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Forced swim stress exacerbates
inflammation-induced
hyperalgesia and oxidative stress
in the rat trigeminal ganglia
Jin Y. Ro1*, Youping Zhang1, Jamila Asgar1, Huizhong Shou1,
Man-Kyo Chung1, Ohannes K. Melemedjian1, Joyce T. Da Silva1

and Shou Chen2

1Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD,
United States, 2Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public
Health, University of Maryland School of Medicine, Baltimore, MD, United States
This study investigates the impact of combining psychophysical stress, induced
by forced swim (FSS), with masseter inflammation on reactive oxygen species
(ROS) production in trigeminal ganglia (TG), TRPA1 upregulation in TG, and
mechanical hyperalgesia. In a rat model, we demonstrate that FSS potentiates
and prolongs CFA-induced ROS upregulation within TG. The ROS levels in
CFA combined with FSS group surpass those in the CFA-only group on days 4
and 28 post-treatment. FSS also enhances TRPA1 upregulation in TG, with
prolonged expression compared to CFA alone. Furthermore, CFA-induced
mechanical hyperalgesia is significantly prolonged by FSS, persisting up to day
28. PCR array analyses reveal distinct alterations in oxidative stress genes
under CFA and CFA combined with FSS conditions, suggesting an intricate
regulation of ROS within TG. Notably, genes like Nox4, Hba1, Gpx3, and
Duox1 exhibit significant changes, providing potential targets for managing
oxidative stress and inflammatory pain. Western blot and immunohistochemistry
confirm DUOX1 protein upregulation and localization in TG neurons, indicating a
role in ROS generation under inflammatory and stress conditions. This study
underscores the complex interplay between psychophysical stress, inflammation,
and oxidative stress in the trigeminal system, offering insights into novel
therapeutic targets for pain management.
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1 Introduction

An increasing body of evidence suggests bidirectional relationships between stress and

pain, manifesting in both acute and chronic contexts (1, 2). Repeated or prolonged

exposure to physical or psychological stressors commonly induces physiological

reactions that heighten the sensitivity to painful stimuli, a phenomenon referred to as

stress-induced hyperalgesia (SIH). Most animal studies consistently demonstrate SIH

across various types of stressors, among different rodent strains and species, and with

diverse modalities of test stimuli [for review see (3)]. In humans, psychological stress

has the potential to exacerbate chronic pain conditions (4, 5, 6), while prolonged pain

can trigger maladaptive responses in the hypothalamic-pituitary-adrenal axis, the body’s

primary stress system (7, 8), establishing a vicious cycle where both factors amplify

each other (9).
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Several preclinical studies have explored the effects of

psychophysical stress and pain processing in the orofacial system.

Forced swim stress (FSS) enhances acute temporomandibular

joint-evoked activity of nociceptive neurons in the medullary

dorsal horn and enhances masseter muscle activities (10, 11).

FSS, restrain stress as well as crowding stress aggravate pulpal

nociception (12), and stress significantly increases dentin

hypersensitivity in rats (13). Masseter muscle injury induces

persistent visceral hypersensitivity for months, specifically in an

estrogen-dependent manner, but only when the injury is

combined with FSS (14). Furthermore, mice prone to succumb to

social defeat stress exhibit heightened masseter muscle

nociception, as evidenced by an increase in orofacial nocifensive

behaviors and elevated c-Fos activity in the C1/C2 region

following formalin injection (15). Nevertheless, the mechanisms

underlying the heightened and intensified pain responses in the

trigeminal system resulting from different types of

psychophysical stress have not been thoroughly investigated.

Psychophysical stress has been identified as a catalyst for the

generation of reactive oxygen species (ROS) in the brain (16–19),

The resulting cellular and molecular changes, stemming from an

imbalance in ROS metabolism, have been implicated in various

CNS disorders, such as neurodegeneration, schizophrenia,

anxiety, and depression, as outlined in the review by Salim (20).

A recent study demonstrated that repeated and intermittent

sound stress induces enduring non-inflammatory hyperalgesia in

mice, accompanied by heightened oxidative stress and lipid

oxidative damage, which could also be observed in fibromyalgia

patient (21). Considering that injury and inflammation are

recognized as contributors to ROS generation across nociceptive

pathways, it is plausible to posit that psychophysical stress

exacerbates oxidative stress, particularly under inflammatory

conditions, thereby amplifying pathological pain responses.

Despite this, limited information exists regarding psychophysical

stress and the genes involved in ROS metabolism in nociceptive

systems. In prior research, we demonstrated that masseter

inflammation leads to the accumulation of ROS within the

trigeminal ganglia (TG) (22). This increase in intraganglionic

ROS was shown to contribute to inflammatory hyperalgesia

through the regulation of TRPA1 expression and function within

the TG. The objectives of this study are to investigate whether

FFS (1) exacerbates inflammation-induced ROS production in

the TG, (2) intensifies inflammatory hyperalgesia, (3) further

upregulates TRA1, and (4) to conduct a PCR array study for a

comprehensive evaluation of 94 genes related to oxidative stress

in TG under inflammatory conditions, and to determine whether

FSS alters the gene expression profiles.
2 Materials and methods

2.1 Animals

Adult male Sprague-Dawley rats, aged three to six months and

weighing between 150 and 350 g, obtained from Harlan in Indiana,

USA, were used in this study. These rats were kept in a room with
Frontiers in Pain Research 02
controlled temperature and a 12-hour light-dark cycle, and they

had unrestricted access to both food and water. All research

procedures adhered to the guidelines outlined in the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals (publication no. 80-23) and were conducted under the

approval of the Institutional Animal Care and Use Committee at

the University of Maryland Baltimore. We conducted the present

study using only male rats to align with our previous studies

(23, 24). However, we acknowledge that there may be potential

differences in ROS accumulation between males and females that

require further investigation.
2.2 Masseter inflammation

To induce inflammation, we administered a 50 μl injection of a

solution containing 50% Complete Freund’s Adjuvant (CFA) in

isotonic saline (purchased from Sigma-Aldrich, St. Louis, MO)

into the middle portion of the masseter muscle using a 27-gauge

needle. For the injection, the rats were briefly placed under

anesthesia with 3% isoflurane. The animals fully recover from the

anesthesia within 5 min.
2.3 Forced swim

To investigate the impact of psychophysical stress on

inflammatory conditions, we employed the repeated swim stress

model, as it has previously demonstrated to increase muscle pain

and cutaneous hyperalgesia (25). We adapted the procedures

outlined in earlier studies (25, 26). Rats were individually housed

and brought into a procedure room for three consecutive days,

each day being subjected to swim stress once. On the first day, rats

underwent forced swimming by placing them in a plastic cylinder

(diameter: 30 cm, height: 50 cm) filled with 20 cm of water at a

temperature of 24°C–26°C for a duration of 20 min. On the second

and third days, the swim stress sessions were reduced to 10 min

each. Throughout the swim sessions, the animals were

continuously monitored. After each swimming session, the

animals were towel-dried and allowed to dry in a warm

environment (30 °C–33 °C) before being placed in the drying cage.
2.4 ROS assay in TG

The methods for the ROS assay were described in our previous

studies (23, 24). Briefly, ROS levels were quantified using a cell-

permeant oxidant-sensing probe 2’,7’-dichlorodihydrofluorescein

diacetate (H2DCFDA; Invitrogen, Carlsbad, CA, USA).

H2DCFDA is de-esterified within the cytoplasm and turns highly

fluorescent upon oxidation. H2DCFDA detects hydrogen

peroxide (H2O2), peroxyl radicals (ROO•), and peroxynitrite

(ONOO−), but it is possible that other biologically relevant ROS,

such as superoxide radicals (O2•−) and hydroxyl radicals (OH•),

are also involved. In the CFA groups, rats received an injection

of CFA into the left masseter muscle (4–6 rats per group). In the
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CFA with FS groups, rats underwent three daily sessions of swim

stress one day after the CFA injection into the masseter muscle

(4–6 rats per group). The ipsilateral TG to the injected muscle

was removed either 4, 7, 14, or 28 days after the CFA injection.

A separate group of rats that received a vehicle injection in the

masseter muscle served as a control group for both the CFA-only

and CFA with FS groups (4–8 rats per group). TG was quickly

removed and washed with phosphate-buffered saline (PBS).

Immediately after extraction and dissection, the tissues were

minced finely in PBS and were incubated in 96-well plates in

200 µl PBS for 30 min at 37°C. The background fluorescence for

each specimen was determined with a fluorimeter (DTX880

Multimode Detector, Beckman Coulter) at 485 nm for excitation

and 535 nm for emission. After the background reading,

H2DCFDA was added to each well to a final concentration of

10 µM. The plates were again incubated for 30 min at 37°C, and

the fluorescence was re-measured. ROS levels were estimated as

the intensity of fluorescence after subtraction of the background

fluorescence (Multimode Analysis Software). The results from

CFA- or vehicle-treated group were normalized to the results

from naïve rats that did not receive either CFA or vehicle.
2.5 Assessment of masseter mechanical
hyperalgesia

To assess persistent mechanical hyperalgesia in the masseter

muscle under both inflammatory conditions with and without

swim stress, we employed a rodent behavioral model developed

for evaluating masseter sensitivity in awake rats (27). Detailed

procedures have been extensively described in our previous

studies (28, 29). In brief, the rats were acclimated to stand on

their hind paws and lean against the experimenter’s hand, which

was protected by a leather work-glove. The rats were not

physically restrained but maintained this position long enough

for the experimenter to apply Von Frey filaments to the skin

covering the masseter muscle. An ascending series of Von Frey

monofilaments (Stoelting, Wood Dale, IL., USA) was employed.

Each filament was tested five times with a few seconds between

each test. The response threshold was defined as the lowest force

of the filaments that elicited at least three active head withdrawal

responses out of five tests. Response frequencies were calculated

as [(number of responses/number of stimuli) × 100%] for a range

of filament forces. Subsequently, a non-linear regression analysis

was conducted to determine the EF50 value, representing the

filament force (in grams) required to produce a 50% response

frequency. The EF50 value served as a measure of mechanical

threshold, with a decrease indicating mechanical hyperalgesia.

The changes in mechanical thresholds were compared between

CFA only group with CFA and FS treated groups (n = 8 per group).
2.6 PCR array

TG samples collected from naïve rats and rats in CFA with and

without FS groups at various time points were prepared for the Rat
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Oxidative Stress RT2 Profiler PCR Array (Rotor-Gene® Format,

Cat. no. 330231 PARN-065ZR, Qiagen, Aarhus, Denmark)

following the manufacturer’s instructions. The PCR Array kit

contained primers for 94 gene transcripts related to oxidative

stress, including peroxidases, and genes involved in ROS

metabolism. The results were analyzed by the Boston University

Analytical Instrumentation Core (Boston, MA, USA.) To

determine the expression profiles of genes that may regulate

intraganglionic ROS levels, we collected TG from rats treated

with CFA, both with and without FS, and conducted the PCR

array assay (triplicates from 3 rats per group). TG samples

prepared on days 4, 7, 14 after CFA treatment and days 4, 7, and

14 after CFA and FS combined treatment. The expression levels

of the 94 genes at each time point were compared to those of

TG samples prepared from the rats treated with a vehicle.
2.7 Real-time RT-PCR

Total RNA was extracted from dissected TG ipsilateral to the

inflammation using a RNeasy kit (Qiagen Sciences, Germantown,

MD) followed by DNase treatment to remove genomic DNA.

Reverse transcription was carried out using SuperScript II kit

(Invitrogen, Waltham, MA) was used to generate cDNA from

500 ng of RNA along with 2.5 ng of random primer per reaction.

Real-time PCR analysis of cDNA (equal to 15 ng of RNA) was

performed using Maxima SYBR Green/ROX qPCR Master Mix

in an Eppendorf Mastercycler Ep Realplex 2.0 (Fermentas, Forest

City, CA, USA). In all our RT-PCR experiments, each sample

was analyzed in triplicates, and we routinely added a control

with no template as a means of checking for any nucleic acid

contamination, and a control with no reverse transcriptase to

verify that there was no DNA contamination in the RNA

preparation. The no template control also serves to identify any

potential formation of primer dimers during the SYBR Green

assay. The following primer pairs were used to detect Trpa1

mRNA: forward 5’-TCCTATACTG GAAGCAGCGA-3’, reverse

5’-CTCCTGATTGCCATC GACT-3’, Duox1 mRNA: forward 5’-

TGTGCAAGATTTTTGGCCCG-3’, reverse 5’-CGAGAGTGCAG

GGTTGATGT-3’, and GAPDH, mRNA, used as a control:

forward 5’-TCACCACCAT GGAGAAGGC G-3’, reverse 5’-

GCTAAGCAGTTGGTG GTGCA-3’. We obtained the ratios

between Trpa1 and GAPDH and Duox1 and GAPDH to calculate

the relative abundance of mRNA levels in each sample. Relative

quantification of the Trpa1 and Duox1 mRNA was calculated by

the comparative CT method (2−ΔΔCT method) between control and

experimental groups. The relative fold changes were compared

between naïve and CFA-treated rats (4–5 per group) over the

course of 14 days, and between naïve rats and those treated with

both CFA and FS (4–6 per group) over the course of 28 days.
2.8 Immunohistochemistry (IHC)

The rats were transcardially perfused with cold phosphate

buffered saline (PBS), followed by 4% paraformaldehyde in PBS
frontiersin.org
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(250 ml, pH 7.3–7.4; Sigma, St. Louis, MO, USA). TG were

extracted and post-fixed for 90 min, placed in 30% sucrose

solution at 4°C overnight and sectioned coronally at 12 μm.

Every eighth section was collected and mounted on gelatin-

coated slides for double-labelling immunohistochemistry. After

blocking, the sections were double-labeled overnight at room

temperature with primary antibodies: mouse anti DUOX1 (1:200,

sc-393096, Santa Cruz Biotechnology, Inc), guinea pig anti NeuN

(1;200, 266014, Synaptic Systems), a specific marker for neurons,

or rabbit anti DUOX1 (1:200, PA585452, Invitrogen), mouse anti

GFAP (1:200, G3893, Sigma), an antibody directed to glial

fibrillary acid protein, a marker for satellite glia to determine

localization of DUOX1 in different cell types. For

immunofluorescence, sections were incubated for 1 h in Cy3-

conjugated goat anti-mouse (1:500, 115-165-166, Jackson

ImmunoResearch), Alexa 488-conjugated goat anti-guinea pig

(1:500; A11073, Invitrogen,), or Cy3 -conjugated goat anti rabbit

anti (1:500; 115-165-003, Jackson ImmunoResearch), Alexa

488-conjugated goat anti-mouse (1:500; A11001, Invitrogen) at

room temperature.
2.9 Western blotting

Total proteins were extracted from the TG of naïve and

experimental rats (5 rats per group). The protein samples were

dissolved in RIPA buffer containing protease inhibitor cocktail.

The protein concentration of lysates was determined using

Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA). Fifty

micrograms of protein for each sample were separated on 4%–

12% NuPAGE gel with MOPS SDS running buffer and

transferred to a PVDF membrane (Bio-rad, Hercules, CA,

USA). After blocking for 1 h in 5% milk PBST at room

temperature, membranes were probed with primary antibodies

for TRPA1 (1:1,000, Millipore #ABN-1009, Burlington, MA),

DUOX1 (1:500, Invitrogen, PA5-85452, Waltham, MA) and an

internal control protein β actin (1:20,000, Millipore, #A1978,

Burlington, MA), diluted in blocking solution. The TRPA1

antibody was raised against the N-terminus of rat TRPA1 and

detects a 90–98-kDa protein, which disappears in TG lysates

probed with TRPA1 antibody pre-incubated with a

commercially available peptide used to generate the antibody.

We have validated the specificity of this antibody in our

previous study (30). Membranes from TG samples were

incubated with primary antibodies overnight at 4°C and

washed four times with PBST. HRP-conjugated secondary

antibodies (anti-rabbit secondary antibody (Cell Signaling,

Danvers, MA) and anti- mouse secondary antibody (Millipore,

Burlington, MA) were diluted to 1:5000 in PBST and

incubated with membranes for 1 h at room temperature. Bands

were visualized using ECL (Western Lightning, PerkinElmer

Inc., Waltham, MA, USA) or ECL plus Western blotting

detection reagent (Lumigen PS-3, GE Healthcare, Chicago, IL).

Protein level for TRPA1 was normalized to that of GAPDH

within the same sample.
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2.10 Enzyme-linked immunosorbent assay
(ELISA)

Blood samples were obtained from the artery on the ventral

aspect of the rat’s tail both at baseline and the next day upon

completion of the exercise regimen. The rats were anesthetized

with isoflurane (1.5%–2%) for all blood collection procedures.

These blood samples were collected between 12 pm and 3 pm,

subsequently centrifuged to separate the serum, and then stored

at −20 °C until the assay day. The concentrations of

corticosterone (ng/ml) levels from the serum samples were

evaluated using ELISA assay kits provided by Cayman Chemical

Company, following the manufacturer’s instructions.
2.11 Statistical analyses

The time-dependent changes in mechanical hyperalgesia before

and after CFA or CFA with FS were analyzed with a Two-Way

analysis of variance (ANOVA) with repeated measures. Data

obtained from RT-PCR experiments were analyzed with a one-way

ANOVA on means or Kruskal–Wallis one-way ANOVA on ranks

depending on the outcome of a normality test. Unless otherwise

indicated, statistical comparisons of two independent groups were

made with either Student’s t-test or Mann–Whitney Rank Sum

test. Data are presented as mean ± SE and differences were

considered significant at p < 0.05. All multiple group comparisons

were followed by Bonferroni post hoc test. False discovery rate

(FDR) was used to correct for multiple comparisons with an

adjusted cut-off of 0.05. We used G*Power Software (Heinrich-

Heine, Universität Düsseldorf) to perform power analysis which

confirms that the sample sizes we used yielded a power greater

than 0.85 with a moderate effect size of Cohen’s d = 0.5.
3 Results

3.1 FSS potentiates and prolongs
CFA-induced ROS upregulation within TG

In our previous study, we observed a significant increase in ROS

levels in TG starting one day after inducing masseter inflammation

with CFA. This elevated ROS level persisted for up to 14 days (24).

In the current study, we investigated whether combining

inflammation with FSS would further elevate ROS levels in the TG.

We compared ROS production in the TG of rats treated with CFA,

with or without FSS, to that of rats treated with a vehicle.

Assessments were made on days 4, 7, 14, and 28 following the

injection of CFA or the vehicle into the masseter muscle. Fluorescent

signals from the TG of both CFA-treated rats, with or without FSS,

were significantly higher than those from vehicle-treated rats on days

4, 7, and 14 after CFA treatment (Figure 1). ROS levels were

consistently higher in the CFA combined with FSS group compared

to the CFA-only group at all time points, although the statistical

significance was only reached on days 4 and 28 (p < 0.05 for days 4
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FIGURE 1

Forced swim stress augments CFA-induced elevation of ROS upregulation in TG. Changes in ROS within TG following masseter inflammation were
assessed by measuring relative intensity of fluorescence using H2DCFDA, an indicator for ROS, of TG obtained from naive, CFA, CFA combined with
forced swim (FS) stress or vehicle treated rats on days 4, 7, 14 and 28 post CFA treatment. We used 5–8 naïve rats for normalization for each time point.
Student t-test was used for statistical analysis at each time point. *p < 0.05, **p < 0.005, ***p < 0.0005, and ****p < 0.00005 for significant differences
between groups. NS = not significant. Data are presented as the mean ± SEM.
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and 28 post-CFA vs. CFA + FSS). On day 28, the ROS level had

returned to baseline for the CFA-only group, while it remained

significantly elevated in the CFA combined with FSS group,

surpassing both the vehicle and CFA-only groups (p < 0.05 for

Vehicle and CFA + FSS vs. CFA). These results indicate that FSS

significantly enhances inflammation-induced upregulation of ROS

production in the TG and prolongs the duration of ROS production.
3.2 FSS potentiates TRPA1 upregulation
within TG and prolongs CFA-induced
mechanical hyperalgesia

Since intraganglionic ROS leads to upregulation of Trpa1

expression in TG (24), we investigated whether the increased
FIGURE 2

Forced swim stress further increases CFA-induced upregulation of Trap1 m
CFA-combined with forced swim stress-induced changes in Trpa1mRNA lev
percent changes in mRNA expression levels from naïve between the CFA on
days following CFA treatment. *p < 0.05, **p < 0.005, ***p < 0.0005, and
significant. Data are presented as the mean ± SEM.
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production of ROS under the FSS condition leads to corresponding

changes in the expression of Trpa1 in the TG. Figure 2A shows

that CFA treatment in the masseter muscle leads to a substantial

upregulation of Trpa1 within the first 7 days after CFA treatment.

When CFA treatment was combined with FSS, Trpa1 expression

within the TG remained significantly elevated for up to 28 days

after CFA treatment (Figure 2B). Since direct comparisons between

the two groups were not feasible, we calculated the percent changes

in fold changes of Trpa1 relative to the expression level of naïve

rats under each condition and compared between the comparable

days following CFA treatment, i.e., CFA 4, 7, and 14 days vs. CFA

+ FSS 4, 7, 14 days, respectively. FSS led to a higher level of

percent change in Trpa1 expression at all time points, with a

statistically significant increase on days 7 and 14 compared to that

observed under CFA treatment alone (Figure 2C).
RNA expression in TG. Real time RT-PCR data showing (A) CFA- and (B)
els in TG compared to that of naïve untreated TG. (C) Bar graphs compare
ly and CFA combined with forced swim stress groups for the comparable
****p < 0.00005 for significant differences between groups. NS = not
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FIGURE 3

Forced swim stress exacerbates CFA-induced mechanical
hyperalgesia. The line graph illustrates changes in mechanical
hyperalgesia in rats treated with complete Freund’s adjuvant (CFA)
in the masseter muscle, comparing them to rats treated with CFA
in conjunction with forced swim (FS) stress for 3 days. The
mechanical force (g) required to elicit head withdrawal responses
in 50% of the trials was log-transformed and plotted for the pre-
treatment period and days 1, 4, 7, 14, 21, and 28 after CFA
treatment. Two-way ANOVA with repeated measures was
employed for statistical analysis. *p < 0.05, **p < 0.01, and ****p <
0.0001 denote significant differences between the CFA group and
the combined CFA and forced swim stress group (n= 8 per group).

Ro et al. 10.3389/fpain.2024.1372942
We then investigated whether the increased levels of

intraganglionic ROS and Trpa1 expression alter pain-related

responses by evaluating the magnitude and time course of CFA-

induced mechanical hyperalgesia in two groups of rats: those

treated exclusively with CFA and those subjected to a

combination of CFA treatment and FSS. We have confirmed that

CFA treatment in the masseter muscle induces significant

mechanical hyperalgesia, with the peak occurring in the first day,
TABLE 1 All genes showing significant changes compared to the control con

CFA 4d CFA + FS 4d CFA 7d
Apc 1.3 Hba1 −5.6 Duox1 1.7 Nox4 −14.8 Sqstm1 1.3 Hba1 −4.3 Ift

Gpx2 1.4 Cybb −2.0 Apc 1.4 Hba1 −7.2 Slc38a5 −3.0 Ap

Ccl5 −1.9 Ift172 1.4 Gpx3 −3.1 Sod3 −1.1 Du

Ncf1 −1.9 Dnm2 1.3 Cybb −1.9 Sq

Ptgs2 −1.9 Duox2 1.3 Rtc −1.8 Tx

Txnip −1.5 Gclc 1.3 Ccl5 −1.7 Al

Rtc −1.4 Slc38a1 1.3 Cyba −1.5 Ap

Prdx4 −1.3 Sqstm1.3 Ncf1 −1.5 Ct

Txnrd1 1.3 Ncf2 −1.5 Dn

Apoe 1.2 Gpx1 −1.4 Gc

Cat 1.2 Lpo −1.4 Slc

Sod2 1.1 Sod3 −1.4 Ca

Gpx7 −1.3 Hp

Prdx4 −1.3 Dn

Actb −1.2 Pr

Pr

So
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maintained for 7 days, and gradually returning to baseline within

our observation period (Figure 3). Rats subjected to both CFA

and FSS displayed a similar magnitude of mechanical

hyperalgesia during the first week after CFA treatment. However,

they exhibited a greater degree of hyperalgesia compared to the

rats treated with CFA alone in the subsequent weeks, and this

significant hyperalgesia was still evident on day 28. These

findings indicate that FSS significantly prolongs CFA-induced

mechanical hyperalgesia. We did not include an FSS-alone group

in our study since FSS alone does not cause significant

alterations in masseter mechanical thresholds (14).
3.3 PCR array analyses on oxidative stress
genes

Table 1 displays the genes exhibiting significant alterations in fold

regulations under both CFA-only and CFA combined with FSS

conditions across all time points, relative to the control condition.

Notably, there were fewer genes with increased fold regulations

compared to those with decreased fold regulations under both

conditions at all time points. Furthermore, the overall count of

genes displaying significant fold regulations was greater under the

combined CFA and FSS condition than under the CFA-only

condition at all time points, particularly at the 7-day post-CFA

treatment interval. Additionally, the FSS condition was linked to a

more substantial magnitude of changes in fold regulations.

To identify genes specifically linked to inflammatory responses

and those affected by combined conditions, we segregated genes

exhibiting significant fold regulations based on experimental

conditions (Figure 4). Only four genes were identified for the CFA

condition alone at 4 days, and nine genes at 14 days post-CFA

treatment. No gene was identified for the CFA-only condition at
dition (corrected for multiple t-tests).

CFA + FS 7d CFA 14d CFA + FS 14d
172 1.5 Nox4 −21.5 Sqstm1 1.4 Nox4 −14.4 Duox1 1.7 Nox4 −17.0

c 1.4 Hba1 −11.0 Apc 1.3 Hba1 −3.9 Sqstm1 1.4 Hba1 −10.7

ox2 1.4 Epx −5.7 Dnm2 1.3 Gpx3 −2.7 Apc 1.3 Gpx3 −3.4

stm1 1.4 Gpx3 −3.1 Gclc 1.3 Ccl5 −1.8 Ift172 1.3 Slc38a5 −2.4

nrd1 1.4 Cybb −2.3 If172 1.3 Ptgs2 −1.8 Als2 1.2 Cybb −2.2

s2 1.3 Ncf1 −1.8 Apoe 1.2 Rtc −1.7 Slc38a1 1.2 Ptgs2 −2.1

oe 1.3 Ccl5 −1.7 Hprt1 1.2 Cyba −1.5 Txnrd2 1.2 Ncf1 −1.9

sb 1.3 Slc38a5 −1.7 Slc38a1 1.2 Cygb −1.5 Dnm1l 1.2 Cyba −1.8

m2 1.3 Cyba −1.6 Txnrd1 1.2 Ehd2 −1.3 Cygb −1.5

lc 1.3 Ptgs2 −1.6 Sod3 −1.3 Gpx1 −1.4

38a1 1.3 Ncf2 −1.5 Txnip −1.3 Ncf2 −1.4

t 1.2 Gpx1 −1.4 Actb −1.2 Rtc −1.4

rt1 1.2 RGDC −1.4 Prdx4 −1.2 Hmox1 −1.3

m1l 1.2 Cygb −1.3 Vim −1.2 Sod3 −1.3

np 1.2 Ehd2 −1.3 Ccs −1.2

dx5 1.1 Prdx4 −1.3 Txnip −1.2

d2 1.1 Sod3 −1.3 Actb −1.2

Hmox1 −1.2

Txnip −1.2

Actb −1.2

Prdx1 −1.1
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FIGURE 4

Venn diagrams illustrate genes with significant changes in fold regulations under two conditions: CFA alone and CFA combined with forced swim
stress, at different time points. The grey circle represents the CFA-only condition, while the brown circle represents the CFA and stress combined
condition. Genes in the white space exhibit significant changes under both conditions. Genes in black font signify upregulation, whereas genes in
red font indicate downregulation.
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the 4-day mark. In contrast, a considerable number of genes

displayed significant alterations when CFA was combined with FSS,

with the most pronounced effect observed at the 7-day time point.

For all genes that were evaluated, we selected genes that showed

significant changes in fold regulation under at least two conditions.

Of these, we identified 11 genes that exhibited greater than ±1.5

changes in fold regulations (Table 2). Nox4 exhibited the most

substantial decrease in fold regulation, with a greater magnitude

of reduction observed under the FSS condition. Gpx3 and Cyba

displayed a similar pattern of alterations in gene expression,

albeit with smaller decreases in fold regulations. Hba1 underwent

significant downregulation across all conditions, with more

pronounced reductions in fold regulations under FS conditions.

The expression levels of Cybb and Ncf1 were predominantly
TABLE 2 Genes that exhibited greater than ± 1.5 changes in fold regulations.

Nox4 Hba1 Gpx3 Slc38a5 Cybb
CFA 4d −5.6 −2.0
CFA 7d −4.3 −3.0
CFA 14d −14.4 −3.9 −2.7
CFA + FS 4d −14.8 −7.2 −3.1 −1.9
CFA + FS 7d −21.5 −11 −3.1 −1.7 −2.3
CFA + FS 14d −17.0 −10.7 −3.4 −2.4 −2.2
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reduced under FS conditions. Ccl5, Slc38a5, and Rtc exhibited

sporadic changes under two or more conditions. Notably, Duox1

was the sole gene to demonstrate a noteworthy increase in fold

regulations, particularly during FS conditions. Our separate

analysis of the identical set of genes one day after CFA treatment

also uncovered an elevation of 1.8-fold regulations for Duox1

(data not shown).
3.4 Validation of Duox1 expression in TG

To validate our PCR array results, we conducted RT-PCR and

western blot analysis to confirm the expression of Duox1 in TG.

We selected Duox1 because it was the only gene that displayed
Ptgs2 Ccl5 Ncf1 Cyba Rtc Duox1
−1.9 −1.9 −1.9

−1.8 −1.8 −1.5 −1.7
−1.5 −1.5 −1.8 1.7

−1.6 −1.7 −1.8 −1.6
−2.1 −1.9 −1.8 1.7
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significant upregulation under both CFA and FSS conditions. Our

RT-PCR experiment confirmed the expression of Duox1 mRNA in

the TG, independently corroborating the PCR array results.

Furthermore, we observed a significant increase in its expression

level one day after the CFA treatment. (Figure 5A) In line with

the RT-PCR data, western blot experiments showed that the

DUOX1 protein in TG exhibited a significant upregulation at 1

day after CFA treatment compared to TG from naïve rats

(Figures 4B,C). We then conducted immunohistochemistry

(IHC) study to demonstrate the localization of DUOX1 in TG.

Somatic labelling of DUOX1 could be clearly detected in TG.

Our double labeling experiments confirmed with NeuN that

DUOX1 immunoreactivity observed in TG was neuronal.

DUOX1 immunoreactivity did not co-localized with GFAP

stained elements, suggesting that DUOX1 is not expressed in

satellite glial cells. These IHC observations were confirmed in

three independent experiments. Our western blot and IHC

experiments constitute the first evidence of DUOX1 expression

in somatic ganglia. The observed changes in Duox1 mRNA, as
FIGURE 5

Duox1 mRNA and DUOX1 protein expression TG. (A) RT-PCR analysis of Duo
analyzed one day after CFA administration in the masseter muscle. **p < 0.05
(B) Immunoblots of DUOX1 and GAPDH in naïve and CFA-treated TG. (C) Av
and CFA-treated TG samples. **p < 0.05. Each group consisted of three anim
labeling of DUOX1 with NeuN (a neuronal marker). DUOX1-positive element
shows double labeling with DUOX1 and GFAP (a marker for satellite glia). Th
Scale bar 25 μm.
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detected with the PCR array, were accompanied by

corresponding changes in the protein level, suggesting potential

involvement of Duox1 under inflammatory and stress conditions.

Nevertheless, further biochemical validation and functional assays

are necessary to fully understand the significance of Duox1

expression under inflammatory conditions with and without stress.
3.5 Effects of forced swim stress alone

In our study we did not include the FSS only group since the

identical protocol of FSS as we utilized does not induce

heightened sensitivity in the masseter muscle (14). Also, the

primary aim of the study was to explore the impact of stress on

oxidative stress within TG in the context of existing

inflammation or injury, building upon our prior findings (24). In

order to further demonstrate that FSS alone does not have

significant impact in TG, we assessed the TRPA1 and DUOX1

protein levels. Our results showed that FSS alone does not alter
x1 from TG of naive and CFA-inflamed rats. In CFA-treated rats, TG was
. Each group consisted of 4 animals, and data are shown as mean ± S.E.M
eraged relative optical density (DUOX1/GAPDH) between naïve untreated
als, and data are shown as mean ± S.E.M (D) The top row displays double
s were mainly detected in the cytoplasm of TG neurons. The bottom row
e neuropil stained positive for GFAP did not overlap with DUOX staining.
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FIGURE 6

Effects of FSS only. (A,B) Immunoblots of DUOX1 and β-actin and TRPA1 and β-actin from naïve and FSS treated rats. (C,D) Averaged relative optical
density (DUOX1/β-actin and TRPA1/β-actin) from naïve and FSS treated rats. Each group consisted of five animals, and data are shown as mean ± S.E.M.
(E) Changes in blood corticosterone levels in naïve and rats under FS stress were compared before and after the treatment. Blood samples from naïve
rats were drawn at the same time for FS stress rats. Graphs represent percent changes between the two time points (mean ± SEM). *p < 0.05 (Mann-
Whiney test).
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the expression levels of TRPA1 or DUOX1 in the TG (Figures 6A–

D), which aligns with findings on behavioral responses (14). These

experiments provided additional information suggesting that FS

alone does not result in a significant elevation of ROS, thus not

affecting masseter hypersensitivity or TRPA1 expression. The FSS

model we utilized in the current study is a well-established

protocol with ample data demonstrating the induction of stress

in animals. Forced swimming sessions ranging from 1 to 7 days

daily have been shown to lead to a dramatic increase in plasma

corticosterone (CS) levels, indicating elevated stress responses in

rats (31–33). More recently, Dong et al. (2016) reported that

immobility time, which is used as an index of stress, during the

first 5 min of each FSS increased daily (34). We also conducted

our own ELISA assay to measure blood corticosterone levels

before and after the FSS. Our data confirmed the increased levels

of CS, demonstrating that the rats were indeed stressed following

3 days of forced swim (Figure 6E).
4 Discussion

Chronic musculoskeletal pain is linked to elevated stress levels

(35), and stress is proposed to play a pivotal role in the progression

from acute to chronic musculoskeletal pain (36–39). FSS has been

demonstrated to induce musculoskeletal hyperalgesia in rats, a

response effectively inhibited by milnacipran, a dual serotonin/

norepinephrine uptake inhibitor. This suggests a potential

involvement of central norepinephrine and/or serotonin in the

stress-induced enhancement of muscle nociception (25) FFS also

induces identical musculoskeletal hyperalgesia in mice. In this

study, corticotropin-releasing factor receptors in the spinal cord

area play a crucial role in the development of stress-induced

musculoskeletal hyperalgesia (40). Within the trigeminal system,

psychological stress amplifies mechanical sensitivity in both

temporal and masseter muscles bilaterally. This heightened

sensitivity can be mitigated by diazepam, an allosteric modulator

of GABAa receptors (41). These findings align with studies

demonstrating that chronic exposure to various forms of
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psychophysical or psychological stress induces hyperalgesia in

naïve animals (26, 42, 43). However, the FSS paradigm, identical

to the one employed in this study, failed to induce significant

hyperalgesia in the masseter muscle in non-inflamed rats (14).

This implies that variations in procedures and methodologies

may impact the expression of stress-induced pain responses.

In addition to inducing non-inflammatory hyperalgesia in

naïve animals, psychophysical stress amplifies hyperalgesic responses

in animals experiencing inflammatory conditions (44–48). The

exacerbation of inflammatory hyperalgesia through chronic and

repeated sound stress involves contributions from both the

sympathoadrenal (epinephrine) and the hypothalamic-pituitary

adrenal (corticosterone) neuroendocrine stress axes (46, 47). The

contribution of nociceptors in stress-induced exacerbation of

inflammatory hyperalgesia is supported by a recent study (48),

which demonstrated that cellular pathways involving miR-3120

regulation on Hsc70, leading to the overexpression of TRPV1 in

DRG neurons, mediate FSS-induced mechanical hyperalgesia

under inflammatory conditions. FSS also enhances inflammatory

responses arising from the masseter muscle (14, 49). Our data,

demonstrating that FSS results in prolonged mechanical

hyperalgesia in the masseter muscle when combined with

inflammation, contribute to these observations. However, the

specific mechanism(s) leading to stress-induced exacerbation of

inflammatory hyperalgesia in the orofacial muscles remain unclear.

In our prior research (24), we established that inflammation in

the masseter muscle induced by CFA results in the prolonged

presence of ROS in the TG. These TG-confined ROS play a

significant role in contributing to inflammatory pain responses

by causing a sustained upregulation of the pronociceptive gene,

Trpa1. ROS accumulated within TG participate in the

pathogenesis of inflammatory pain by directly activating multiple

types of transient receptor potential (TRP) channels, including

TRPA1 and TRPV1 (50). ROS can also indirectly activate TRPA1

through oxidative aldehydes, such as 4-hydroxy-2E-nonenal

(4-HNE), mediating inflammatory and neuropathic pain (51, 52).

Furthermore, the accumulation of ROS in the TG generates

inflammatory cytokines and chemokines via transient receptor
frontiersin.org
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potential melastatin 2 (TRPM2) channels, which, in turn, promote

nociceptor sensitization by increasing TRPA1 expression (23).

Importantly, our current data show that FSS-induced exacerbation

of inflammatory hyperalgesia is accompanied by a prolonged

increase in TRPA1 expression and ROS accumulation within the

TG. Although we did not functionally examine whether the

augmented ROS are directly responsible for the exacerbation of

hyperalgesia, it is plausible to suggest that psychophysical stress

prolongs inflammatory pain responses by augmenting

intraganglionic ROS. Therefore, our data suggest ROS and TRPA1

interactions at the nociceptor level as another mechanistic link

between psychophysical stress and inflammatory pain.

The level of ROS within sensory ganglia is dynamically

regulated by oxidant and antioxidant enzymes under painful

conditions, as nociceptor activities are highly susceptible to

oxidative stress (53, 54). The overproduction of ROS under

inflammatory and stressful conditions likely results from the net

imbalance between the activities of multiple oxidative and

antioxidative enzymes. However, despite the significant role of

ROS in the pathogenesis of stress-induced exacerbation of

inflammatory pain, the transcriptional profiles of genes

associated with oxidative stress in sensory ganglia are poorly

understood. The results from our unbiased oxidative stress PCR

array of 94 genes under these conditions provided several novel

findings. First, our data demonstrated that the combination of

FSS with masseter inflammation led to the recruitment of

additional genes exhibiting significant alterations in fold regulations

compared to those observed under the sole inflammation condition

throughout the progression of inflammation. Second, a higher

count of genes exhibits noteworthy downregulation in comparison

to those displaying significant upregulation, and the degree of fold

regulation is more pronounced for the downregulated genes than

for the upregulated ones. Third, inflammation and FSS are both

characterized by altered expression of several key genes and gene

families involved in oxidative stress, antioxidant defense, and

reactive oxygen metabolism. These observations imply an altered

expression pattern of oxidative stress genes, predominantly leaning

towards downregulation as the production of ROS increases. This

pattern may constitute a genetic compensation system that exerts

protective metabolic effects to counteract the excessive production

of ROS in a target tissue (55). Consequently, it appears that

peripheral inflammation and psychophysical stress employ a shared

set or sets of genes to intricately regulate ROS production in

sensory ganglia, aiming to minimize the deleterious effects of

oxidative damage on sensory neurons.

The gene most significantly downregulated is nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4),

exhibiting a 21.5-fold reduction in expression seven days after

CFA in stressed rats. The downregulation is more pronounced

under stress conditions. The Nox enzyme family serves as the

primary catalyst for oxidative stress, with the generation of ROS

as their main function (56). Nox4 is distinct from other Nox

enzymes in that it generates predominantly H2O2 rather than

O2− due to its unique molecular structure (57). It contributes to

chronic pain conditions through specific signaling mechanisms

along nociceptive pathways (58). In rats with cancer-induced
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bone pain, Nox4 expression significantly increases, and

downregulating Nox4 protein at the spinal cord level alleviates

bone cancer pain (59) Nerve injury-induced mechanical

hypersensitivity is significantly attenuated in mice with both

global and inducible knockout of Nox4 (60, 61). Pharmacological

blockade of Nox4 in the temporomandibular joint significantly

attenuates synovial inflammatory responses (62). While these

observations collectively suggest increased Nox4 expression in the

periphery and spinal cord as a causative factor in pathological

pain conditions, the role of Nox4 within sensory neurons

remains unclear. Currently, the physiological consequences of the

significant and consistent downregulation of Nox4 in TG under

masseter inflammation and stress conditions as we reported here

can only be speculated upon. Nox4 serves as a neuroprotective

redox regulator for ROS and calcium homeostasis, preventing

neuronal hyperexcitability and cell death (63). Nox4 in skeletal

muscle tissue facilitates ROS-mediated adaptive responses,

promoting muscle function, maintaining redox balance, and

preventing the development of insulin resistance (64). Therefore,

our data suggest that inflammatory and stress conditions may

compromise the protective role of Nox4 by suppressing its

expression, leading to hyperexcitability of TG neurons.

The Hba1 gene encodes the alpha-globin protein of

hemoglobin, which is the crucial protein in red blood cells

responsible for transporting oxygen to cells and tissues

throughout the body. Hba1 is expressed not only in erythrocytes

but also in non-erythrocytes, including neurons (65). To the best

of our knowledge, there have been no reports on the expression

of Hba1 in sensory ganglia and its potential contribution to pain

processing. Our findings revealed a consistent downregulation of

Hba1 expression in TG during inflammatory states, with an

exacerbated effect under FSS. However, the exact impact of this

downregulation on overall oxidative stress and inflammatory

hyperalgesia remains unknown. Previous research has

demonstrated that hemoglobin plays a protective role in

hepatocytes, as oxidative stress leads to an upregulation of

hemoglobin expression, and its overexpression suppresses

oxidative stress (66). In light of this, our data suggest that the

downregulation of Hba1 during inflammation and stress may

promote oxidative stress. Further investigation is warranted to

elucidate the precise mechanisms and implications of Hba1

modulation in the context of inflammatory responses and stress.

Another gene consistently downregulated, particularly under

conditions of inflammation combined with stress, is glutathione

peroxidase 3 (Gpx3). Gpxs represent a family of enzymes

renowned for their role as major ROS scavengers, safeguarding

cellular environments from the detrimental effects of excess ROS.

Notably, Gpx3 plays a crucial immunomodulatory role in cancer

by regulating various pathways that counteract the effects of ROS

(67) In a recent study, it was demonstrated that increased

expression of Gpx3 prevents tendinopathy in rats by effectively

suppressing oxidative stress (65). These findings strongly imply

that the consistent downregulation of Gpx3, especially when

inflammation is coupled with stress, could play a pivotal role in

altering the ROS balance. Consequently, therapeutic strategies

aimed at increasing Gpx3 expression in TG under these
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conditions may serve as a preventive measure against the

exacerbation of pathological pain responses.

Among several genes exhibiting significant upregulation at

multiple time points, dual oxidase 1 (Duox1) demonstrated the

most pronounced increase. Duox1 is a member of the NADPH

oxidative enzyme family that generates ROS upon binding of

calcium ions (68) Initially identified in the mammalian thyroid

gland and referred to as thyroid oxidase (69), Duox1 is expressed

in various tissues, including the lung, placenta, liver, urothelial

cells, and the brain (70, 71). Although Duox1 expression has

been identified in retinal ganglion cells (72), its presence in

somatic ganglia has not been demonstrated. While the role of

Duox1 in pain processing has been rarely reported, a recent

study revealed that Duox1 expressed in keratinocytes contributes

to nociceptive processing by modulating TRPA1 and redox-

sensitive potassium channels in DRG sensory neurons as a

paracrine mediator (73). Our study provides the first evidence of

Duox1 mRNA expression in TG. We have confirmed the

presence of DUOX1 protein in TG, with its expression primarily

localized to TG neurons. Our data suggest that Duox1 may play

a significant role in generating ROS under inflammatory and

stress conditions. The temporal pattern of Duox1 expression

closely correlated with increased ROS levels under FSS, indicating

that stress may enhance ROS generation in TG by upregulating

Duox1. While the functional role of Duox1 requires further

investigation, our PCR array has identified novel genes or gene

sets that could potentially be targeted for the management of

pathological pain resulting from inflammation and

psychophysical stress conditions.

In our current investigation, we have demonstrated that

combining FSS with masseter inflammation results in a

significant increase in ROS accumulation and Trpa1 expression

in the TG. Simultaneously, these changes coincide with the

exacerbation of inflammatory hyperalgesia. Our PCR array data

revealed that peripheral inflammation and psychophysical stress

have distinct regulatory effects on the expression levels of various

oxidative and anti-oxidative enzymes within TG, resulting in an

imbalance that favors increased ROS levels within TG. The PCR

array analysis of TG has provided valuable mechanistic insights,

identifying novel genes or gene sets that could be potential

targets for controlling oxidative stress within TG.
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