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Accurate and objective pain evaluation is crucial in developing effective pain
management protocols, aiming to alleviate distress and prevent patients from
experiencing decreased functionality. A multimodal automatic assessment
framework for acute pain utilizing video and heart rate signals is introduced in
this study. The proposed framework comprises four pivotal modules: the
Spatial Module, responsible for extracting embeddings from videos; the Heart
Rate Encoder, tasked with mapping heart rate signals into a higher
dimensional space; the AugmNet, designed to create learning-based
augmentations in the latent space; and the Temporal Module, which utilizes the
extracted video and heart rate embeddings for the final assessment. The Spatial-
Module undergoes pre-training on a two-stage strategy: first, with a face
recognition objective learning universal facial features, and second, with an
emotion recognition objective in a multitask learning approach, enabling the
extraction of high-quality embeddings for the automatic pain assessment.
Experiments with the facial videos and heart rate extracted from
electrocardiograms of the BioVid database, along with a direct comparison to 29
studies, demonstrate state-of-the-art performances in unimodal and multimodal
settings, maintaining high efficiency. Within the multimodal context, 82.74% and
39.77% accuracy were achieved for the binary and multi-level pain classification
task, respectively, utilizing 9.62 million parameters for the entire framework.
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1 Introduction

Pain, as defined by Williams and Craig (1), is a “distressing experience associated with

actual or potential tissue damage with sensory, emotional, cognitive and social components.”

Biologically, pain is an undesirable sensation originating from the peripheral nervous

system. Its fundamental function is to engage sensory neurons, notifying the organism
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of potential harm and playing a vital role in recognizing and

responding to threats (2). The principal categories of pain are

acute and chronic, primarily differentiated by the duration of the

sensation. Acute pain persists for less than twelve weeks. It is

often accompanied by observable physiological damage, while

chronic persists for over twelve weeks or exceeding the

anticipated injury recovery period (3). Acute pain arises from

injury, surgery, illness, trauma, or painful medical procedures

and usually disappears whenever the underlying cause is treated

or healed. However, without resolution, it can transition into a

chronic condition, lasting beyond the initial acute phase.

Postoperative pain, a facet of acute pain, arises specifically after

surgical interventions and is a significant concern for both

patients and healthcare providers, emphasizing the need for

effective pain management strategies to facilitate recovery and

prevent chronic pain development (4). Chronic pain exhibits

various forms concerning the temporal dimension, such as

chronic-recurrent (e.g., migraine headache) or chronic-

continuous (e.g., low back pain) (5). Pain is a prevalent and

diverse condition (6). According to the Global Burden of Disease

(GBD) study, pain stands as the leading cause of years lived with

disability (YLD) (7). The impact of pain extends beyond

individuals to society, posing clinical, economic, and social

challenges (7). Beyond the direct consequences on a patient’s life,

pain is associated with various adverse effects, such as opioid

use, drug overuse, addiction, compromised social relationships,

and psychological disorders (8).

Effective pain assessment is essential for early diagnosis,

monitoring the progression of the underlying disease, and

evaluation of therapy outcomes, especially in managing chronic

pain (9). This has led to the nursing literature referring to pain as

“the fifth vital sign” (10). Objectively measuring pain is imperative

for providing suitable care, especially for vulnerable populations

unable to directly communicate their pain experiences, such as

infants, young children, individuals with mental health conditions,

and the elderly. Various methodologies are employed to assess

pain, encompassing self-reporting, considered the gold standard

for evaluating the presence and intensity of pain utilizing rating

scales and questionnaires. Also, behavioral indicators, including

facial expressions (e.g., grimacing, open mouth, or raised

eyebrows), vocalizations (e.g., crying, moaning, or screaming), and

bodily movements (including posture or signs of tension), serve as

critical markers (11). Moreover, physiological measures, including

electrocardiography, electromyography, skin conductance

responses, and respiration rate, offer valuable insights into the

physiological manifestations of pain (9).

Caregivers or family members typically rely on observing

behavioral or physiological responses to infer the presence or

absence of pain in patients (9). Despite its importance, pain

assessment remains a formidable challenge for clinicians (12),

particularly when dealing with nonverbal patients (13)—the

elderly present additional challenges due to diminished

expressive abilities or unwillingness to communicate (14).

Moreover, extensive research (15) highlights significant variations

in pain manifestation across genders and ages, underscoring the

complexity of the assessment process. There are additional
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complexities in pain assessment; heightened workload and fatigue

among nursing staff have been reported due to challenges of

patient monitoring (16). Concerns persist regarding the

objectivity and accuracy of observations, where inadequately

trained or biased observers may find it challenging to assess a

patient’s pain appropriately (17). Furthermore, variations in

interpreting behaviors may arise even among trained observers

(11). Social and interpersonal dynamics also significantly impact

the pain assessment process, influencing the judgment of

evaluators and the outward expression of pain by those being

evaluated (18). In several cases, patients may alter their behavior

in the presence of an observer (19), or it is difficult to express

the pain through scales and measurements (20). The self-report,

although pain is fundamentally a subjective experience, a one-

dimensional pain score inadequately evaluates this complex

phenomenon, resulting in insufficient pain treatment (21).

Due to the challenges mentioned above, substantial research is

dedicated to advancing automatic pain identification systems,

aiming to discern the presence and intensity of pain by analyzing

physiological and behavioral responses. In recent years,

researchers in artificial intelligence (AI) have dedicated their

efforts to developing models and algorithms to imbue machines

with cognitive capabilities, explicitly emphasizing the nuanced

task of identifying complex emotions and affective states,

including the intricate domain of pain. The advent of deep

learning methods has further driven the exploration of these

approaches for automated pain assessment, signifying a critical

stride toward more accurate and efficient methodologies in this

domain (9). Numerous studies have underscored the potential of

automated systems leveraging behavioral or physiological pain

assessment modalities (22). Sario et al. (23) assert the feasibility

of accurately detecting and quantifying pain through facial

expressions, showcasing their potential as a valuable tool in

clinical practice. The integration of multimodal sensing is

particularly promising, suggesting enhanced accuracy in pain

monitoring systems (11). Considering the temporal dimension of

these signals has been associated with improved and more

precise pain assessment (9). Another critical aspect of pain

monitoring systems revolves around the utility of wearable

devices that record biopotentials for estimating pain levels. A

limited number of studies have explored the employment of

mainstream wearable technology for data collection, potentially

due to a preference among researchers for more expensive,

highly accurate medical equipment. According to Leroux et al.

(21), “The challenge is not whether wearable devices will provide

useful clinical information but rather when we will start to use

them in practice to improve the field of pain.” Furthermore,

Claret et al. (24) explore the potential use of cardiac signals

acquired from wearable sensors for automatic emotion

recognition, affirming the viability of such an approach.

This study presents a proof of concept for an automatic pain

assessment framework integrating facial video data from an RGB

camera with heart rate signals. The framework is based on four

main components: the Spatial Module, creating embeddings from

video data; the Heart Rate Encoder, transforming heart rate

signals into embedding representations; the AugmNet, generating
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augmentations within the latent space through learning-based

methods; and the Temporal Module, which leverages the video

and heart rate embeddings for the final pain assessment. Our

main contributions are: (1) the assessment of the effectiveness

and the limitations of using video and heart rate as standalone

modalities in a unimodal manner, (2) the examination of the

efficacy of combining behavioral (video) and physiological (heart

rate) markers, driven by the need to address challenges arising

from their reliance on different sensing technologies and

information representation, and finally, (3) the analysis of the

recently introduced transformer-based architectures, focusing not

only on their performance but also their efficiency. Contrary to

other related studies focusing on raw cardiac signals, such as

electrocardiography (ECG) (25) and photoplethysmography

(PPG) (26), or extracting various features (27), including heart

rate (28), this study highlights the practical value of heart rate as

an isolated input. It can easily be acquired with wearables,

requiring no additional computation stages, making it a

potentially important information source in an automatic pain

assessment process.
2 Related work

Extensive research has been dedicated to estimating human

pain levels, employing individual input modalities, or exploring

the integration of various information channels in a multimodal

fashion. Leveraging publicly available pain datasets, which

encompass behavioral and physiological modalities as those

found in the BioVid Heat Pain Database (29), researchers have

introduced and proposed a wide array of methods. Each

approach carries distinct merits and drawbacks, encompassing

complexity considerations, computational cost, and performance.

These factors are critical for practical application in real-life

scenarios, such as clinical settings.

Various innovative approaches have emerged to estimate pain

levels from video data. Werner et al. (30) introduced an optical

flow method that tracks facial points to capture changes in facial

expressions across frame sequences. Focusing on the dynamic

nature of pain led to the development of long short-term

memory networks with sparse coding (SLSTM) (31). Tavakolian

et al. (32) proposed 3D convolutional neural networks (CNNs)

with varying temporal depths to capture short-, mid-, and long-

range facial expressions. A 3D CNN with self-attention structures

to enhance the significance of specific input dimensions was

presented in (33). Two strategies were employed to exploit the

video’s temporal dimension–encoding frames into motion history

and optical flow images, followed by a framework incorporating

a CNN and a bidirectional LSTM (biLSTM) (34). Videos were

encoded into single RGB images using statistical spatiotemporal

distillation (SSD) and trained a Siamese network in a self-

supervised setting (35). Werner et al. (36) adopted a domain-

specific feature approach, proposing facial action markers

classified by a deep random forest (RF) classifier. They have also

suggested a method of 3D distance computation among facial

points, yielding comparable results. Patania et al. (37) utilized
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deep graph neural network (GNN) architectures and dense maps

of fiducial points to detect pain, while (38) presented a multi-

task framework combining person identity recognition and pain

level estimation, utilizing a CNN with an autoencoder attention

module. Huang et al. (39) detected facial regions and employed a

multi-stream CNN for feature extraction, consisting of four sub-

CNNs, one for each facial region. An interesting element of their

framework was assigning learned weights to extracted features,

offering attention based on the varied contribution of each facial

region to pain expression. In a subsequent study (40), the

authors recognized that specific frames vividly exhibit pain

expressions in a video sequence. Consequently, they developed a

novel framework with attention saliency maps using CNNs,

gated recurrent units (GRUs), and learned weights associated

with each frame’s contribution to the final pain intensity

estimation. The study highlights the potential for compelling

performance by exploiting dynamic and salient features, while in

(41), an efficient transformer-based model achieving compelling

results was proposed.

Multiple studies have also explored unimodal approaches

focusing on the cardiac signal of electrocardiograms for the

recognition of acute pain. Martinez and Picard (27) devised a

recurrent neural network (RNN) and trained it on the extracted

R peaks and inter-beat intervals from ECG signals. Thiam et al.

(25) employed deep 1D CNN, incorporating ECG,

electrocardiogram (EMG), and galvanic skin response (GSR)

signals. Their research covered both unimodal approaches and

multimodal fusion techniques. Notably (33), proposed a

framework to derive pseudo heart rate information from videos

using a 3D CNN, achieving high performance in binary and

multiclass classification settings. In (42), heart rate variability

features were extracted, and a random forest classifier yielded

significant results in pain detection. Various features were

calculated from inter-beat intervals, including heart rate,

demonstrating notable outcomes (28). In a follow-up study (43),

the development of multi-task fully connected neural networks

led to a significant increase in performance.

Given the multidimensional nature of pain, a promising route

involves integrating modalities within a multimodal system. The

combination of diverse information sources has the potential to

enhance both specificity and sensitivity for the pain assessment.

Individual modalities demonstrate satisfactory predictive

performances, but their fusion generally results in improved

outcomes (22). Additionally, the use of cues from various

channels could prove not only beneficial but also essential,

particularly in clinical settings where, for various reasons, a

modality may be inaccessible (e.g., the patient rotates, and facial

visibility is obscured). Leveraging diverse features derived from

both video and biomedical sources, including facial expression,

head movement, GSR, EMG, and ECG, and employing various

fusion methods, demonstrated highly promising outcomes (42).

Multiple biopotential features were derived from ECG, EMG, and

GSR, along with facial expressions and head pose features (44),

while (45) focused solely on biosignals (again ECG, EMG, and

GSR). In (46), three aforementioned biosignals were utilized, and

combinations of handcrafted and learned features extracted from
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a biLSTM model were explored. Initially, the minimum relevance

method (MRMR) was applied to reduce the number of features,

yielding promising results. The study outlined in (47) utilized

deep denoising convolutional autoencoders (DDCAE) to

compute a latent representation for each biopotential, (i.e., ECG,

EMG, GSR), followed by a weighting stage before the

classification process presented promising results. Huang et al.

(33) employed a 3D CNN and probabilistically combined

computed facial features and pseudo heart rate information from

the vision modality, achieving state-of-the-art performances.

This study aims to integrate behavioral and physiological

modalities in a multimodal manner, combining facial videos with

heart rate extracted from ECG signals. The proposed approach is

the first to leverage videos and heart rate as the sole cardiac

feature, resulting in high performances with minimal

framework parameters.
3 Methodology

The preprocessing methods for video and ECG, the proposed

framework design, the developed augmentation methods, and the

implementation details of the pretraining process are described

in this section.
3.1 Preprocessing

Prior to entering data into the framework for pain assessment,

preparatory steps were taken to ensure the modalities were

appropriately processed. Specifically, since raw ECG data is the

input for the cardiac signal, computing heart rate becomes a

crucial step. One of our primary objectives is to explore heart

rate as the sole feature. This intention is motivated by its

advantages, such as being readily obtainable from wearables,

making it both cost-effective and easily accessible, thereby

establishing it as a conceivably important feature for automatic

pain assessment.

3.1.1 Video preprocessing
Video preprocessing involved face detection to isolate the facial

region. We employed the MTCNN face detector (48), which

utilizes multitask cascaded convolutional neural networks for

predicting face and landmark location. We mention that the

prediction of landmarks is necessary since they enable face

alignment. However, it was observed that the face alignment

diminishes the expression through head movement, a behavioral

manifestation of the pain. Therefore, face alignment was

excluded from the proposed pipeline. In addition, it is important

to note that the resolution of frames after the face detection

process was set at 448� 448 pixels.

3.1.2 ECG preprocessing & analysis
We employ the Pan-Tompkins Algorithm (49) to detect the

QRS complex, the most distinct wave complex in an ECG

signal. The algorithm involves two stages: preprocessing and
Frontiers in Pain Research 04
decision-making. Preprocessing addresses noise removal, artifact

elimination, signal smoothing, and QRS slope enhancement. The

decision-making phase covers initial QRS detection using

adaptive thresholds, a retrospective search for missed QRS

complexes, and a procedure for T wave discrimination. Figure 1

illustrates the preprocessing steps applied to raw ECG data. After

the precise identification of R waves, the estimation of inter-beat

intervals (IBIs) was undertaken, and the extraction of the most

relevant features followed. Precisely, the mean of IBIs was

calculated as:

m ¼ 1
n

Xn
i¼1
ðRRiþ1 � RRiÞ; (1)

where n is the total number of IBIs, and RRi represents consecutive

R time points. Subsequently, the following calculation was

performed to determine the heart rate:

HR ¼ 60 � FS
m

; (2)

where FS denotes the sampling frequency of the ECG recording.
3.2 Framework architecture

The proposed framework (Figure 2) comprises four main

components: the Spatial-Module extracting embeddings from the

video, the Heart Rate Encoder mapping the heart rate signal into

a higher dimensional space, the AugmNet creating augmentations

in the latent space, and the Temporal-Module responsible for the

final pain assessment.

3.2.1 Spatial-module
The architecture of this module is based on the principles

outlined in “Transformer in Transformer” as proposed by (50).

The initial video frame has a resolution of 448� 448 pixels and

is segmented into 4 tiles (quadrants), each containing 224� 224

pixels. The utilization of the tiling procedure, capitalizing on the

original frame resolution, was inspired by the literature on

satellite imaging analysis, where similar pipelines are applied. We

leverage the 4 tiles and the original full frame in our proposed

pipeline, resizing the latter to 224� 224 pixels. Consequently,

each video frame corresponds to a total of 5 images,

F k ¼ [Fk;1; Fk;2; . . . Fk;t], where k is the individual frame

number, and t is the tile number, including the resized full

frame. Afterward, each tile is initially divided into n patches,

denoted as F k;t ¼ [Fk;t;1; Fk;t;2; . . . Fk;t;n] [ Rn�p�p�3, where

p� p represents the resolution of each patch (16� 16), and 3

indicates the number of color channels. Subsequently, these

patches undergo further division into m sub-patches, enabling

the model to capture the image’s global and local feature

representations. Consequently, each input tile of a frame is

converted into a sequence of patches and sub-patches,

F k;t ¼ [Fk;t;n;1; Fk;t;n;2 � � � ; Fk;t;n;m]. Therefore, each input video
frontiersin.org
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FIGURE 1

ECG signal preprocessing stages (43). (1st row) Raw ECG signal. (2nd row, left) Signal after band-pass filtering (BPF) to isolate the frequency range of
interest. (2nd row, right) Signal post-derivative filtering to highlight the QRS complex. (3rd row, left) Squared signal to accentuate dominant peaks.
(3rd row, right) Moving window average applied to the squared signal, illustrating the final signal ( ) with identified R peaks ( ), noise level (––),
signal level ( ), and adaptive thresholding ( ).
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frame is represented as:

F k ! Fk;t;n;m j t [ [1; 5]; n [ [1; 196]; m [ [1; 16]
� �

; (3)

where Fk;t;n;m [ Rs�s�3 denotes the m-th sub-patch within the n-th

patch of the t-th tile in the k-th frame of each video. The resolution

of each sub-patch is s� s, specifically 4� 4. Each frame comprises

5 image representations, each encompassing 196 patches, with each

one of these patches containing 16 sub-patches. Subsequently, the

patches and sub-patches undergo linear projection, resulting in

embeddings Z and Y . The succeeding step involves position

embedding to preserve spatial information for each patch. This

process employs 1D learnable position encoding, assigning the

position encodings to each patch:

Z0  Z0 þ Epatch; (4)

where Epatch represents the position encoding. Likewise, individual

position encodings are added for each sub-patch within a patch:

Yi
0  Yi

0 þ Esub�patch; (5)

where Esub�patch represents the positional encodings for sub-

patches, and i ¼ 1; 2; . . . ; m is the index of a sub-patch within

a patch. The sub-patches undergo processing in the Inner
Frontiers in Pain Research 05
Encoder, comprising 4 self-attention heads (51), employing dot

product attention and represented as:

AttentionðQ; K; VÞ ¼ softmax
QKTffiffiffiffiffi
dk
p V

� �
: (6)

The output embedding from the Inner Encoder is incorporated into

the patch embedding, leading the combined representation to the

subsequent Outer Encoder process. The Outer Encoder essentially

mirrors the Inner Encoder structure, featuring 10 self-attention

heads. The entire Spatial-Module comprises 12 parallel blocks,

collectively producing embeddings with a dimensionality of

d ¼ 100.

For each input video frame, 5 distinct output embeddings are

generated, each with a dimensionality 100. These embeddings are

then added together, creating a final embedding representation

for the frame:

D ¼ dFullFrame þ ðdTile1 þ dTile2 þ dTile3 þ dTile4Þ � c;
D [ R100;

(7)

where c is a constant applied exclusively to the embeddings of the

tiles to retain only a proportion of the original information

encapsulated in these embeddings. Next, the embedding

representation D for each frame is concatenated with the
frontiersin.org
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FIGURE 2

Overview of the proposed framework for automatic pain assessment. (A) Video analysis pipeline. (B) ECG analysis pipeline. (C) Fusion analysis pipeline.
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embeddings of the remaining frames. This process creates a final

embedding representation for the entire video:

VD ¼ [D1kD2k . . . kD f ]; VD [ RN ; (8)

where f denotes the number of frames in the video, and N

represents the dimensionality of the final embedding.
3.2.2 Heart rate encoder
As described in Section 3.1.2, the heart rate is computed for

each second of the original ECG, resulting in an initial heart rate

vector of size h ¼ u for the u-second recordings. We note that,

upon identifying beats per minute (BPM) under 60 in a 1-second

ECG segment, which renders heart rate calculation unfeasible,

the methodology involves averaging the heart rate value from 1

preceding and 1 subsequent data point to fill in the missing

value, ensuring consistent u data points for u-second recordings.

The Heart Rate Encoder is a transformer-based neural network

akin to the Inner and Outer Encoders. In terms of the attention

mechanism, this module employs 1 cross-attention head instead

of self-attention, succeeded by a fully connected neural network

(FCN). Introducing asymmetry into the attention operation via

cross-attention reduces computational complexity, enhancing the

module’s efficiency. Specifically, in contrast to the projection of

input with dimensions M � D (as outlined in Section 3.2.1), the

Q in cross-attention is a learned matrix with dimensions N � D,

where N , M. The internal embeddings of this module have a

dimensionality of 512 and entirely comprise only 1 block depth.

Additionally, we have incorporated Fourier feature position

encoding (52) for position encoding. The primary objective of

this encoder is to map the original vector h into a higher-

dimensional space, enhancing both the richness and quality of

the feature representation, h [ Ru ! Eh [ R2048, where Eh is the

the output embedding of this encoder.

In the subsequent phase, the embedding from the heart rate

encoder undergoes dimensional expansion through a bicubic

interpolation module. This step generates a feature representation

of the original heart rate, facilitating its seamless integration with

the embedding representation of the video through the addition

operation. The interpolation module underlines the necessity for

identical dimensions in both embedding vectors. Importantly,

this non-learning-based method proves efficient and effective for

encoding. Moreover, the interpolation-based approach offers the

flexibility to dynamically determine the dimensionality of the

final output embedding, contrasting with the predetermined

nature of a neural network-based approach. Specifically:

Bh ¼
X3
i¼0

X3
j¼0

aijðEhÞ � ðx � x0ðEhÞÞi � ðy � y0ðEhÞÞj; (9)

where aij represents the interpolation coefficients, and Bh denotes

the resulting output vector obtained through bicubic

interpolation. The dimension of Bh is N , identical to VD.
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3.2.3 AugmNet
AugmNet, inspired by recent advancements in augmentation

literature (53), is a learning-based approach designed to learn

augmentation patterns within the latent space. Unlike traditional

methods that apply image augmentations (e.g., rotation,

cropping) directly in the pixel space, AugmNet generically

implements transformations on the embeddings. This approach

eliminates the need for crafting specific transformations

customized explicitly to each modality, e.g., image, signal, and

text. In the proposed automatic pain assessment framework,

integrating this module serves to regularize the learning process,

mitigating overfitting concerns. Furthermore, these learning-

based transformations corrupt the input embeddings. This

strategy forces the subsequent model, particularly the Temporal-

Model, to extract more refined and representative features,

ultimately enhancing the model’s performance in the pain

assessment task. Moreover, the proposed approach is modality-

agnostic, functioning equivalently with embedding

representations of any original modality, such as video and heart

rate. The AugmNet method incorporates a neural network

architecture, employing an encoder-decoder structure.

Specifically, the encoder and decoder are composed of only 2

fully connected layers, with the nonlinear activation function

ELU applied after each layer.

For a session of duration u seconds, it results in

u� frames per second frames and u� sampling frequency data

points for each video and ECG, respectively. In the video

analysis pipeline, the Spatial-Module generates an embedding

representation, VD (8), from the original video, with dimensions

d � FPS ¼ N . In the ECG analysis pipeline, following heart rate

extraction, a feature representation with a dimension of u is

produced, corresponding to one data point per second.

Subsequent application of the Heart Rate Encoder and bicubic

interpolation yields an embedding representation, Bh (9), with

dimension N . The fusion of video and heart rate embeddings

occurs at a session level. Specifically, VD and Bh are combined

through addition, merging the information from the original

input modalities. This composite embedding is subsequently

fed into AugmNet

where P is the transformed embedding vector, serving as input for

the final module, the Temporal-Module. AugmNet functions

exclusively during the training phase as a conventional

augmentation method. However, it is inactive during inference.
3.2.4 Temporal-module
This module, similar to Heart Rate Encoder, is a transformer-

based model that extends beyond multi-head cross-attention by

combining it with multi-head self-attention. It features 1 multi-

head cross-attention block and 3 successive multi-head self-

attention blocks, with 1 and 8 attention heads correspondingly.

Subsequent to each attention block, there is an FCN. Moreover,

the internal embeddings within this module possess a
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TABLE 1 Publicly available datasets utilized for the pretraining process of
the framework.

Dataset # samples # classes Task
VGGFace2 (54) 3.31M 9,131 Face

AffectNet (55) 0.40M 8 Emotion

Compound FEE-DB (56) 6,000 26 Emotion

RAF-DB basic (57) 15,000 7 Emotion
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dimensionality of 128, with a total block depth of 1. The position

encoding approach is identical to the Heart Rate Encoder,

incorporating Fourier feature position encoding. The module

processes the input embedding P or the ðVD þ BhÞ in the case

that AugmNet is not applied, leading to the estimation of the

final classification score. The learning error is calculated during

this stage, and the entire framework undergoes training.

RAF-DB compound (57) 4,000 11 Emotion

ECG HBC Dataset (59) 0.45M 5 Arrhythmia

Task, all tasks involve classification.

3.3 Supplementary augmentation methods

In addition to the AugmNet module, which generates learning-

based transformations, we have incorporated and developed

supplementary augmentation techniques. The first developed

augmentation technique, Basic, involves a combination of

polarity inversion and noise insertion. This approach introduces

variations and perturbations to the original input by inverting

the polarity of positive and negative elements while

simultaneously introducing noise. The second technique,

Masking, involves applying masks to the embeddings. This

process sets specific elements within the vectors to zero. The size

of the masks is determined by random values, ranging from

10%–20% of the input embedding size, and is applied at random

positions within the vectors. Both augmentation methods operate

in the latent space, similar to AugmNet.
3.4 Pretraining

Before initiating the training procedure for automatic pain

assessment, we conducted individual pretraining for all modules,

excluding AugmNet. Regarding the Spatial-Module, we implement

a two-stage pretraining process. In the initial stage, the model

undergoes pretraining on the VGGFace2 (54), a facial recognition

dataset, learning foundational facial features. Subsequently, the

pretrained model undergoes optimized training with emotion

recognition datasets in a multi-task learning setting. These

datasets include the publicly available AffectNet (55), Compound

Facial Expressions of Emotions Database (56), RAF Face Database

basic (57), and RAF Face Database compound (57). This approach

enables the model to learn more specific features related to

emotional expressions associated with the manifestation of pain.

Following the multi-task learning process, the model learns from

the four datasets simultaneously. We follow the approach

proposed in (58) for the multi-task learning loss, where learned

weights multiply the independent losses, taking into account the

homoscedastic uncertainty of each task:

Ltotal ¼ [ew1LS1 þ w1]þ [ew2LS2 þ w2]þ [ew3LS3 þ w3]

þ [ew4LS4 þ w4]; (12)

where LS is the loss for each task corresponding to different datasets

and w represents the learned weights that guide the learning process

to minimize the combined loss Ltotal, considering all the individual

losses in a balanced manner. The Temporal-Module is exclusively

trained on the VGGFace2 dataset. Due to its architecture, the
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images are first flattened into 1D vectors before fed into the

module. Finally, the Heart Rate Encoder undergoes pretraining

using the ECG Heartbeat Categorization Dataset (59). The

specific dataset comprises two collections of heartbeat signals

derived from two notable datasets in heartbeat classification: the

MIT-BIH Arrhythmia Dataset (60) and the PTB Diagnostic ECG

Database (61, 62). Table 1 details the datasets used in the

training procedure.
3.5 Dataset details

In this research, in order to evaluate the proposed framework,

the publicly accessible BioVid Heat Pain Database (29)

wasemployed, which comprises facial videos, electrocardiograms,

electromyograms, and skin conductance levels from 87 healthy

participants (44 males and 43 females, aged 20–65). The dataset’s

experimental design utilized a thermode to induce pain in the

participants’ right arm. Before commencing data collection, the

pain threshold (where sensation shifts from heat to pain) and

tolerance threshold (the point at which pain becomes intolerable)

of each participant were established. These thresholds defined the

minimum and maximum pain levels, with two additional levels

in between, resulting in four distinct pain intensities.

Consequently, five intensity levels were identified: No Pain (NP),

Mild Pain (P1), Moderate Pain (P2), Severe Pain (P3), and Very

Severe Pain (P4). The temperatures for pain stimulation were

uniformly distributed within the range from P1 to P4, never

surpassing 50:5�C. Each participant underwent pain stimulation

20 times at the four predetermined intensity levels (P1 to P4).

The application of each stimulus lasted 4 s, followed by a random

recovery period between 8 to 12 s. Alongside 20 baseline

measurements (NP=32�C), this resulted in 100 stimulations per

participant, administered in a randomized order. The dataset

underwent preprocessing to segment 5.5-s windows, beginning

1-s post-reaching the target temperature for every stimulation.

Consequently, it comprised 8,700 samples, each 5.5 s long, across

87 subjects, with an even distribution among the five classes for

each modality.
4 Experimental settings & results

The study utilized the videos and electrocardiograms from Part

A of BioVid, incorporating all available samples from the 87
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subjects. The videos have a frame rate of 25 frames per second

(FPS), and the ECG recordings are sampled at 512 Hz. Each

session lasts 5.5 s, resulting in 138 video frames and ECG vectors

with 2,816 elements, subsequently transformed into heart rate

vectors of 5 data points. All the available frames and data points

from videos and cardiac signals were employed in the conducted

experiments. Our experimental strategy involves iteratively

refining techniques and selecting the most effective combination

in each round. The selected combination undergoes an extended

training period (500 to 800 epochs) to enhance feature learning

and potentially achieve better performance. Table 2 includes the

training details of the framework regarding the automatic pain

assessment task.

The pain assessment experiments were conducted in binary

and multi-level classification scenarios, encompassing the

evaluation of each modality separately and their combination.

The binary task distinguishes between No Pain (NP) and Very

Severe Pain (P4), while the multi-level classification (MC)

involves all pain classes in the dataset. The evaluation

methodology employed is the leave-one-subject-out (LOSO)

cross-validation. The classification metrics include accuracy,

precision, recall (sensitivity), and F1 score. In addition, it is

important to note that an identical training process is

maintained for both binary (NP vs. P4) and multi-level (MC)

tasks without introducing any varying schedule or optimization.
4.1 Video modality

The experiments concerning the video modality include

analysis into the pretraining impact of the Spatial-Module, the

influence on the performance of the video analysis pipeline, i.e.,

specifically, the division into tiles, and the application of the

introduced augmentation methods. Table 3 presents all the

conducted experiments utilizing the video modality.
TABLE 2 Training details for the automatic pain assessment.

Optimizer Learning rate LR decay W
AdamW 1� 10�4 cosine

TABLE 3 Classification results utilizing the video modality reported on accur

Epochs Pretraining stage Pipeline

1st 2nd Full frame Tiles
500
500

✓

–

–

✓

✓

✓

–

–

500
500
500

–

–

–

✓

✓

✓

–

✓

✓

✓

✓

✓c

500
500
500

–

–

–

✓

✓

✓

✓

✓

✓

✓c

✓c

✓c

800 – ✓ ✓ ✓c

Stage, referring to pretraining process for Spatial-Module; Mask, Masking; c, constant

multiclass pain level.

The bold values indicate the higher performance.
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A noticeable difference in performance is apparent in

examining the classification outcomes based on the first and

second pretraining stages for the Spatial-Module. Specifically,

when focusing on the NP vs. P4 task, reliance solely on the first

pretraining stage yields a performance level of 72.56%. In

contrast, incorporating the second stage increases the

performance to 74.25%. Likewise, the difference between the

second and first stages remains noteworthy in multi-level

classification. The improvement is discernible, corresponding to

33.34%, with an additional 1.12% in this multi-level pain

assessment task, demonstrating that the additional affective-

related pretraining resulted in better embedding representations.

The subsequent series of experiments focuses on the

incorporation of tiles. Initially, employing the four tiles as the

frame representation resulted in a substantial decrease in

performance. Specifically, there was a reduction of over 6%

in the binary task and a smaller yet significant decrease of 1.85%

in the multi-level task. This suggests a clear detriment to video

analysis when utilizing tiles. We attribute this decline to the

localized nature of each tile. The embeddings extracted from

individual tiles may capture information unrelated to pain

manifestation, such as unexpressed face regions or the inclusion

of background elements in some frames. Subsequently,

introducing the resized (i.e., 224� 224) full-frame in

combination with the tiles further diminished the results,

yielding 65.11% and 27.84% accuracy for the binary and multi-

level tasks, respectively. Despite the unfavorable outcome,

incorporating the full-frame was considered valuable since the

initial experiments were based on achieving promising results.

This drove the subsequent experiment, where the full-frame was

combined with the tiles, introducing a coefficient applied to the

latter. The introduction of a coefficient (c ¼ 0:1) involves

multiplying the tile embeddings, retaining only 10% of the initial

information. This modification enhanced performance, achieving

74.86% and 33.86% accuracy for the tasks, showcasing an
eight decay Warmup epochs Batch size
0.1 50 32

acy %.

Augmentations Task

Basic Mask AugmNet NP vs. P4 MC
✓

✓

–

–

–

–

72.56
74.25

31.22
33.34

✓

✓

✓

–

–

–

–

–

–

68.07
65.11
74.86

31.49
27.84
33.86

✓

✓

✓

✓

–

✓

–

✓

✓

73.05
74.83
73.16

32.14
33.73
32.87

✓ ✓ ✓ 77.10 35.39

-coefficient applied exclusively to the tiles; NP, no pain; P4, very severe pain; MC,
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improvement of 0.61% and 0.52% compared to the exclusive

utilization of the full-frame.

Two augmentation methods, Masking and AugmNet, were

introduced in the subsequent experiments alongside Basic. The

application of Masking resulted in a performance decline of

1.81% and 1.72%, while AugmNet also contributed to a decrease,

albeit smaller, with a reduction of 0.03% and 0.13%. Applying

both methods yielded accuracy levels that surpassed those

achieved with Masking isolated but did not reach the individual

performance observed with AugmNet. Despite the immediate

outcomes, combining all augmentation methods emerged as the

most promising choice for prolonged training. This decision

stems from the consideration that an extended training period

may introduce overfitting concerns. A heavy regularization

strategy, exemplified by the combined application of all

augmentation methods, is anticipated to address and mitigate

potential overfitting issues effectively. Indeed, the prolonged

training period resulted in final accuracy rates of 77.10% and

35.39% for binary and multi-level pain classification, respectively,

in the unimodal vision-based approach.
4.2 Heart rate modality

The experiments regarding the heart rate modality include the

utilization of the encoder and the application of the introduced

augmentation methods. Table 4 presents all the conducted

experiments utilizing the heart rate modality.

Employing the original heart rate vectors with a dimensionality

of h ¼ 5, the classification scores for distinguishing between NP

and P4 were 61.70% and for the multi-level task 27.60%.

Subsequently, through the application of the Heart Rate Encoder,

which mapped the original vectors to a higher-dimensional

space, resulting in embeddings of size h ¼ 2048, there was a

modest enhancement in performance. Specifically, we observed

an increment of 0.23% for the binary classification task and

0.08% for the multi-level classification task. The observed

performance increase appears minimal despite the expanded

representation of the encoded heart rate vector due to its

increased size. This phenomenon may be attributed to the fact

that, although the embedding is over 400% larger than the

original input, the inherent information within the limited data

points defining the heart rate may not be sufficient to yield a

significantly improved feature representation. Despite the
TABLE 4 Classification results utilizing the heart rate modality reported on a

Epochs HR encoder Augmenta

Basic Mask
500
500

–

✓

✓

✓

–

–

500
500
500

✓

✓

✓

✓

✓

✓

✓

–

✓

800
800

✓

✓

✓

–

✓

–

The bold values indicate the higher performance.
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marginal improvement, the utilization of the encoder remains

crucial as our objective is to generate larger-sized embeddings.

This is particularly essential for our multimodal approach, where

we seek to integrate information from video and heart rate data.

Further details on this integration will be expounded upon in the

following section.

Similar to the video modality, experiments regarding the

augmentation methods applied to the heart rate were conducted.

The application of Masking resulted in an increase of 0.02% for

the binary task and 0.05% for the multi-level task.

Correspondingly, AugmNet led to further improvement, reaching

62.09% and 28.11% for the binary and the multi-level tasks,

respectively, while combining all the augmentation methods led

to a decrease, resulting in 61.87% and 27.96%. During the

extended training period of 800 epochs, a classification accuracy

of 64.87% was attained for the binary task and 29.81% for the

multi-level task when employing a combination of all

augmentation methods. Despite the increase, we observed that

introducing augmentations to the heart rate signal poses more

challenges for accurate classification than the video. For this

reason, we conducted a repeat of the extended training

experiment. In this iteration, we excluded the augmentation

methods of Basic and Masking, retaining only AugmNet. As a

result, the performance for the binary task improved to 67.04%,

and for the multi-level task, it reached 31.22%. Reducing

corruption within the heart rate embedding space contributed to

enhanced performance. We observe a moderate divergence in the

behavior of the augmentation pipeline between the heart rate and

video modality. This indicates the challenges of employing a

single extracted isolated feature as input in a machine learning-

based system. We hypothesize that the limited information

encapsulated in heart rate embeddings makes them more

susceptible to significant degradation caused by augmentations.

This stands in contrast to video embeddings, derived from a

more extensive and information-rich modality, which can more

gracefully accommodate such augmentations.
4.3 Multimodality

The results for the fusion of the two modalities are presented in

Table 5. Drawing insights from the experiments conducted on

video and heart rate modalities, we opted for an extended

training time of 800 epochs. Utilizing the tiles with coefficient
ccuracy %.

tions Task

AugmNet NP vs. P4 MC
–

–

61.70
61.93

27.60
27.68

–

✓

✓

61.95
62.09
61.87

27.73
28.11
27.96

✓

✓

64.84
67.04

29.81
31.22
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TABLE 5 Classification results utilizing the video & the heart rate modality reported on accuracy %.

Epochs HR encoder Pipeline Augmentations Task

Full frame Tiles Basic Mask AugmNet NP vs. P4 MC
800 ✓ ✓ ✓c – – ✓ 82.74 39.77

The bold values indicate the higher performance.
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c ¼ 0:1, AugmNet was exclusively employed as the augmentation

method. The proposed strategy achieved a classification accuracy

82.74% for NP vs. P4, while for the multi-level classification task,

it reached 39.77%. This represents a notable improvement, with a

5.64% and 15.70% higher performance compared to the video

and heart rate modalities, respectively, for the binary task.

Similarly, the combined approach demonstrates a 4.38% and

8.55% performance increase for the multi-level task over the

individual modalities. Integrating these two crucial modalities

yields highly effective pain assessment performances and

surpasses the results achieved by each modality.
4.4 Comparison with existing methods

In this section, we conduct a comparative analysis of the results

of our method with other existing approaches in the literature. Our

evaluation utilizes Part A of the BioVid dataset, involving all 87

subjects. It follows the same evaluation protocol—leave-one-

subject-out (LOSO) cross-validation—to ensure objective and

accurate comparisons. Specifically, we compare our approach

with both unimodal and multimodal studies, categorizing them

into (1) video-based studies, (2) ECG-based studies, and (3)

multimodal studies, irrespective of the number or type of

modalities employed. The corresponding results are summarized

in Table 6.

In video-based studies, our method, achieving 77.10% for the

binary task and 35.39% for the multi-level task, stands out as

one of the most effective in terms of performance. Notably, it

surpasses the average performance of the other studies by

approximately 4.7% for the binary and 3.4% for the multi-level

pain assessment. In the context of ECG-based studies, our

method demonstrated noteworthy performance with 8.5% and

18.1% higher accuracy than the average for the binary and multi-

level tasks, respectively. Intriguingly, our approach achieved the

highest classification performance for the multi-level task,

reaching 31.22%. These results are particularly significant as our

method solely utilizes the heart rate as an extracted feature from

the electrocardiography. This showcases not only its capability to

assess pain but also its ability to attain state-of-the-art results.

Finally, in multimodal studies, our method achieved a

noteworthy accuracy of 82.74% for the NP vs. P4 task, placing it

among the top results. It is outperformed only by studies

(33, 47), which reported 88.10% and 83.99%, respectively. For

the multi-level task, direct comparisons are limited as only a few

studies have conducted this specific experiment. Study (33)

achieved 42.20%, and (25) reported 36.54%, highlighting the

competitive performance of our method in this context.
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4.5 Inference time

We investigated the video-based approach, the video with the

additional usage of tiles, the heart rate-based approach, the heart

rate concurrently with the encoder, and the multimodal

approach. Figure 3 represents each method’s inference time in

seconds (s) and the corresponding average accuracy

performances between the binary and multi-level tasks. Table 7

outlines the number of parameters and the computational cost in

terms of floating-point operations (FLOPS) for each component.

The inference times are derived on an Intel Core i7-8750H CPU.

The reported inference time encompasses face detection for each

frame but excludes the heart rate extraction from the original

electrocardiography. This intentional exclusion aligns with our

focus on investigating the usage of heart rate as a cardiac feature

automatically provided by wearables.

We observe that the inference time for the video modality

using the original pipeline is approximately 26 s. However,

adopting the tile pipeline increases the inference time

dramatically to about 130 s. The time increase is expected,

considering that in the first case, a single image representation is

used for each frame, while in the second case, five image

representations are employed (one full frame and four tiles). In

the heart rate signal context, 1.2 s are required for the

completion of a pain assessment. Notably, with the integration of

the Heart Rate Encoder, the processing time remains nearly

unchanged, showing a slight increase of less than half a second.

This underscores the efficiency inherent in this specific module.

Finally, the proposed multimodal framework, incorporating the

tiles and the Heart Rate Encoder, requires about 131 s.
4.6 Interpretation

Improving the models’ interpretability is crucial for gaining

acceptance and integrating them effectively into the clinical

domain. In this study, attention maps have been generated from

both the Spatial-Module and the Temporal-Module (examples are

illustrated in Figure 4).

Concerning the Spatial-Module, attention maps are generated

based on the weights contribution of the last fully connected

layer. These weights are then interpolated onto the images,

effectively visualizing the areas where the model focuses. In

Figure 4A, we present an original frame sequence alongside three

variations of attention maps: (1) derived when the Spatial-

Module followed the first stage of pretraining, (2) after the

second stage of pretraining, and (3) when trained on BioVid. In

the first pretraining stage, i.e., founded on a face recognition
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TABLE 6 Comparison of studies utilizing BioVid & LOSO cross-validation reported on accuracy %.

Study Modality Method Task

Features Machine learning Params (M) FLOPS (G) NP vs. P4 MC
(30) Video Optical flow RF – – 70.20 –

(31) Video Raw SLSTM – – 61.70 29.70

(32) Video Raw 2D CNN, 3D CNN 423.20 – 86.02 –

(33) Video Raw 3D CNN, – – 77.50 34.30

(34) Video Raw 2D CNN, biLSTM – – 69.25 –

(35) Video Raw 2D CNN 25.00⊚ 4.00 71.00 –

(36) Video Facial action descriptors Deep RF – – 72.40 30.80

(36) Video Facial 3D distances Deep RF – – 72.10 30.30

(37) Video Fiducial points GNN – – 73.20 –

(38) Video Raw 2D CNN, AE-ATT – – 86.65 40.40

(39)† Video Raw 2D CNN – – 71.30 37.60

(40)† Video Raw 2D CNN, GRU 150.00⊚ – 73.90 39.10

(41) Video Raw Transformer 24.00 4.20 73.28 31.52

(42) Video Facial landmarks, 3D distances RF 71.60 –

Our Video Raw Transformer 4.20⊛ 1.62 77.10 35.39

(25) ECG Raw 1D CNN 1.80⊚ – 57.04 23.23

(27) ECG Domain-specific⋇ LR – – 57.69 –

(28) ECG Domain-specific⋇ SVM – – 58.39 23.79

(33) ECG Heart rate★ 3D CNN – – 65.00 28.50

(42) ECG Domain-specific RF – – 62.00 –

(43) ECG Domain-specific FCN 4.09⊙ 0.40 69.40 30.24

(44) ECG Domain-specific⋇ SVM – – 63.50 –

Our ECG Heart rate Transformer 6.03⊛ 1.25 67.04 31.22

(25) ECG, EMG, GSR Raw 2D CNN 10.00⊚ – 76.72 36.54

(27) ECG, GSR Domain-specific⋇ SVM – – 72.20 –

(33) Video1, ECG2 Raw1, heart rate2★ 3D CNN – – 88.10 42.20

(42) ECG1, EMG1, GSR1 Domain-specific1⋇ RF – – 74.10 –

(42) Video1, ECG2, EMG2, GSR2 Facial landmarks1, 3D distances1, domain-specific2⋇ RF – – 77.80 –

(44) Video1, ECG2, GSR2 Facial landmarks1, 3D distances1, domain-specific2⋇ RF – – 78.90 –

(44) Video1, ECG2, EMG2, GSR2 Facial landmarks1, 3D distances1, domain-specific2⋇ SVM – – 76.60 –

(47) ECG, EMG, GSR Raw DDCAE 4.00⊚ – 83.99 –

Our Video1, ECG2 Raw1, heart rate2 Transformer 8.60⊛ 2.44 82.74 39.77

M, millions; G, Giga; RF, random forest; AE-ATT, autoencoder attention; SVM, support vector machines; LR, logistic regression; –, missing value.

The bold values indicate the higher performance.
†Reimplemented for pain intensity estimation on BioVid by (33).
★Pseudo heart rate gain.
⋇Numerous features.
⊚Parameter count estimated from provided paper details.
⊛AugmNet excluded from parameter count, not used in inference.
⊙Parameter count not mentioned in study, provided directly by authors.
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task, the Spatial-Module generates attention maps focusing on the

entire facial region, emphasizing specific areas. The model exhibits

heightened attention to facial components, emphasizing the

zygomatic and buccal regions as well as the oral and mental

regions. Furthermore, we observe a discernible focus on the nasal

region. In the second pretraining stage, founded on a multi-task

emotion recognition setting, the Spatial-Module produces

attention maps with heightened specificity. In contrast to the first

pretraining stage, where attention is distributed across the entire

face region, the model focuses on distinct areas. These areas

coincide with those emphasized in the first pretraining stage but

exhibit more pronounced and explicit attention. Furthermore,

attention maps generated after training on the BioVid dataset for

pain assessment reveal additionally heightened explicitness

towards distinct facial areas. The identified areas of interest

persist across all three variations of attention maps. The notable
Frontiers in Pain Research 12
distinction lies in the decreased attention in less relevant regions,

directing and maintaining focus on the critical areas. Finally, as

pain-related expressions manifest, the attention maps consistently

depict the model’s adeptness at recognizing these variations and

directing its focus accordingly.

Attention maps were also generated from the Temporal-

Module utilizing input embeddings. These maps are also derived

from the contribution of weights in the module’s final fully

connected layer and interpolated alongside the input, creating

rectangle shapes which are easy to visualize. Figure 4B provides

an example with three distinct input scenarios: (1) a video

embedding, (2) a heart rate embedding, and (3) a fused

embedding, combining video and heart rate. Overall, we observed

that the attention maps in all three versions exhibit a grid-like

pattern reminiscent of a tartan design, showcasing varying spatial

frequencies that seem to scan the input. This phenomenon may
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TABLE 7 Number of parameters and FLOPS for the components of the
proposed framework.

Module Params (M) FLOPS (G)
Spatial-module 2.57 1.19

Heart rate encoder 4.40 0.82

AugmNet 1.02 0.02

Temporal-module 1.63 0.43

Total 9.62 2.46

FIGURE 4

(A) Attention maps from the Spatial-Module. (B) Attention maps from
the Temporal-Module. Yellow and red colors indicate high attention
to the particular region. (A) (1st row) Original frame sequence. (2nd
row) Computed from the Spatial-Module following the first stage
pretraining. (3rd row) Computed from the Spatial-Module
following the second stage pretraining. (4th row) Computed from
the Spatial-Module trained on BioVid. (B) (1st row) Computed from
the Temporal-Module with video embedding. (2nd row)
Computed from the Temporal-Module with heart rate embedding.
(3rd row) Computed from the Temporal-Module with fused (video
& heart rate) embedding.

FIGURE 3

Comparison of average accuracy and inference time for unimodal
and multimodal methodologies across NP vs. P4 and MC tasks.
Note: The plot employs a dual-y-axis format (left for accuracy,
right for time) to illustrate the relation between performance and
efficiency, with methodologies listed on the x-axis.
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be attributed to incorporating Fourier position encoding, as

mentioned in (52), in the context of similar perceiver-like

transformer architectures. The attention map generated from the

video embedding input reveals a high overall intensity of

attention across the input. On the other hand, the heart rate

input generates a map with less attention spread across the input,

yet there are specific areas marked by a notably high focus

indicated by the red color. The attention map from the fused

embedding demonstrates a medium intensity, aligning with

expectations due to the combination of video and heart rate

embeddings. We observe a tendency in the attention maps,

particularly those generated from the video and fused

embeddings, to exhibit a pronounced focus on the right portion

of the rectangle, corresponding to the session’s conclusion. This

aligns with the real-time manifestation of pain experienced by

the subject towards the end of the session.
5 Discussion

In this study, we developed a multimodal framework that

leverages videos and heart rate signals for automatic pain

assessment. Our proposed method comprises four pivotal

modules distinguished by efficacy and efficiency. Notably,

boasting a mere 2.57 million parameters, the Spatial Module

stands out as one of the small-scale and most efficient
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vision-based models of automatic pain assessment documented

in the literature. In our case, given the limited studies available

or from which we could extract relevant information, it has been

demonstrated that our proposed model is capable of achieving

comparable or superior performance with a significantly smaller

model size. Indeed, our model’s efficiency and high performance

are attributed to the specific module’s rigorous and sophisticated

pretraining process. We presented the substantial benefits of

multi-task pretraining on affective-related datasets, a key factor

enabling the development of an efficient model with exceptional

performance in the downstream task of pain estimation. The
frontiersin.org
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highly efficient Heart Rate Encoder module, comprising 4.40

million parameters, demonstrated remarkable effectiveness in

encoding the original heart rate vector into a higher-dimensional

space for fusion with the video embedding. During inference, the

entire encoding process is completed in less than half a second.

This efficiency is attributed to the combination with the applied

bicubic interpolation, which facilitates dynamic encoding of

inputs and allows for generating outputs with arbitrary sizes on

the fly. The AugmNet module is a learning-based augmentation

method that generates transformations within the latent space.

This eliminates the necessity to craft specific design

augmentations for each modality. It is important to note that,

akin to other augmentation techniques, careful consideration is

required in their application to prevent issues such as over-

regularization or other challenges related to the learning process

of the models. The Temporal-Module, featuring a modest 1.63

million parameters, serves as the final component responsible for

estimating the pain level of a session. It utilizes embeddings

derived from either video, heart rate, or a combination. A

notable characteristic of this module is its integration of cross-

and self-attention, contributing to its efficacy and efficiency. All

the modules utilized in inference, except AugmNet, were founded

on the transformer architecture. This underscores that adequate

pretraining and optimization can achieve compelling results with

a minimal model size. This is particularly noteworthy as

transformer-based models are often associated with large-scale

settings, and our approach showcases their efficacy even in

compact configurations.

Our experiments demonstrated that video can be a valuable

source of information for understanding an individual’s experience

of pain. This holds because a video captures various aspects of a

person’s behavior, such as facial expressions, eye gaze, head

movements, and even subtle changes in skin color during stressful

experiences such as painful events. Our approach achieved an

accuracy of 77.10% for the binary classification task, distinguishing

between no pain and very severe pain by leveraging the video

modality. Additionally, for the multi-level pain classification task,

encompassing five pain levels, including the no-pain condition, we

attained a recognition accuracy of 35.39%. Our exploration of the

heart rate signal, as a proof of concept, demonstrated that

outstanding results can be achieved even with this singular feature

extracted from electrocardiography. This carries significant

importance, aligning with our primary objective of investigating the

potential utility of this particular feature, considering its automatic

availability from nearly every wearable device in the market.

Notably, this eliminates the need for explicitly designing algorithms

or systems for calculating cardiac features or utilizing raw

biosignals, saving time and computational resources. Based

exclusively on the heart rate, our method achieved an accuracy of

67.04% for the binary task and an impressive 31.22% for the multi-

level task, surpassing the best performance reported in the

literature. This underscores the feasibility and the exceptional

performance offered by the exclusive adoption of heart rate as a

predictive feature. The multimodal approach we proposed, fusing

video and heart rate modalities, showcased impressive results.

Achieving 82.74% and 39.77% for the binary and multi-level tasks,
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respectively, surpasses the effectiveness of the video modality by

approximately 9% and the heart rate modality by about 24%. In

addition, these results position it as one of the leading

performances in the literature, with only 9.62 million parameters in

total. This highlights the efficacy of a thoughtfully designed system

that combines two modalities, demonstrating superior performance

compared to each modality in isolation.

In interpreting our framework, attention maps from the

Spatial-Module highlighted important facial areas, such as the

zygomatic and oral regions, contributing significantly to

automatic pain assessment. Different pretraining stages impacted

these maps, revealing more explicit attention with specialized

training. Attention maps from the Temporal-Module showed a

subtle focus on the last part of the input, where pain

manifestations typically appear in the particular dataset.

Throughout this study, we delved into the potential utility of

video and heart rate modalities for pain assessment. Furthermore,

we demonstrated the advantages of adopting a multimodal

approach, leveraging the strengths of both modalities. It is essential

to highlight that our experiments utilized the only publicly available

dataset designed explicitly for pain assessment, encompassing both

facial videos and cardiac signals, created under controlled

laboratory conditions. Participants were seated in a frontal position,

benefiting from optimal lighting conditions for video recordings,

and physiological sensors were meticulously attached to the body.

However, it is crucial to acknowledge that challenges may arise in

real-world scenarios, particularly in clinical environments. Factors

such as variations in lighting, unpredictable facial positioning, facial

occlusions, or sensor attachment difficulties require careful

consideration and optimization when developing systems for such

practical applications. Additionally, the reliance on heart rate as the

sole cardiac feature may face limitations in challenging

environments, underscoring the need for a combination of

extracted features or the utilization of raw biosignals.
6 Conclusions

This study explored the effectiveness of facial video and heart

rate in automatic pain assessment and analyzed the advantages

and limitations of each modality. The experiments, along with

direct comparisons to 14 video-based, 7 ECG-based, and 8

multimodal-based studies, substantiated the efficacy of the

proposed framework, delivering high classification results while

maintaining outstanding efficiency. In the multimodal setting, the

framework achieved 82:74% and 39:77=% accuracy for the

binary and multi-level pain assessment tasks, respectively, with

less than 10 million total parameters. Given appropriate

optimization for practical applications, we believe that such a

framework holds promise for real-world scenarios. Moreover, by

generating attention maps, we provided insights into the

functioning of specific modules by revealing the focus areas

within the inputs. The proposed framework, characterized by

high efficiency, has the potential to achieve even better

performances through the scaling up of individual modules.

However, this enhancement comes at the cost of reduced
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efficiency and speed, a trade-off that should be carefully considered

based on specific application requirements. Furthermore,

researchers are encouraged to provide details regarding the

computational costs of their approaches. This transparency

would be valuable for other researchers, facilitating comparisons

and offering insights into the computational efficiency of

different methodologies. We recommend that future

studies utilize multi-modalities, as it is the most effective

approach for assessing the pain phenomenon in real-world

settings. Developing interpretation methods is also crucial,

particularly for the prospective integration of these frameworks

into clinical practice.
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Appendices

Supplementary metrics

Table A1 presents precision, recall, and F1 score results. The

second pretraining stage’s impact on the Spatial-Module is

evident across all three metrics. Recall experiences a substantial

performance boost, reaching 76.74% and 33.41% for binary and

multiclass tasks, respectively. This emphasizes the profound

influence of the emotion recognition pretraining process on

sensitivity (i.e., identifying true positive samples) within the

framework. Consistent with the accuracy findings, the

incorporation of tiles negatively affects all metrics. Once again,

recall is the metric most significantly impacted, dropping to

18.42%. This suggests a potential challenge in accurately

identifying individuals experiencing pain (true positive instances),

indicating a risk of mis-evaluation. The introduction of the

coefficient (c ¼ 0:1) in tile embeddings leads to improvements in

all metrics, mirroring the tendencies observed in accuracy.

Similarly, the adoption of augmentation methods initially results

in performance reductions. However, with extended training

time, a balance between regularization and learning is achieved.

This manifests in a recall of 79.35% for the binary task and a

precision of 35.39% for the multiclass task.
TABLE A1 Classification results utilizing the video modality reported on prec

Epochs Metric Pretraining stage Pipeline

1st 2nd Full frame Tiles
500 Precision ✓ – ✓ –

Recall ✓ – ✓ –

F1 ✓ – ✓ –

500 Precision – ✓ ✓ –

Recall – ✓ ✓ –

F1 – ✓ ✓ –

500 Precision – ✓ – ✓

Recall – ✓ – ✓

F1 – ✓ – ✓

500 Precision – ✓ ✓ ✓

Recall – ✓ ✓ ✓

F1 – ✓ ✓ ✓

500 Precision – ✓ ✓ ✓c

Recall – ✓ ✓ ✓c

F1 – ✓ ✓ ✓c

500 Precision – ✓ ✓ ✓c

Recall – ✓ ✓ ✓c

F1 – ✓ ✓ ✓c

500 Precision – ✓ ✓ ✓c

Recall – ✓ ✓ ✓c

F1 – ✓ ✓ ✓c

500 Precision – ✓ ✓ ✓c

Recall – ✓ ✓ ✓c

F1 – ✓ ✓ ✓c

800 Precision – ✓ ✓ ✓c

Recall – ✓ ✓ ✓c

F1 – ✓ ✓ ✓c

The bold values indicate the higher performance.
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Table A2 presents performance metrics regarding the heart rate

signal. As mentioned in the main manuscript, utilizing the Heart

Rate Encoder improved the results, but slightly. The most

significant impact was for the recall metric, which reached

66.01% and 22.13%, and improvement of 0.9% and 1.22% for the

pain estimation tasks, binary and multi-level. Similar

observations related to the application of augmentation methods

are also evident in this context. The AugmNet, being a learning-

based method, introduces a form of corruption to the input

embedding of the heart rate, albeit in a less intrusive manner

compared to the Basic and Masking methods. This makes

AugmNet the most effective approach for this particular

modality. Across all metrics, improvements were observed with

the restricted augmentation pipeline. Precision demonstrated an

average 2.59% increase during the extended training period,

while recall and F1 scores exhibited growths of 3.42% and

4.68%, respectively.

Table A3 presents the outcomes of the proposed multimodal

approach. For the binary class of NP vs. P4, all metrics

showcased performances exceeding 80%, signifying a substantial

improvement compared to the unimodal video and heart rate

methods. Likewise, precision, recall, and F1 scores in the

multi-level classification reached 39.13%, 37.67%, and

36.31%, respectively.
ision, recall, and F1 score.

Augmentations Task

Basic Mask AugmNet NP vs. P4 MC
✓ – – 72.53 31.24

✓ – – 74.31 29.61

✓ – – 71.95 27.16

✓ – – 74.21 33.36

✓ – – 76.74 33.41

✓ – – 72.24 28.77

✓ – – 68.11 31.50

✓ – – 72.15 27.99

✓ – – 65.92 25.14

✓ – – 65.14 27.78

✓ – – 70.36 18.42

✓ – – 61.93 18.86

✓ – – 74.88 33.96

✓ – – 77.41 34.31

✓ – – 73.90 29.20

✓ ✓ – 73.09 32.17

✓ ✓ – 75.72 28.41

✓ ✓ – 71.92 26.02

✓ – ✓ 74.87 33.88

✓ – ✓ 77.80 29.30

✓ – ✓ 73.59 27.74

✓ ✓ ✓ 73.12 32.79

✓ ✓ ✓ 76.18 28.51

✓ ✓ ✓ 71.91 26.57

✓ ✓ ✓ 77.15 35.39

✓ ✓ ✓ 79.35 35.11

✓ ✓ ✓ 76.33 31.70
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TABLE A2 Classification results utilizing the heart rate modality reported on precision, recall, and F1 score.

Epochs Metric HR encoder Augmentations Task

Basic Mask AugmNet NP vs. P4 MC
500 Precision ✓ ✓ – – 61.73 27.66

Recall ✓ ✓ – – 65.04 20.91

F1 ✓ ✓ – – 57.74 19.73

500 Precision – ✓ – – 61.97 27.71

Recall – ✓ – – 66.01 22.13

F1 – ✓ – – 57.79 20.61

500 Precision ✓ ✓ ✓ – 61.97 27.80

Recall ✓ ✓ ✓ – 65.27 20.98

F1 ✓ ✓ ✓ – 57.38 20.97

500 Precision ✓ ✓ – ✓ 62.09 28.00

Recall ✓ ✓ – ✓ 65.73 21.27

F1 ✓ ✓ – ✓ 58.04 21.61

500 Precision ✓ ✓ ✓ ✓ 61.63 27.86

Recall ✓ ✓ ✓ ✓ 65.08 21.24

F1 ✓ ✓ ✓ ✓ 56.78 21.17

800 Precision ✓ ✓ ✓ ✓ 65.44 29.73

Recall ✓ ✓ ✓ ✓ 69.85 27.40

F1 ✓ ✓ ✓ ✓ 62.07 23.71

800 Precision ✓ – – ✓ 67.07 31.11

Recall ✓ – – ✓ 71.24 29.33

F1 ✓ – – ✓ 63.97 25.83

The bold values indicate the higher performance.

TABLE A3 Classification results utilizing the video & the heart rate modality reported on precision, recall and F1 score.

Epochs Metric HR encoder Pipeline Augmentations Task

Full frame Tiles Basic Mask AugmNet NP vs. P4 MC
800 Precision ✓ ✓ ✓c – – ✓ 82.69 39.13

Recall ✓ ✓ ✓c – – ✓ 84.71 37.67

F1 ✓ ✓ ✓c – – ✓ 81.44 36.31
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Supplementary attention maps

As outlined in the main manuscript, the Spatial-Module produces

three distinct variations of attention maps. An exemplar is depicted in

Figure A1, highlighting a consistent pattern in the regions of interest.

With specialized training, the maps become more specific. Subtle

distinctions appear between the maps derived from emotion-based
FIGURE A1

Attention maps from the Spatial-Module. Yellow and red color indicates hig
(2nd row) Computed from the Spatial-Module following the first stage pr
second stage pretraining. (4th row) Computed from the Spatial-Module tra
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pretraining (3rd row) and those optimized for pain assessment (4th

row). In the latter, the model exhibits reduced attention to areas

like teeth and the periphery of the face. In Figure A2, a discernible

contrast is evident among the three variations of attention maps.

The overall focus diminishes significantly as the model undergoes

training on more relevant datasets (i.e., emotion, pain),

concentrating on specific regions.
h attention to the particular region. (1st row) Original frame sequence.
etraining. (3rd row) Computed from the Spatial-Module following the
ined on BioVid.

frontiersin.org

https://doi.org/10.3389/fpain.2024.1372814
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE A2

Attention maps from the Spatial-Module. Yellow and red color indicates high attention to the particular region. (1st row) Original frame sequence.
(2nd row) Computed from the Spatial-Module following the first stage pretraining. (3rd row) Computed from the Spatial-Module following the
second stage pretraining. (4th row) Computed from the Spatial-Module trained on BioVid.
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