early injury response (125).

Increased expression levels of CGRP and SP occur during tooth

movement and are evident for a considerable time after

movement has ended (78). Furthermore, neuropeptides stimulate

human pulp fibroblasts to produce large amounts of interleukin-

1β (IL-1β), interleukin-6, and tumor necrosis factor-α (TNF-α)

during orthodontic tooth movement (126).

CGRP is expressed in the TG, and the central terminals of

primary afferents are terminated in the trigeminal subnucleus

caudalis (127). Inflammation induced by tooth movement

sensitizes TRPV1 and TRPA1 in the primary afferent terminals

(52). Activation of TRPV1, as an early response, and TRPA1, as

a late response, results in CGRP release at the end of neuronal

axons in vesicles through exocytosis (47). CGRP released from

periodontal afferent terminals into the periodontal tissue plays

the roles of vasodilator and transmitter for nociceptive

information. Local injection of a CGRP receptor antagonist into
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the periodontium reduces pain-like behaviors by rats in

experimental tooth movement (128). CGRP also mediates

neuron-glia crosstalk by upregulating the expression of nitric

oxide in the p38 signaling pathway in glial cells, accelerating the

release of signal molecules that stimulate neurons and promote

orofacial pain (129).

SP is produced in peptidergic sensory neurons in the TG and is

secreted from their axons after Ca2+ influx (130). SP plays an

essential role in bone remodeling and orthodontic pain during

tooth movement. Orthodontic tooth movement activates

nociceptors in periodontal tissues and leads to the release of SP

from primary afferents. Moreover, tooth movement increases the

Ca2+ influx after the activation of cation channels, causing SP

release. SP promotes local inflammation by increasing the

permeability of blood vessels (131, 132). It also promotes the

secretion of inflammatory cytokines, including IL-1β and TNF-α

through the neurokinin-1 receptor, enhances the phosphorylation

of the mitogen-activated protein kinase signaling pathway to

activate crosstalk between neurons and glial cells, and speeds the

inflammatory process on the compression side of tooth movement

(94, 133–135). Inflammation further promotes bone remodeling

and tooth movement. Exogenous SP can promote alveolar bone

remodeling and accelerate orthodontic tooth movement (136).

However, it also increases inflammatory mediators released from

immune cells, stimulating TRPV1 nociceptors conducting pain

signals to the brain (137, 138). Ibuprofen decreases SP levels in

gingival fluid and scores of visual analog scale one day following

initial archwire placement (139).

Proposed primary afferent mechanisms of orthodontic pain is

summarized in Figure 1C.
6 Bone remodeling and the
interactions between bone and
nociceptors

6.1 Bone remodeling in tooth movement

Bone remodeling is an important biological metabolic function

that maintains healthy bone density and homeostasis and serves as

a mechanism to regulate orthodontic tooth movement. Among the

skeletal system, alveolar bone is under the most active bone

remodeling (140–143). According to the pressure-tension theory,

alveolar-bone-coupled remodeling events are orchestrated by the

activities of osteoclasts, osteoblasts, and osteocytes in the

periodontal ligament space and alveolar bone after a force is

applied to teeth by archwires.

Osteoclasts are specialized cells originating from hematopoietic

progenitors, which can resorb host bone tissue (144, 145).

Osteoblasts are mononucleated, specialized cells originating from

MSCs and are primarily responsible for alveolar bone apposition

(146). Osteocytes are derived from functional osteoblasts and are

the dominant cells embedded in mineralized bone during the

apposition process (146).

On the tension side, the periodontium (including the

periodontal ligaments, alveolar bone, and cementum) undergoes
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bone deposition. Osteoblasts originating from MSCs form the

osteoid or type I collagen matrix following mineralization (147).

Meanwhile, alveolar bone resorption takes place on the

compression side due to osteoclastic activity, resulting in

irregular cavities in the bone, which are filled in by new bone

from osteoblast activity (148). Orthodontic forces lead to

increased blood vascular permeability and disarrangement of

tissues in the periodontal ligament space. Subsequently, blood

flow and periodontal tissue must adapt to the compression force.

If they fail to adapt, tissue necrosis and hyalinization will occur

(149). Force magnitude is considered to be related to the

origination of osteoclastogenesis and the type of bone resorption.

Applying light force leads to front resorption, the recruitment of

hematopoietic progenitors from blood vessels in the periodontal

ligament space, and cell and tissue preservation. Application of a

heavy force causes hyalinization, cell death, tissue necrosis, and

cell-free periodontal ligaments and adjacent alveolar bone zones,

leading to delayed bone resorption. In human and animal

studies, a heavy force causes more discomfort and pain than a

light force (150–152).
6.2 The role of bone cells in nociceptor
activation

During tooth movement, alveolar bone remodeling involves

three major bone cells: osteoclasts, osteoblasts, and osteocytes.

Compared to osteoblasts and osteocytes, osteoclasts have drawn

more attention due to their association with nociceptors and pain,

especially in skeletal diseases with increased bone resorption. In

bone remodeling during tooth movement, osteoclasts may interact

with nociceptive nerve terminals and contribute to pain-like

behaviors differently. First, osteoclasts secrete large amounts of

acid through vacuolar H+-ATPase, leading to bone matrix

degradation. Nociceptors that innervate bone respond to acid

through ASIC3 and TRPV1, and inhibition of these receptors

attenuates experimental bone pain-related behaviors (153, 154).

Second, osteoclasts produce pronociceptive factors, such as

neurotrophic factors (155). Additionally, orthodontic pain is often

related to periodontal ligament inflammation, where several

pronociceptive mechanisms act synchronously (7). Unlike

osteoclasts, the direct effect of osteoblasts and osteocytes on

nociceptors and orthodontic pain is not well understood, even

though they have been reported to participate in pathological bone

pain, such as in osteoarthritis (156).
6.3 The role of nociceptors in regulating
alveolar bone remodeling

Bone is richly innervated, and sensory and autonomic nerve

fibers have been identified in both the periodontal ligament space

and bone, with sensory fibers being associated with nociception

and mechanoreception.

Recent studies have highlighted the regulatory role of the

sensory nervous system in alveolar bone remodeling. While
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TRPV1-expressing nociceptive nerves contribute to pain during

orthodontic forces, their roles in orthodontic tooth movement

are not well-defined. More focus has been placed on studying the

role of periodontal nociceptors in regulating alveolar bone

remodeling in the context of periodontitis in mice. However, past

studies investigating the control of bone remodeling and

periodontal bone loss by nociceptive sensory nerves have

produced contradictory results. The systemic injection of

vanilloid compounds, such as capsaicin or RTX, either increases

(157–159) or decreases (160–162) bone resorption. These

discrepancies could be attributed to caveats in the neural

manipulation adopted in past studies.

First, capsaicin and RTX are specific agonists of TRPV1.

TRPV1 activation mediates Ca2+ influx, and an excessive Ca2+

influx often leads to the ablation of TRPV1 + nerve terminals and

the soma (163, 164). The extent of activation and subsequent

ablation by vanilloids depends on the dose, timing, location,

frequency, route of administration, etc. Therefore, without

thorough biological validations, it is difficult to conclude whether

the effects of capsaicin are mediated by the activation or ablation

of TRPV1 + afferent nerve terminals, leading to conflicting

outcomes and complicating the interpretation of results. For

example, the oral administration of capsaicin suppressed bone

loss in a rodent periodontitis model, which was interpreted as

having a protective role for TRPV1 + afferents (157). However, it

is unclear whether this protective role was mediated by the

activation or ablation of TRPV1 + nerve terminals. In humans,

topical capsaicin on the gingiva increases neurogenic

inflammation and the level of matrix metalloproteinase-8 (a

periodontitis-associated protease) in crevicular fluid (165, 166),

which is harmful rather than protective.

Second, intraperitoneal injection of RTX or capsaicin

accelerates alveolar bone destruction in experimental

periodontitis and reduces long bone density (157, 159). However,

this treatment needs careful interpretation as it produces a

deficiency of TRPV1 + neurons throughout the body and likely

involves strong compensatory processes in the nervous system.

Systemic treatment in neonatal animals is more problematic due

to potential alterations in nervous system development

(157, 158). Many studies have shown that systemic capsaicin

injections in neonates increase sympathetic activity (167–171).

Given the well-established role of sympathetic nerves in

enhancing bone resorption (172–174), it is difficult to interpret

the bone changes following systemic treatment of vanilloids as a

pure effect of selective manipulation of sensory neurons. Indeed,

systemic genetic ablation of tropomyosin receptor kinase A

expressing neurons (largely overlapping with TRPV1 + neurons)

increases serum norepinephrine and bone resorption, which can

be reversed by propranolol (a β-adrenergic antagonist). This

suggests the involvement of enhanced sympathetic activity (175).

Likewise, nerve transection-induced aggravation of periodontitis

(176) is difficult to interpret because transection of the inferior

alveolar nerve produces neuropathic pain (177, 178), increasing

sympathetic activity (179, 180).

Third, systemically injected vanilloids may directly affect

bone cells, as TRPV1 is also known to be expressed in these
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same limitation, potentially affecting both neural and bone cells.

A recent study ablated TRPV1 + afferents by microinjecting

RTX directly into the maxillary/ophthalmic region of a unilateral

TG in adult mice to determine their role in periodontal bone

remodeling (49). The resulting localized ablation of TRPV1 +

afferents decreased bone loss in a mouse model of periodontitis

(49), which is in contrast to the results obtained by the systemic

injection of vanilloids (157, 158). This finding was further

validated by localized chemogenetic silencing of TRPV1-lineage

neurons using inhibitory designer receptors exclusively activated

by designer drugs. Continuous functional silencing of TRPV1-

expressing neurons after the induction of experimental

periodontitis prevented the progression of bone loss in a mouse

model of periodontitis (49). In these approaches, ablation or

silencing was confined to the ipsilateral TG without altering

TRPV1 afferents in the dorsal root ganglia or vagal ganglia,

minimizing uncontrollable effects on nervous control. Circulating

norepinephrine was not altered by the localized ablation of

TRPV1-expressing TG neurons. Experimental periodontitis-

induced increases in immune cell infiltration and pro-

inflammatory cytokines were prevented in the mice using

nociceptor ablation, which was accompanied by the reduced

activation of osteoclasts in the alveolar bone. Interestingly, the

ablation of TRPV1-expressing trigeminal nociceptors did not

alter the periodontal microbiome within the ligature, suggesting

TRPV1-expressing afferents enhance bone destruction in

periodontitis by promoting hyperactive host responses in the

periodontium (49). These findings support the theory that

nociceptors magnify the host response and regulate bone loss in

the periodontium without affecting host defenses. Although

TRPV1-expressing afferents magnify alveolar bone remodeling in

a periodontitis model, it is important to note that the

contribution of nociceptive afferents to alveolar bone remodeling

is context-dependent. Nociceptive nerves are protective in apical

periodontitis following tooth pulp infection (184). Therefore, it is

essential to determine the contribution of nociceptors on

orthodontic tooth movement.

The activation of peptidergic nociceptors leads to

Ca2+-dependent exocytosis of neuropeptides. SP and CGRP are

the most abundant neuropeptides in sensory afferents, and both

directly regulate bone cells in vitro. CGRP increases

differentiation of osteoblasts and decreases osteoclastogenesis,

thereby producing osteogenic effects (157, 185). In contrast, SP

enhances osteogenesis and bone resorption in vitro (186–188). It

increases the differentiation of osteoblasts and osteogenic activity

at a physiologically relevant concentration (186). Consistently, SP

knockouts exhibit reduced bone volume and trabecular number/

thickness in the femur (189). At higher concentrations that are

likely to be detected at the injury site, SP also enhances

differentiation and the resorptive activity of osteoclasts in vitro

(186, 190, 191). Thus, the consequences of SP signaling on

pathological bone regulation in vivo is complicated to predict.

Pharmacological or genetic inhibition of SP has shown both

resorptive and osteogenic effects in osteoarthritis progression and

fracture healing (189, 190, 192–194). Both CGRP and SP are
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detectable in human gingival crevicular fluid. The level of CGRP in

crevicular fluid is lower at the site of periodontitis than at healthy

sites (195–197). In contrast, the level of SP in the crevicular fluid is

higher at sites of periodontitis than at healthy sites, and SP levels

decrease after treatment (198, 199). However, due to the

ambivalent role of SP, the consequences of increased SP for

alveolar bone loss are uncertain. Interestingly, the deletion of

tachykinin precursor 1, a gene that encodes SP, or the treatment

of gingiva with an SP antagonist, significantly reduces bone loss

in ligature-induced periodontitis. Whereas the deletion of

calcitonin-related polypeptide alpha, a gene that encodes CGRP,

has a marginal role in bone loss (72). Furthermore, exogenous

SP, but not neurokinin A, induces a vigorous inflammatory

response and osteoclast activation in alveolar bone and facilitates

bone loss in ligature-induced periodontitis (72). SP knockouts

show decreased immune cell infiltration and pro-inflammatory

cytokines at the site of ligature, which recapitulates the findings

from mice with nociceptor ablations (72). These findings suggest

that SP plays significant roles in regulating host responses and

bone resorption in ligature-induced periodontitis and that the

resorptive effect of SP is sufficiently dominant to overcome the

osteogenic activity of CGRP or SP.

Given the modest, or absence of, pain in periodontitis, the

tooth movement model is better than the periodontitis model for

determining the role of nociceptors in pain and the neural

regulation of bone remodeling. Although the nociceptive

regulation of orthodontic tooth movement has long been

hypothesized (200), there is no strong evidence supporting the

underlying mechanisms. The mechanistic contribution of

neuropeptides in orthodontic tooth movement is not well known.

Only one study has shown that the systemic administration of

exogenous SP accelerates orthodontic tooth movement and

promotes alveolar bone remodeling (136). The detailed regulatory

mechanisms of orthodontic tooth movement by the nervous

system, periodontal nociceptors, and nociceptive molecules

should be determined in future studies.
6.4 The role of sympathetic nervous system
in regulating alveolar bone remodeling

The critical role of the nervous system in regulating bone

remodeling has been uncovered in recent decades (201). Besides

sensory systems as discussed above, multiple other pathways,

including adrenergic, dopaminergic, and serotonergic systems, are

known to modulate bone remodeling. The roles of sympathetic

nerves in enhancing bone resorption is well established

(172–174). The autonomic fibers are mainly associated with

supplying blood vessels in the periodontal ligament space and

bone marrow and are concentrated in areas with high osteogenic

activity (202). In the sympathetic nervous system, the

β2-adrenergic receptor and dopamine receptors (203), expressed

by osteoblasts and osteoclasts, are recognized as mediating the

action of sympathetic nerves on bone remodeling. Sympathetic

nerve terminals and local norepinephrine level in alveolar bone

increase in periodontium after experimental tooth movement in
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mice (66, 204). Sympathectomy or β-adrenergic receptor

antagonist propranolol decreased, whereas β-agonist isoproterenol

increased experimental tooth movements in mice, suggesting that

signaling from sympathetic nerve terminals within periodontium

could regulate orthodontic tooth movements (66). These

effects are mediated through Sympathetic signaling β2-adrenergic

receptor expressed in osteoclasts and periodontal ligament cells

(66, 205). Orthodontic tooth movement is also regulated through

central modulation of the sympathetic nervous system,

particularly through ventromedial hypothalamic nucleus, a region

modulating sympathetic nervous system activity in periphery.

Orthodontic tooth separations in patients increase the activation

of hypothalamus (206). Experimental tooth movement in rodents

increase tyrosine hydroxylase in ventromedial hypothalamic

nucleus (204) and lesioning of the area suppresses tooth

movement (207). Interestingly, the ablation of peripheral

nociceptors by systemic injection of capsaicin reduces

orthodontic tooth movements in mice, which is accompanied by

decreased sympathetic nerve terminals in periodontium (207),

suggesting potential interactions between nociceptive and

sympathetic system for alveolar bone remodeling. Despite its

roles in tooth movement, it is not known if sympathetic nervous

system contributes to modulation of orthodontic pain.

On the other hand, the overall effect of parasympathetic

activity on bone is likely to be anabolic, although various

nicotinic or muscarinic acetylcholine receptors of the

parasympathetic nerves have also been found in osteoclasts and

osteoblasts (208). However, the role of parasympathetic activity

on orthodontic tooth movement or pain is not known yet.
6.5 Implications of nociceptor-bone
remodeling interactions in clinical
orthodontics

Given the roles of nociceptors in alveolar bone remodeling, the

activities of periodontal nociceptors and molecules enriched in

periodontal nociceptors likely modulate orthodontic tooth

movement. Therefore, the extent of tooth movement by

orthodontic force can be interfered with when the activity of

periodontal nociceptors is suppressed for treating pain. Although

NSAIDs reduce orthodontic pain (8), they also reduce

orthodontic tooth movement in humans and rats (209, 210). In

contrast, acetaminophen does not inhibit tooth movement

(211, 212), although the analgesic effects of acetaminophen and

NSAIDs are comparable (8). Therefore, acetaminophen may be

better for patients who suffer from orthodontic pain. To prevent

tooth movement interference, the development of novel therapies

for orthodontic pain should consider their effects on alveolar

bone remodeling. For example, targeting TRPV1, ASIC3, or

CGRP for orthodontic pain needs validation given that their

inhibition does not interfere with tooth movement. Conversely, it

would be ideal to develop methods to enhance tooth movement

without inducing or increasing pain. Non-surgical interventions,

such as light vibration, do not cause pain but fail to accelerate

tooth movement (213, 214). The only method with evidence of
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accelerating tooth movement is corticotomy, which causes pain,

discomfort, and functional impairments (215). Thus, better

understanding and considering nociceptor-bone remodeling

interactions is important for improving clinical orthodontics.
7 Conclusion

Despite decades of research, details on the mechanisms of

orthodontic pain and tooth movement remain unclear. In

particular, ongoing knowledge gaps and challenges remain

substantial in terms of understanding the mechanistic

interactions between the nervous and skeletal systems during

tooth movement. A better understanding of the fundamental

mechanisms of neuroskeletal interactions may improve

orthodontic treatment by developing new methods to reduce

pain and accelerate orthodontic tooth movement. Future studies

in this area should meet clinical needs by developing new

therapies for “big gains with no pain” in clinical orthodontics.
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