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Characterization of pain-related
behaviors in a rat model of
acute-to-chronic low back pain:
single vs. multi-level disc injury
Mary F. Barbe1*, Frank Liu Chen1, Regina H. Loomis1,
Michele Y. Harris1, Brandon M. Kim2, Kevin Xie1,
Brendan A. Hilliard1, Elizabeth R. McGonagle1,
Taylor D. Bailey1, Ryan P. Gares1, Megan Van Der Bas1,
Betsy A. Kalicharan1, Lewis Holt-Bright1, Laura S. Stone3,
Paul W. Hodges4 and David M. Klyne4*
1Aging +Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University,
Philadelphia, PA, United States, 2Medical Doctor Program, Lewis Katz School of Medicine, Temple
University, Philadelphia, PA, United States, 3Department of Anesthesiology, University of Minnesota,
Minneapolis, MN, United States, 4NHMRC Centre of Clinical Research Excellence in Spinal Pain,
Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland,
Brisbane, QLD, Australia
Introduction: Low back pain is the most common type of chronic pain. We
examined pain-related behaviors across 18 weeks in rats that received injury to
one or two lumbar intervertebral discs (IVD) to determine if multi-level disc
injuries enhance/prolong pain.
Methods: Twenty-three Sprague-Dawley adult female rats were used: 8 received
disc puncture (DP) of one lumbar IVD (L5/6, DP-1); 8 received DP of two lumbar
IVDs (L4/5 & L5/6, DP-2); 8 underwent sham surgery.
Results: DP-2 rats showed local (low back) sensitivity to pressure at 6- and 12-
weeks post-injury, and remote sensitivity to pressure (upper thighs) at 12- and
18-weeks and touch (hind paws) at 6, 12 and 18-weeks. DP-1 rats showed
local and remote pressure sensitivity at 12-weeks only (and no tactile
sensitivity), relative to Sham DP rats. Both DP groups showed reduced distance
traveled during gait testing over multiple weeks, compared to pre-injury; only
DP-2 rats showed reduced distance relative to Sham DP rats at 12-weeks.
DP-2 rats displayed reduced positive interactions with a novel adult female rat
at 3-weeks and hesitation and freezing during gait assays from 6-weeks
onwards. At study end (18-weeks), radiological and histological analyses
revealed reduced disc height and degeneration of punctured IVDs. Serum
BDNF and TNFα levels were higher at 18-weeks in DP-2 rats, relative to
Sham DP rats, and levels correlated positively with remote sensitivity in hind
paws (tactile) and thighs (pressure).
Discussion: Thus, multi-level disc injuries resulted in earlier, prolonged and
greater discomfort locally and remotely, than single-level disc injury. BDNF
and TNFα may have contributing roles.
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1 Introduction

The World Health Organization defines low back pain (LBP) as

pain between the lower edge of the ribs and the buttock that can

radiate into other areas of the body, especially the legs (1). LBP

is the most common chronic pain condition, is the leading cause

of disability globally, and is increasing in prevalence more

rapidly than any other chronic pain condition (2–4). This burden

and the prevalence and incidence of LBP is higher in women

than men (2, 4, 5). Although injury or accumulated damage to

the discovertebral complex, annulus fibrosis, internal

intervertebral disc structures, facet joints and/or sacroiliac joint

can cause acute episodes, the development and maintenance of

persistent LBP generally involves complex mechanisms including

interactions between the immune and nervous systems. How

these mechanisms evolve and relate to pain over time from the

onset of acute injury is unclear (6–9).

Animal models have been developed to study mechanisms

underlying LBP (see reviews :10–13). The most common and

repeatable method for achieving intervertebral disc (IVD)

degeneration is a physical injury of the annulus fibrosis using

needle puncture (10, 14, 15). Scraping or surgical blade

incision of the annulus fibrosis, injections of inflammatory

mediators, DRG or facet joint compression, or applications of

various substances (e.g., nucleus pulposus fragments) into

discs have also been used to induce IVD injury and/or related

pain symptoms (16–24). Partial penetration of the annulus

fibrosis induces a slower degenerative process (reduced IVD

height and slowly increasing degeneration) than a full

penetration (rapid nuclear avulsion but no degeneration) (10,

13), with the former more closely reproducing the human

condition of progressive pathology (14). Other studies have

focused on the optimal needle size needed for the puncture of

rodent discs (25–27). In rats, an 18-gauge needle was optimal

for inducing lumbar IVD degeneration and a behavioral index

of pain (mechanical hypersensitivity) (25, 27). In contrast, 26-

gauge needles failed to cause IVD degeneration, 21-gauge

needles produced moderate IVD degeneration but no

mechanical hypersensitivity, whereas 16-gauge needles induced

acute disc injury but no degeneration. The degenerative effects

of single and multiple disc punctures at the same spinal level

on histopathology have also been studied, separately, with

multiple disc punctures per IVD inducing more symptoms or

degeneration than one disc puncture. Only one study in rats

has compared the effects of single- (L4/5) vs. multi-level (L2–

5) lumbar disc puncture (28). In that study, MRI analyses at 8

weeks post-injury showed similar degeneration of the injured

discs regardless of the number of levels injured. However, the

study primarily focused on the intervention effects of a drug

rather than characterizing differences between single vs. multi-

level injury with respect to disc height, histopathology, and

pain-related behaviors, among other features, which could

have important clinical implications. In humans, the

herniation of two lumbar discs (termed tandem disc

herniation) on first presentation has a relative low incidence

rate, but is not rare (29). That said, migration of the lumbar
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disc herniation to an adjacent disc (either caudally or

rostrally) is a significant predictor of disc herniation

recurrence and occurs in up to 19% of patients (30, 31). In

contrast, symptomatic multilevel degenerative disc disease in

the lumbar region is common in humans (32–34). Thus,

research using relevant animal models to compare

degenerative, biobehavioral and clinically relevant changes

between single and multi-level disc injuries over time in detail

and in a controlled manner is needed.

A critical issue in the animal literature is that few studies have

examined pain behaviors in IVD injury models, and robust

behaviors representative of chronic pain in humans were often

not observed. This might be explained by the short duration of

follow-up, typically between 3 and 8 weeks after disc injury. This

is less than the 3 month time-point in a mouse model of LBP in

which injured discs begin to herniate dorsally and develop signs

of radiating pain that persist to 12 months post-injury (35, 36).

Other work that investigated the long-term impact of different

degrees of injury severity (1 vs. 6 “scrapes” of the annulus

fibrosis to induce an artificial annular tear) also demonstrated

delayed effects. For example, significant low back

hypersensitivity, together with induced greater loss of nucleus

pulposus, inflammation, and a hypocellular annulus fibrosis with

granulation tissue around the needle track, only began from 10

weeks (lasting until study end at 18 weeks) after the more severe

“six scrape” injury (17). Together, these data suggest that the rate

and severity of disc degeneration, and the resulting behavioral

indices of pain, are dependent on both the extent of structural

disruption and length of time post-injury. Further long-term

studies are needed to support this hypothesis. It remains to be

determined in animal models whether multi-level disc injury

induces greater physiological degrees of injury severity or greater

behavioral indices of pain than single-level injury, and whether

those changes correlate.

Tumor necrosis factor alpha (TNFα) is a potent pro-

inflammatory mediator that can induce catabolic tissue changes

and alterations in cell phenotypes that promote IVD

degeneration (37). High levels of TNFα released after IVD injury

can sensitize nociceptors and heighten pain symptoms (24, 38,

39), and its inhibition reduces the development of histopathology

and pain behaviors in a rat model of disc herniation (40, 41).

The generation of pain associated with IVD damage and

degeneration also involves neurotrophins, such as brain-derived

neurotrophic factor (BDNF), which shares a direct relationship

with TNFα and other cytokines (e.g., IL-1β) at this level (37).

Although produced at very low levels in the nucleus pulposus

and annulus fibrosis of uninjured/non-degenerative IVDs, BDNF

expression by these cells is markedly increased in response to

injury and degeneration of IVDs in animals and humans (37,

42–45). These increases are thought to be driven, in part, by

increased expression of inflammatory factors such as TNFα

within the IVD (42, 43, 46), providing support for the hypothesis

that BDNF contributes to nerve ingrowth and pain generation in

degenerative and injured IVDs (43, 44, 47). Indeed, numerous

reports concerning LBP associated with neural ingrowth report

associated high levels of BDNF (48, 49). Moreover, BDNF
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expressed within and around the IVD, like TNFα, has capacity to

increase pain signaling mechanisms via driving neuroplastic

changes involved in the development and maintenance of central

sensitization (50, 51), which contributes to the progression from

acute to chronic pain (52–54). Unsurprisingly, higher systemic

levels of BDNF (55–59) and TNFα (60–64) are observed in

individuals with various chronic pain types and levels are often

correlated with pain intensity. However, the timing of systemic

responses with respect to pain is unknown for BDNF, and

unclear for TNFα; some data indicate that its expression is

transient, some indicate that it is at normal levels in patients

with IVD herniation and symptoms of sciatica, and others

indicate that its early (acute phase) and sustained (over 9

months) expression is predictive of, and associated with, poor

long-term recovery (38, 63, 65, 66). Whether changes in BDNF

can be detected systemically after lumbar disc injury, and how

levels correlate with TNFα and pain as pain evolves from acute

to chronic, are unknown.”.

Thus, this study compared musculoskeletal symptoms long-

term (18 weeks) from the early-acute onset of injury between

rats that received a disc puncture (using an 18-gauge needle) to

either one or two lumbar IVDs (i.e., single level vs. multi-level

disc injury). We hypothesized that although degenerative changes

in an individual disc may be similar, the presence of degenerative

changes in two discs would evolve into earlier, prolonged, wider

spread (local and remote to injury site) and more behavioral

indices of discomfort compared to one. We also examined

systemic levels of TNFα and BDNF, and for possible associations

with observed behaviors.
2 Methods

2.1 Animals

Twenty-three Sprague-Dawley, young adult (at least 80 days of

age at onset), female rats were used (Taconic Biosciences, Inc.,

Rensselaer, NY, USA). All experiments were approved by both

the University Institutional Animal Care and Use Committee

(IACUC, protocol # 4994) in compliance with NIH guidelines

for the humane care and use of laboratory animals, and the U.S.

Department of Army Animal Care and Use Review Office

(ACURO, protocol # CP190070.e001) in compliance with the

Department of Defense Instruction 3216.01 (Use of Animals in

DoD Conducted and Supported Research and Training), and the

US Army Regulation 40-33 (The Care and Use of Laboratory

Animals in DoD Programs). We were vigilant about all health

and illness issues that might confound our interpretation and

that induce unneeded stress on the animal. Behavioral and

physical changes consistent with distress, such as squinting,

hunching, head tucking, vocalization, as well as physical changes

(e.g., weight loss of ≥15% or suture site healing issues), were

tracked daily. Clinical medical issues were brought to the

immediate attention of the University Laboratory Animal

Resources staff, if observed. Rats were weighed at baseline prior

to surgery and every 3 weeks thereafter.
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2.2 Disc puncture surgery

A mechanical discogenic LBP model was adapted from

Muralidharan et al. (67) Eight underwent a mid-sagittal puncture

of one lumbar IVD (L5/6, DP-1 rats), and 8 received disc

punctures to two adjacent lumbar IVDs (L4/5 and L5/6, DP-2

rats), using a similar ventral approach and needle puncture as

previously described for rodents (25, 35, 36). Animals were

anesthetized with isoflurane prior to surgery (5% induction and

2.5% maintenance, with O2 as a carrier). Meloxicam (1–2 mg/kg

body weight) was provided one day prior to and the day of

surgery. Pre-emptive topical lidocaine was also provided

immediately pre-surgery. Access to the lumbar disc space was

made using a midline ventral abdominal incision and then by

gently retracting the abdominal viscera. The lumbar L4/L5 and

L5/L6 IVDs were punctured once per disc to a depth of 2 mm

using an 18G needle (using prior markings on the needle to

indicate depth of penetration), in the mid-sagittal plane. This

depth (2 mm) was chosen to match a study showing moderate

IVD degeneration and behavioral signs of LBP following single

disc injury (67), and other rat models of IVD injury (67, 68).

After IVD puncture, peritoneal and muscle layers were closed

using 4-0 coated vicryl (polyglactin glo) sutures. The skin layer

was closed using 4-0 Perma-hand silk 4-0 sutures. Animals were

kept warm on a rodent warming heating pad (model 7100-

53814, Stoelting, Wood Dale, IL, USA; pre-programmed to 37°C)

and monitored closely during post-surgical recovery for at least

3 h. In addition, 8 rats underwent anesthesia, abdominal

opening, similar movement of the viscera, and then closure

without disc puncture, and were termed Sham DP rats. Rats were

checked twice daily for the first week after injury, and daily

thereafter. Stitches were removed 10–12 days after surgery.

Meloxicam (1–2 mg/kg body weight) was provided for 2–3 days

post-surgery, as was topical lidocaine. Animals were rested for 3

weeks following surgery to enable healing.

One of the DP-1 rats developed complications due to

anesthesia during surgery and died, reducing the number of DP-

1 rats to seven and the total number of study animals to 23.
2.3 Behavioral testing

A code system was used to identify injury type so that

behavioral testing could be performed with testers naïve to group

assignment. This code was maintained until statistical analyses

were performed. Animals were acclimated to the room for one

week after receipt into the facility. All animals were then

acclimated prior to study commencement to the assay

apparatuses and experimenters over the course of at least 2

weeks, with at least 30 min of acclimation to each assay

apparatus, prior to any data collection.

We performed a battery of behavioral phenotyping tests to

assess general health and physical indices of stress, pain-like

behaviors at sites local and distant to the site of injury,

spontaneous pain-like behaviors, and psychosocial behavioral

testing as a means to also collect information on general well-
frontiersin.org
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TABLE 1 Scoring of altered and abnormal behaviors, and physical indices
of stress.

Measure Description/Feature Scoring

Observations in arena or testing chamber
Transfer arousal (1 min
after transfer) into arena
or testing chamber

Normal (0) vs. prolonged
freeze (>10 s), hyperactivity
(vigorous rapid/darting
movement), escape behavior,
or restraint resistance when
transferring rat into arena or
chamber

1 point each; scored
as sum of behaviors
observed

Altered/abnormal
spontaneous behaviors

Excessive licking of vaginal
area, excessive grooming,
rearing, escape behaviors
(after first minute),
vocalization during testing (or
excessive vocalization if during
pressure sensitivity testing), or
aggression towards tester

1 point each if
present; scored as
sum of behaviors
observed

Social Interaction testing
—Positive interactions
with novel adult female
rat

Grooming, licking, or genito-
anal sniffing the novel rat, as
well as crawling over or under
the novel rat

1 point each if
present; scored as
sum of behaviors
observed

Social Interaction testing
—Negative interactions
with novel adult female
rat

Grooming separately from the
novel rat; biting, grabbing,
pushing, boxing or mounting
the novel rat; having to
restrain the experimental rat
due to excessive aggression
towards the novel rat;
vocalization when attempting
to interact with the novel rat;
or increased defecation or
urination

1 point each if
present; scored as
sum of behaviors
observed

Urination or defecation
(relative amount) during
testing

Normal or increased Absent (0), present (1)

Motor Abilities
Gait in arena Normal (0) vs. hesitation

(momentary or brief freeze),
prolonged freezing (>10 s),
limited movement or a halt of
movement

1 point each; scored
as sum of behaviors
observed

Limb or paw paralysis/ Normal (0) vs. uneven steps, Absent (0), present

Barbe et al. 10.3389/fpain.2024.1394017
being (69–72). Similar to other groups examining symptoms

associated with IVD injury in rodent models, we examined

general health by assaying body weight across time (67), evoked

hypersensitivity to pressure at the site of injury (25, 29, 36) using

a pressure algometer applied to the lower back (67), evoked pain-

like behaviors at sites distant to the site of injury using the same

pressure algometer but applied to the upper thigh and von Frey

monofilament assays on the hindpaws (21, 25, 28, 29, 36, 61, 67,

73), and spontaneous pain-like behaviors such as reduced/

impaired locomotion during open field gait assays (29, 51) and

grooming changes post-IVD injury (15, 74) as changes in

grooming may be indicative of stress and pain in rodents (15, 71,

74). We also examined cold sensitivity as similarly performed by

others examining symptoms associated with IVD injury (36).

However, we used an apparatus (temperature place preference

testing apparatus) that allowed us to assess cold sensitivity as a

spontaneous pain-like behavior as done previously in our

laboratory in other rodent models of injury and disease (75, 76).

We extended beyond these commonly used tests to include

observational scoring of spontaneous pain-like behaviors that

might occur during any evoked or spontaneous pain test, social

behavioral testing with a novel rat as a means to gather

information on psychosocial behavioral changes, and the scoring

of physical indices of stress, each described in Table 1 and as

advised for behavioral phenotyping methods of rodents (69–72),

and as used previously in our lab for other pain evoking injuries

and disorders in animal models (72, 75–81).

Operators performed the pain-related and psychosocial

behavioral testing at baseline and then at 3 weeks, 6 weeks, 12

weeks, and/or 18 weeks, after surgery. No more than 3 tests were

performed on each animal on a given day to avoid fatigue or

stress. If the tests were considerably lengthy, such as

monofilament testing, only one type of testing was performed. If

unexpected pain/distress was observed, the animal was returned

to its home cage and tested on another day. Thus, animals

underwent either 3, 2, 1 or no tests on each day of the experiment.

lameness limb lameness (foot drags or

missteps), or clenched
hindpaw

(1); description

Open field distance Total distance covered during
gat testing

Quantified from foot
prints

Stride Length Average stride length of right
and left hind paws

Quantified from foot
prints

General Health—physical index of stress of abnormal
Body weight >10% loss 1 point

Fur condition Matted or discolored (1), hair
loss (1)

1 point each
2.3.1 Mechanical (pressure) sensitivity at local
(lower back) and remote (upper thigh) sites

A specialized Rodent Pincher algometer [SMALGO (SMall

animal ALGOmeter), Bioseb Instruments, Vitrolles, France] was

used to test mechanical pressure sensitivity locally (i.e., in the

region of injury) at the lower back (lumbar) region. The area of

the back to be tested was shaved and marked with a skin marker

prior to testing to allow replicate testing in the same region

(approximately L4–6) across weeks (the mark was refreshed as

needed across the weeks). The animal was gently restrained (after

being previously acclimated to this type of restraint for at least

5 min) before using the algometer to apply gentle pressure to the

skin at an increasing force until the animal withdrew or

vocalized. Withdrawal at lower pressures is interpreted as

mechanical pressure hypersensitivity (82). This same algometer

instrument and technique was used to test mechanical pressure

sensitivity remotely at the upper thigh region at baseline, 12- and

18-weeks post-surgery. Excessive vocalization that occurred
Frontiers in Pain Research 04
during mechanical pressure testing of the lower back or thigh

regions was recorded and reported as described in Section 2.3.7.
2.3.2 Mechanical (tactile) sensitivity of hind paws
Tactile (mechanical cutaneous) sensitivity of the hind paws was

tested in a Plexiglas chamber with a metal mesh floor in the

quadruped position. As noted in Section 2.3, animals were

habituated to all apparati prior to onset of the experiments. Five
frontiersin.org
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animals were placed into a five chamber clear acrylic chamber with

a metal grid floor and allowed to habituate to this environment for

at least 10 min. The number of hind paw withdrawals to 10

probings per monofilament size was quantified after stimulating

the volar aspect of the paw with a series of 5 calibrated

monofilaments from a touch-test monofilament set (North Coast

Medical Inc, CA, USA) ranging from 0.16, 0.4, 1, 4, and 7.8 (also

referred to as 0.16, 0.4, 1, 4, and 8 force grams, respectively; and

3.22, 3.16, 4.08, 4.56, and 4.93 evaluator sizes, respectively). Hind

paw withdrawals were defined as elevating the hind paw,

elevating the hind paw and licking it, and elevating the hind paw

and shaking it. Probing was performed only if the paw was in

contact with the mesh floor. Hind paws were tested bilaterally.

Filaments were applied one paw at a time to the mid-palmar

surface of the paw through the mesh floor until the filament bent

slightly and was kept in this position for approximately 5 s,

beginning each time with the lowest sized filament and then

sequentially applying the probe once to the right hind paw of all

rats before applying the probe once to the left hind paws of all

rats. Each filament test was repeated 10 times per session for

each hind paw and the animal was allowed to rest approximately

3 min between each of the 10 trials per filament and per

hindlimb. Data from the right and left hind paws were averaged

for each week assayed before analyses, and the mean number of

hind paw withdrawals to 10 probings are reported, as previously

used (83, 84). The occurrence of abnormal transfer responses

and altered/abnormal spontaneous behaviors were also recorded

during this assay (see Table 1) and reported as described in

Section 2.3.7.

2.3.3 Temperature place preference testing
(thermal two-plate preference test)

Avoidance of cold temperature was assayed in the final week

(week 18) using previously described methods (76). Rats were

placed unrestrained in an apparatus with two adjacent plates

enclosed in a 330 × 165 × 300 mm Plexiglas chamber (T2CT,

Bioseb): a reference plate at 22°C (room temperature) and a test

plate that decreased in temperature (20–12°C, 4°C per step,

5 min per step, 35 min total). In addition to the acclimation

during the initial baseline habitation weeks, rats were allowed to

habituate to the chamber for 3 min with each plate at room

temperature, prior to starting the temperature changes. The rat

was then free to choose their preferred position when moving in

the chamber. Movement of the rat across or on the two

temperature plates was recorded with an overhead mounted

camera connected to a computerized tracking system. This

system tallied the time spent on the variable plate, the room

temperature plate, and total time in the chamber. Abnormal

transfer responses and altered/abnormal spontaneous behaviors

were also noted on occurrence during this assay (see Table 1)

and reported as described in Section 2.3.7.

2.3.4 Open field gait testing
Rats were allowed to acclimate to this chamber during the

baseline habituation weeks. Rats were placed into a clean open

field testing chamber for gait testing using footprint pathway
Frontiers in Pain Research 05
methods (the hind paws were inked with different colors). Rats

were trained to walk along a 90-cm long, 15-cm wide, paper-

covered runway, using previously described methods (72). Total

distance travelled during gait testing and the average stride

length (measured from all right and left hind paw steps and

averaged) were quantified from the inked footprint patterns. Gait

in the arena (hesitation, prolonged freezing for >10 sec), limited

movement or a halt of movement), and limb or paw lameness

(limited movement, limb lameness, or clenched hind paw) were

scored as described in Table 1.

In addition, abnormal transfer responses and altered/abnormal

spontaneous behaviors during gait testing were noted on

occurrence during this assay and scored using adaptations from

previously described methods (70, 71, 85, 86) and as defined

in Table 1. Behavior scores for gait in the arena, limb or

paw paralysis/lameness, abnormal transfer responses, and

altered/abnormal spontaneous behaviors were summated and

reported as described below.
2.3.5 Social interaction testing
The social interaction test measures sociability and anxiety-like

behaviors by assessing how an unfamiliar pair of rats interact in an

active social environment (79). Here, this test was performed by

exposing the experimental rat to a novel female adult rat during

a 10 min observation period. This occurred in a clean and empty

rat cage to which each animal was allocated to during the pre-

baseline habituation weeks, and to which the experimental

animal is allowed to acclimate to for 15 min before introduction

the novel female adult rat. On introduction of the novel rat,

behaviors are scored on incidence on a scoring sheet. Behaviors

classified as positive interactions with a novel rat included:

grooming, licking, and genito-anal sniffing the novel rat, as well

as crawling over or under the novel rat (see Table 1). Behaviors

classified as negative interactions included: grooming separately

from the novel rat; biting, grabbing, pushing, boxing, or

mounting the novel rat; having to restrain the experimental rat

due to excessive aggression towards the novel rat; or increased

defecation or urination during the test (see Table 1). The

number of positive and negative interaction behaviors were

summated separately.
2.3.6 Summated score of altered and abnormal
behaviors, and physical signs of stress

Altered, abnormal and negative behaviors observed during any

of the behavioral tests were summated. Scored behaviors, if

observed, included: excessive vocalization occurring during

mechanical pressure testing of the lower back and/or thigh

regions; abnormal transfer responses and altered/abnormal

spontaneous behaviors occurring during sensitivity testing of

hind paws, thermal place preference testing, and/or gait testing;

and negative behaviors occurring during social interaction

testing. In addition, any observed physical indices of stress

(excessive weight loss of ≥10%), the development of a

scruffy/dull coat, hair loss, or presence of porphyrin on their

heads or limbs) were included in this summated score. These
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were each scored during each testing event, as described in

Table 1, and summated.
2.4 Tissue collection, vertebra assessment
by x-ray and histology

At study end (18 weeks post-surgery, after final behavioral

testing), rats were anesthetized with 5% isoflurane, as described

above (Section 2.2), immediately prior to euthanasia. The deeply

anesthetized animals underwent thoracotomy and removal of

blood by cardiac puncture. Blood was collected into uncoated

tubes, allowed to clot for ∼45 min, and then centrifuged at

12,000 revolutions per minute at 4°C for 20 min. Serum (the

supernatant) was collected and immediately aliquoted into 200 μl

microcentrifuge tubes and stored at −80°C until assayed.

Animals were then perfused transcardially with sterile saline first,

and then 4% buffered paraformaldehyde. The lumbar vertebra

region was collected and postfixed in the 4% buffered

paraformaldehyde for 72 h.

A length of vertebra spanning L3-S2 were first assayed using ex

vivo x-ray imaging methods (Skyscan 1,172 micro-CT instrument,

Microphotonics, Allentown, PA, USA). Vertebrae were imaged at

5 µm voxel resolution using a 0.5 cm aluminum filter. The length

of vertebra was wrapped in parafilm and mounted in a low-

density plastic tube. Multiple images of vertebral segments were

stitched together using NRecon reconstruction software (version

2.0, Skycan) into one full image of the vertebra. From these

images, an individual IVD height index was determined for both

the L4/5 and L5/6 IVDs using DataViewer software (Skycan).

IVD height index assays were assessed via x-ray of the vertebral

columns prior to decalcification and cryosectioning, using

previously described methods (36, 87). In brief, three height

measurements were made per IVD and then averaged, before

being normalized to the mean heights of the adjacent cranial and

caudal vertebral bodies (three measurements per vertebral body).

For example, the L4/5 IVD height was normalized to the mean

heights of the L4 and L5 vertebral bodies, and the L5/6 IVD

height was normalized to the mean heights of the L5 and L6

vertebral bodies.

The vertebrae were then decalcified in RapidCal Immuno

(6,089, Statlab.com, McKinney, TX, USA) with every other day

changes of this decalcification solution for 3–4 weeks. The

vertebrae were then placed in 10% sucrose in phosphate buffer

for two days, followed by 20% sucrose in phosphate buffer for

two days, before being embedded in OCT compound (4584,

Scigen for Fisher HealthCare, Houston, TX, USA). The vertebrae

were sectioned longitudinally into 15 micron sections and placed

onto coated and charged slides (12-550-15, FisherBrand

Superfrost Plus, Fisher Scientific, Pittsburgh, PA, USA). Sections

on slides were stored at −20°C until stained with either

hematoxylin and eosin (H&E) or Safranin O/Fast Green. The

IVDs were then scored using a standardized histopathology

scoring system developed by the Orthopaedic Research Society

section initiative (13). Five IVD regions and 8 total features were

scored according to this system: (1) nucleus pulposus
Frontiers in Pain Research 06
morphology (with shape and area subscores), (2) nucleus

pulposus cellularity (with cellularity and morphology subscores);

(3) nucleus pulposus-annulus fibrosis border (border appearance);

(4) annulus fibrosis (with lamellar organization and tears/fissures/

disruptions subscores); (5) endplate (with disruptions/microfracture

and osteophytes/ossification subscores). Each feature is scored on a

three point scale of 0 (normal) to 2 (most degenerated), according

to this system (13). The overall score range is 0–16, with 0

identified as non-degenerated, 3–4 as mild, 7–8 as moderate, and

16 as severely degenerated. Both combined and individual scores

for each feature are reported.
2.5 ELISA

The serum, collected at 18 weeks post-injury at euthanasia as

described above (Section 2.4), was assayed using separate

commercially available enzyme-linked immunosorbent assays

(ELISAs) for: BDNF (DBNT00, Rat Quantikine ELISA Total

BDNF, analytical sensitivity of 1.35 pg/ml, R&D Systems,

Minneapolis, MN, USA) and TNFα (EA100366, OriGene,

Rockville, MD, USA, analytical sensitivity of <1 pg/ml).

Absorbance was measured according to the manufacturer’s

directions using the Paradigm (Beckman Coulter, Inc., CA)

microplate reader. Values below the sensitivity of the test were

allocated a score of zero. Data are presented as pg/ml serum.
2.6 Statistics

Prior to study onset, a power analysis was performed by a

statistician using past nerve injury data generated by MB. We

selected representative variables to determine adequate sample

sizes: TNFα levels in serum, monofilament tested mechanical

sensitivity of hind paws, and temperature place preference data.

We chose the most conservative sample size needed to detect

differences with an alpha level of 0.05% and 80% power. From

this, it was determined that at least n = 7/group was needed. A

review of the literature on lumbar effects of IVD damage in

rodent models report group sizes ranging from 2–12, with an

average of 8.3 animals per group (Table 2). Therefore, we strived

for n = 8/group. Yet, since the original sample size calculation

was based on a nerve injury model, which ultimately produced

more robust hypersensitivity than the disc injury, the power of

our study to detect the observed differences in von Frey was 0.7,

which falls short of the recommended 0.8.

GraphPad Prism 10 (version 10.0.0, Boston, MA, ISA) for

macOS was used for statistical analyses and graphing. Behavioral

outcomes that were tracked longitudinally were analyzed using

repeated measures mixed effects REML (Restricted Maximum

Likely) models using the factors surgical group (3 groups: DP1,

DP2 and Sham DP rats) and time-point (3–5 time-points), with

longitudinal results compared to baselines using Dunnett’s

multiple comparison tests, and compared between groups at the

same time-points using Tukey’s multiple comparison tests.

Individual lumbar IVD height index and histopathology
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outcomes were assayed similarly using a repeated measures mixed-

effects model, using the factors surgical group (3 groups) and

intervertebral levels (2 levels: L4/5 and L5/6). Temperature place

preference outcomes were similarly using a repeated measures

mixed-effects model, using the factors group (3 groups) and

temperature (two temperatures: 12 and 14°C). Normality tests

(Shapiro Wilk tests) were performed for serum ELISA results.

These ELISA data did not pass the normality tests and were

therefore analyzed using Kruskal-Wallis tests followed by Dunn’s

multiple comparison tests. Correlations between behavioral data

and ELISA/x-ray/histomorphometry outcomes were assessed with

Spearman’s rank correlation tests. For ease of reading, post hoc

results are provided in the figures. Main effects and interactive

effects for the statistical analyses are reported in Table 3.
3 Results

3.1 General animal health

Rats in each group gained weight across the 18 weeks

(Figure 1), with statistical differences from baseline observed

for sham and DP-1 rats by 6 weeks and DP-2 rats by the

12 week time-point.
3.2 Greater loss of lower lumbar disc height
in animals with two disc punctures

Lumbar IVD damage in DP-2 rats was confirmed by x-ray and

histologically. DP-2 rats had a lower individual disc height index in

L4/5 IVDs, compared to both Sham DP and DP-1 rats (Figure 2A,

with measurements taken at sites indicated in Figure 2B and as

explained in the methods). Both DP-2 and DP-1 rats had a lower

individual disc height index in L5/6 IVDs, compared to Sham

DP rats, but no differences between each other. Representative

radiological images of lumbar vertebrae and IVDs for each group

are shown in Figure 2C. Loss of height in the L5/6 IVD of DP-1

rats and L4/5 and L5/6 IVDs in DP-2 rats are indicated with red

arrows in Figure 2C, relative to the greater heights of IVDs in

shams DP rats. IVD wedging was occasionally visualized in the

injured L4–6 vertebrae of DP-2 rats (Figure 2C, far right panel).

Histological evaluation using Safranin O/Fast green stained

sections and H&E stained sections revealed that the punctured

IVDs showed signs of moderate degenerative changes, compared

to Sham DP rats (Figure 3). Combined IVD histopathology

scores were higher for all injured IVDs, compared to un-injured

IVDs (Figure 3A). Histologically, sham animals showed typical

morphology of their nucleus pulposus region and cells, annulus

fibrosis regions with clearly organized lamella, and distinct

boundaries between the nucleus pulposus and annulus fibrosis

(Figure 3A,B,E,I). The most common degenerative changes in the

punctured IVDs of DP-1 and DP-2 rats included fibrosis/

granulation of the nucleus pulposus (Figure 3A; indicated with

an “f” in Figure 3C,F, and shown enlarged in Figure 3J), rounded

and clustered cells in the nucleus pulposus and rounded cells in
frontiersin.org

https://doi.org/10.3389/fpain.2024.1394017
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


TABLE 3 Statistical findings from the mixed-effects models.

Intervertebral Discs
Surgical
group

Intervertebral
level

Interaction of
the previous
two factors

Individual lumbar IVD height index p = 0.001* p = 0.02* p = 0.28

Histopathology p < 0.0001* p < 0.0001* p < 0.0001*

Behavioral Outcomes
Surgical
group

Time-Point Interaction of
the previous
two factors

Body Weight p = 0.52 p < 0.0001* p = 0.68

Pressure testing of lower back p = 0.03* p < 0.0001* p = 0.008*

Pressure testing of upper thigh p = 0.01* p < 0.0001* p = 0.02*

Tactile sensitivity (monofilament
tests)

p = 0.09 p = 0.001* p = 0.002*

Distance traveled during gait testing p = 0.35 p < 0.0001* p = 0.01*

Mean stride length during gait
testing

p = 0.33 p = 0.69 p = 0.73

Positive interactions during social
interaction testing

p = 0.71 p = 0.006* p = 0.005*

Negative interactions during social
interaction testing

p = 0.59 p = 0.0002* p = 0.33

Altered/abnormal behaviors
occurring during open field gait
testing

p = 0.002* p = 0.06 p = 0.18

Altered/abnormal behaviors
occurring any behavioral assay

p = 0.001* p = 0.24 p = 0.24

Surgical
group

Temperature
(12 vs. 14°C)

Interaction of
the previous
two factors

Temperature aversion test p = 0.97 p = 0.04* p = 0.82

*Indicates statistical significance.
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the nearby annulus fibrosis (Figure 3F,J), a loss of distinct interfaces

between the nucleus pulposus and annulus fibrosis (Figure 3A;

indicated with black arrows in Figure 3C,F–H, and shown

enlarged in Figure 3J,K), and disorganized annulus fibrosis layers

(indicated with white arrows in Figure 3G,H and in the enlarged

image of Figure 3K). Figure 3D also shows an example of a
FIGURE 1

Body weight at baseline before surgery, and then every 3 weeks
thereafter for 18 weeks. Sham DP (sham disc puncture control
rats), DP-1 [rats that had received puncture injury to only the
lumbar (L) L5/6 intervertebral disc], DP-2 (rats that had received
puncture injuries to both the L4/5 & L5/6 intervertebral discs). #:
p < 0.05, compared to same group’s baseline.
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punctured IVDs with a hypocellular nucleus pulposus region

(seen in 2 of 23 total injured IVDs examined in DP-1 and DP-2

rats). No differences were observed between the injured L5/6

IVDs of DP-1 and DP-2 rats, and no degenerative changes were

observed in L4/5 IVDs of DP-1 rats (Figure 3A). Main effects

and interactive effects for the statistical analyses are reported in

Table 3. Supplementary Figure S1 shows the scatter plots of these

data separately. Disc herniation was not observed in any

punctured IVDs.
3.3 Pain related behaviors were more
pronounced earlier and for longer in
animals with multi-level IVD injury

3.3.1 Increased local (back region, site of injury)
mechanical pressure sensitivity

Local mechanical sensitivity at the lower back was tested using

an algometer in which the level of force inducing a withdrawal

and/or vocalization response was determined at each testing

point. Withdrawal responses and/or vocalization in DP-2 rats

were evoked by lower mechanical pressure on their low back

region at 6- and 12-weeks post-injury, compared to their baseline

and Sham DP (Figure 4A). In DP-1 rats, withdrawal responses

and/or vocalization were evoked by lower mechanical pressure on

their lower back region at 12-weeks only, compared to their

baseline and Sham DP rats (Figure 4A). Values were no different

from baseline or between groups at 18 weeks. See also Table 3.

3.3.2 Increased remote (thigh region, remote to
site of injury) mechanical pressure sensitivity

Algometer testing of the upper thigh region was performed at

baseline, 12- and 18-weeks post-injury. Withdrawal responses and/

or vocalization were evoked in both DP groups by lower

mechanical pressure on their upper thigh region at 12-weeks

post-injury, compared to their baseline and Sham DP rats

(Figure 4B). This increased remote pressure sensitivity persisted

to 18-weeks post injury in DP-2 rats only (Figure 4B).

See also Table 3.

3.3.3 Cold sensitivity was not altered at 18 weeks
post-injury

Aversion to noxious cold temperatures was tested at 18-weeks

using a two-plate temperature place preference test. Each group,

including Sham rats, similarly avoided the variable plate when it

reached 14°C or 12°C at 18-weeks (Figure 4C). See also Table 3.

3.3.4 Increased (hind paw) mechanical tactile
sensitivity

Hind paw mechanical sensitivity was assayed using 5 sizes of

monofilaments, and hindlimb withdrawal responses out of 10

probings were counted for each filament size. Sham rats showed

similar responses to each filament across the weeks (Figure 5A).

DP-1 rats did not show mechanical tactile sensitivity in any week

after injury (Figure 5B). In contrast, DP-2 rats responded with a

higher number of hindlimb withdrawals in week 12 when tested
frontiersin.org
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FIGURE 2

Intervertebral disc (IVD) height measurements from radiographic images. (A) Individual disc height index of the IVDs between lumbar vertebrae L4/5
and L5/6. *: p < 0.05, compared between groups as indicated. (B) Individual disc height index method in which three height measurements were made
per IVD and then averaged, before being normalized to the mean heights of the adjacent cranial and caudal vertebral bodies (three measurements per
vertebral body) as shown. (C) Representative radiographic images of the lower lumbar (L) and sacral (S1) vertebrae. The red arrows indicate narrowed
discs in DPI-1 and DP-2 rats. The white arrows in far-right panel points out examples of disc wedging. L, lumbar; S, sacral.
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a 4 cN sized monofilament, compared to their baseline (Figure 5C),

and when tested a 7.8 cN sized monofilament, compared to their

baseline, Sham and DP-2 rats. In week 18, DP-2 rats responded

with a higher number of hindlimb withdrawals when tested with

a 1 cN sized monofilament, compared to their baseline, Sham

and DP-2 rats; when tested with a 4 cN monofilament, compared

to their baseline and Sham DP rats, and when tested with a

7.8 cN monofilament, compared to their baseline and Sham DP

rats. See also Supplementary Figure S3 for scatter plots and Table 3.

3.3.5 Decreased distance traveled during gait
assays

Total distance traveled and stride lengths were assessed with

open field gait assays (Figure 6). Both DP-1 and DP-2 rats

traveled less distance in weeks 3, 12 and 18 relative to baseline

(Figure 6A), and DP-2 rats alone traveled less distance at 12-

weeks relative to Sham DP rats (Figure 6A). Mean stride length

did not differ between groups or across weeks (Figure 6B).

Additional analyses exploring stride length range at each

time-point also found no differences between weeks

(Supplementary Figure S2). See also Table 3.
Frontiers in Pain Research 11
3.4 Declines in psychosocial behaviors were
greatest in animals with multi-level IVD
injury, and these were most evident during
movement

3.4.1 Positive social behaviors reduced in week 3
in DP-2 rats

Positive interactions between each experimental rat and a

novel female rat were on occurrence and scored across a 5 min

interval (including, grooming, licking and genito-anal sniffing

of a novel adult female rat; see Section 2.3.6). DP-2 rats

displayed fewer positive interactions with a novel rat at 3-weeks

post-injury, compared to their baseline, Sham DP, and DP-1

rats (Figure 7A).
3.4.2 Negative social behaviors did not differ
between groups

Negative interactions with a novel female rat were also noted

on occurrence and scored (see Section 2.3.6). No group

differences were observed (Figure 7B).
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FIGURE 3

Intervertebral disc (IVD) injury indices: histological assays. (A) Combined histopathological IVD scores for each feature assessed in the L4/5 and L5/6 IVDs.
(B–D) Decalcified and cryosectioned L4/5 and L5/6 IVDs and vertebra stained with safranin O and fast green, with B representative of Sham DP and (C–D)
representative images of damage seen in injured IVDs. Black arrows indicate regions of merger between the AF and NP, and a loss of their normally separate
borders. White arrows indicate areas of disorganization of the AF. The “f” indicates an area of the nucleus pulposus with clear fibrosis. (E–K) Decalcified and
cryosectioned L4/5 and L5/6 IVDs and vertebra stained with haematoxylin and eosin. Enlarged images of regions from panels (E–G) are shown in panels (I–
K). Panels (E,I) are representative images of Sham DP IVDs. Panels (F,H,J,K) are representative images of damage seen in injured IVDs (such as fibrosis/
granulation of the nucleus pulposus [panels (F,G,J)], hypocellularity of the nucleus pulposus [panels (D,H)], and disorganization of the annulus fibrosis
[panels (G,H,K)]. Symbols as above. Asterisks indicate NP regions shown enlarged in the insets. Scale bar in D Sham DP panel is 500 microns and
applies to all vertebrae images. AF, annulus fibrosis; EP, endplate; f, fibrosis of nucleus pulposus; NP, nucleus pulposus.
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3.4.3 Altered and abnormal behaviors during gait
testing increased in DP-2 rats

Altered and/or abnormal behaviors occurring immediately

after transfer to the gait testing arena and during gait testing

(behaviors described in Table 1) were scored on incidence. DP-2

rats displayed an increase in these behaviors at 6-, 12- and 18-

weeks, compared to their baseline and Sham DP rats, and at 6-

weeks post-injury, compared to DP-1 rats (Figure 7C). Observed
Frontiers in Pain Research 12
behaviors included: escape behaviors, hesitation before walking,

freezing for >10 sec, and refusal to walk.

3.4.4 Summated altered and abnormal behaviors
increased in DP-2 rats, and primarily presented
during gait testing

The number of altered and/or abnormal behaviors observed

during all behavioral testing were summated as were
frontiersin.org
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FIGURE 4

Local (lower back) and remote (upper thighs) pressure sensitivity measured using an algometer, and cold sensitivity measured using a temperature
place preference test. (A) Algometer test results for the lower back region, assessed at week 0 (baseline), 3, 6, 12 and 18 post-injury. (B) Algometer
test results for the upper thigh region, assessed at week 0 (baseline), 12 and 18 post-injury. (C) Thermal place preference test results, assessed as
the percentage of time rats spent on the 14°C and 12°C plates instead of the room temperature plate at 18 weeks (study endpoint). #: p < 0.5,
compared to same group’s baseline; *: p < 0.05, compared between groups as indicated.
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physical signs of stress (described in Table 1). DP-2 rats

displayed a greater number of these behaviors and physical

signs at 6-, 12- and 18-weeks post-injury, compared to their

baseline and Sham DP rats, and at 6-weeks post-injury,

compared to DP-1 rats (Figure 7D). Behavioral responses

during gait testing accounted for most of these differences

(see Figure 7C,D). Other contributing behaviors/factors

included: aggression towards a novel rat during social
Frontiers in Pain Research 13
interaction testing in week 3 (one DP-2 rat), escape behaviors

during temperature place preference testing in week 18 (one

DP-2 rat), and physical indices of stress at 3-week post injury:

a 6% weight loss (one DP-2 rat that showed recovery to a

similar weight as other rats by week 12) and porphyrin

pigmentation on the forehead and nose (one DP-2 rat).

Different DP-2 rats displayed these features (i.e., not the same

rat per observation).
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FIGURE 5

Tactile sensitivity of hind paws reported as number of hindlimb withdrawals to monofilament probing of hind paws (10 probings/filament) at week 0
(baseline), 3, 6, 12 and 18 post-injury to the sizes of monofilaments shown. (A) Sham DP. (B) DP-1. (C) DP-2. #: p < 0.5, compared to same group’s
baseline; *: p < 0.05, compared to Sham DP results.
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3.5 BDNF and TNFα were elevated at week
18 in rats with multi-level IVD injury, and
levels correlated with remote mechanical
sensitivity and negative social interaction
behaviors

Serum levels of BDNF and TNFα were higher at 18-weeks in

DP-2 rats, but not DP-1 rats, compared to Sham DP rats

(Figures 8A,B). BDNF moderately and positively correlated with

the number of hindlimb withdrawal responses to 1 cN and 4 cN

monofilaments (i.e., remote tactile sensitivity, r = 0.64 each;

Figure 8C), and moderately and negatively correlated with the
Frontiers in Pain Research 14
amount of pressure needed to evoke a response on the upper thigh

(i.e., remote pressure sensitivity, r =−0.51, Figure 8D). TNFα levels

correlated moderately and negatively with distance traveled during

gait testing (r =−0.45. Figure 8E), and with remote pressure

sensitivity on the upper thigh region (r =−0.57, Figure 8F).
3.6 Some measures of IVD degeneration
and pain behavior correlated

Some significant correlations between histological indices of

disc degeneration and behavioral measures of pain or discomfort
frontiersin.org
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FIGURE 6

Gait testing using inked footprint methodology at week 0 (baseline), 3, 6, 12 and 18 post-injury. (A) Distance travelled at each testing time-point. (B)
Mean stride length at each testing time-point. #: p < 0.5, compared to same group’s baseline; *: p < 0.05, compared between groups as indicated.
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were observed. Individual disc height indexes for L5/6 IVDs

moderately and positively correlated with remote (upper thighs)

pressure sensitivity (such that less pressure was required to evoke

a response in animals with lower L4/5 IVD heights, r = 0.56).

Histopathology scores for the L5/6 IVDs correlated moderately

and negatively with remote pressure sensitivity (upper thighs,

r =−0.61) and distance traveled during gait testing (r =−0.63).
4 Discussion

Our objective was to determine whether long-term (18 weeks)

pain-related behaviors evolved differently in an acute-to-chronic

LBP model induced by injury to either one or two lumbar IVDs.

As summarized in Table 2, only one prior study has examined

the effects of single versus multi-level IVD damage; the length of

that study was 5–8 weeks, depending on the sub-experiment

(28). In general, behaviors indicative of pain and/or discomfort

presented earlier and were more pronounced in rats with a

multi-level (DP-2) vs. single level (DP-1) IVD injury. By 3 weeks

post-injury (first follow-up time-point), the distance travelled

during gait testing had decreased similarly for both DP groups,

yet DP-2 rats also showed a reduction in positive social

interactions with a novel adult female rat. By 6 weeks, pressure

sensitivity local to the site of injury (i.e., lower back), and
Frontiers in Pain Research 15
altered/abnormal behaviors during gait testing presented in DP-2

rats (not DP-1 rats). By 12 weeks, local (lower back) and remote

(thigh) pressure sensitivity, and gait distance travelled, had

worsened/declined in both DP groups. Also at 12-weeks, DP-2

rats presented with remote tactile sensitivity (hind paws), and

continued to present with altered/abnormal behaviors during gait

testing (behaviors not observed in DP-1 rats). By 18-weeks, local

pressure sensitivity had resolved in both groups. However, in

DP-2 rats, remote pressure sensitivity and altered/abnormal

behaviors during gait testing persisted, and remote tactile

sensitivity (hind paws) was evident to several sizes of

monofilaments. The 18-week behavioral changes in DP-2 rats

were accompanied by higher circulating levels of BDNF and

TNFα, compared to Sham DP rats, and these levels correlated

positively with remote pressure and tactile sensitivity, and with

less distance traveled during gait testing. Moreover, greater

remote pressure sensitivity and less distance traveled during gait

testing correlated with radiological and histological indices of

disc degeneration. In summary, disc degeneration resulting from

the puncture of two IVDs was accompanied by earlier local

sensitivity, enhanced and/or prolonged remote sensitivity and

several other pain-behavioral symptoms, and systemic

neuroinflammatory responses, relative to the puncture of one IVD.

In this study, a single IVD puncture was given to either the

L4/5 IVD alone (DP-1 rats) or to both the L4/5 and L5/6 IVDs
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FIGURE 7

Positive and negative social interaction behaviors, altered and abnormal behaviors during gait testing, and summated altered and abnormal behaviors
at week 0 (baseline), 3, 6, 12 and 18 post-injury. (A) Positive interaction behaviors during social interaction testing. (B) Negative interaction behaviors
during social interaction testing. (C) Altered or abnormal behaviors during gait testing. (D) Summated altered and abnormal behaviors during
temperature place preference, gait, and social interaction testing. #: p < 0.5, compared to same group’s baseline; *: p < 0.05, compared between
groups as indicated.
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FIGURE 8

Serum levels of BDNF and TNFα (measured using ELISA) at 18 weeks and significant correlations between these biomarkers and behavioral measures.
(A) Serum BDNF levels. (B) Serum TNFα levels. (C,D) Spearman r correlations between serum BDNF levels and hind paw mechanical (tactile) sensitivity
to 1 cN and 4 cN monofilaments, and upper thigh mechanical (pressure) sensitivity measured (with an algometer) as the force required to elicit a
withdrawal or vocalization response. (E,F) Spearman r correlations between serum TNFα levels and distance travelled during gait testing, and upper
thigh pressure sensitivity, respectively. *: p < 0.05, compared between groups as indicated.
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(DP-2 rats) using an 18G needle, which was inserted to a depth of

2 mm (with no histological evidence of needle penetration through

the annulus fibrosis into the nucleus pulposus) without disturbing

the spinal roots using a ventral approach. This resulted in a

reduction in height in the L5/6, but not L4/5, IVD in DP-1 rats,

and both L4/5 and L5/6 IVDs in DP-2 rats. Histologically, the

punctured IVDs from both DP groups showed radiological and

histological signs of degeneration at 18 weeks post-injury. Similar

histopathology was observed in the punctured IVDs for both DP
Frontiers in Pain Research 17
groups, including: fibrosis of the nucleus pulposus [also termed

granulation (19)], annulus fibrosis layer disruption and moderate

bulging (avoiding complete disc herniation), and merging of the

normally separate interface between the nucleus pulposus and

annulus fibrosis, each a sign of disc degeneration in rodents

(13, 89). It was our intent to perform a moderate IVD injury

with a slower progressive degeneration than observed in models

using larger needles, deeper insertion of needles, and/or

approaches that displace adjacent nerve roots, as these methods
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can result in complete disc rupture as early as 24 h after surgery

(19, 27, 90), which is a far less common clinical scenario. For

example, one study examining the effects of puncturing IVDs

with either a 16G, 18G or 26G needle in rats showed that the

16G needle induced both degeneration and herniation of the

IVDs within 1 week of the procedure (rather than the usually

slower onset of degenerative changes observed in humans),

whereas the 26G needle induced no histopathological changes

(27). The 18G needle inserted to a depth of 2 mm, used in this

study, induced a disordered annulus fibrosis, indistinct interfaces,

and nucleus pulposus replacement by fibrotic tissues, but not

early or major nucleus pulposus herniation. In the event of

complete disc herniation, leakage of the nucleus pulposus and its

bioactive contents into the spinal canal would occur, which is

thought to induce nodules, Schmori’s nodes, and osteophyte

formation associated with severe IVD injury (19). We suspect

that some nucleus pulposus leakage occurred in our model as

nucleus pulposus granulation, which occurred here and is not

induced by superficial puncturing of the disc (19). Only deeper

DP or exposure to the nucleus pulposus contents (via

experimental application) stimulates this level of degeneration

(19). We observed no degeneration of the adjacent unpunctured

L4/5 IVD in DP-1 rats at 18 weeks post-injury. This contrasts

with findings by Millecamps and colleagues (36) who examined

these structures in mice 12 months after disc puncture. Although

species or other model differences may explain some of this

difference, we hypothesize that injury-induced mechanical

(instability) changes and activation/release of bioactive substances

within the nucleus pulposus would more likely negatively

impact adjacent IVDs over 12-months than our much shorter

4.5-month timeframe.

Pressure sensitivity at the lower back, as similarly tested in our

study (using algometry), has been assessed in a rat model that

involved needle puncture of the L5/6 disc followed by one or six

sweeps of the needle while within the disc to induce an artificial

annulus tear (17). They observed greater local sensitivity to

pressure at 10 and 16 weeks post-injury, as well as declines in

forelimb grip strength (a sign of discomfort during lower back

movements as the test involves a task that evokes back

movement) at 6, and 10–18 weeks, but, unlike our observations,

no change in total difference traveled during gait testing

(Table 2). We do not know if this behavioral difference is

explainable by differences in the disc injury model or gait testing.

In another study, puncturing of the L4/5 and L5/6 IVDs five or

ten times per disc in rats led to the development of local (lower

back) noxious pressure hyperalgesia beginning at 14 days post-

surgery that persisted to study end at 49 days post-surgery

(Table 2) (67). The earlier onset of local hypersensitivity relative

to our study (i.e., increased pressure sensitivity at the lower back

by week 6 in DP-2 rats) is likely explained by the higher severity

of the injury in that study—i.e., one vs. five or ten punctures per

IVD. Injury to the lower lumbar discs has also been shown to

induce declines in walking abilities (16, 91), again without

differences in step length (91), matching our results, as well as

increased grooming and wet dog shakes (15), which we did not

record (Table 2). Yet surprisingly, despite histological and
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radiological evidence of IVD degeneration, local mechanical

pressure sensitivity had resolved by 18-weeks in our DP rats.

This may reflect aspects of local tissue healing and repair, as

shown previously in rats whereby some degenerative processes

stabilized at 4 weeks (collagen III and Sox9 levels) but others

(e.g., collagen I increases) persisted (26).

Increased sensitivity at regions remote to the injury site was

also displayed by DP-2 rats, including to pressure of the upper

thighs (weeks 12 and 18 post-injury) and tactile probing of the

hind paws (weeks 12 and 18 in DP-2 rats). As shown in Table 2,

tactile hypersensitivity (also termed mechanical allodynia in the

literature) is a common symptom, yet not always present in

various rodent models of IVD injury. Some literature suggests

that vertebrogenic and discogenic LBP can include the presence

of pain patterns into the lower extremity (1, 92), whereas other

suggest that it does not involve pain below the level of the knee

(93). Many studies in humans with LBP exclude those with

symptoms of radicular nerve involvement (93), hindering a full

understanding of this diagnosis (6). Disc herniation and even

bulging can also lead to enhanced pain symptoms as a

consequence of mechanical deformation of the disc on adjacent

nerve roots. However, as our model does not directly involve

nerve damage and resulting radiating symptoms, we and a

growing body of work point to changes within the central

nervous system as a potential driver of these distal sensory

changes. These changes are proposed to enhance neuronal

responsiveness in central pain pathways, a process referred to as

central sensitization (54). Although direct evidence of central

sensitization in humans is difficult to measure, many studies

report enhanced/altered sensory responses in regions unrelated to

the painful/injured area in people with chronic LBP without

nerve damage, including the foot (94), forearm and thumb (53).

These measurable signs that may be attributed to central

sensitization have been identified as early as the acute stage (<2

weeks of onset) of LBP (53, 95), countering the traditional

clinical belief that central sensitization develops much later in the

transition from acute to chronic pain. Strikingly, these early signs

also predict poor recovery (53). Our scatter plots of the tactile

probing of the hind paws in Supplementary Figure S3 indicate

that we have responders and non-responders. Distal pain was

observed in approximately half the animals in a study examining

the effect of a single disc injury in mice on behavioral measures

of pain. Interestingly, increased disc innervation was observed in

the responders compared to the non-responders (96). These

observations are consistent with observations in humans where

IVD degeneration is not always associated with LBP (11).

Confirmation of mechanisms underlying these changes are

needed to support this theory but also probe why central

sensitization processes develop differently, at different times or

not at all in humans with pain.

Some generalized and non-evoked measures of pain/discomfort

with potential psychosocial links were identified early. At 3 weeks,

some DP-2 rats displayed fewer positive interactions with

(including aggression toward) a novel female rat, and some

showed other physical indices of stress (i.e., excessive weight loss

and porphyrin staining on the forehead/nose). From 6–18 weeks,
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DP-2 (but not DP-1) rats showed altered behaviors during open

field gait testing, including escape behaviors, hesitation before

walking, freezing >10 sec, and refusal to walk. Further, at week

18, one DP-2 rat displayed escape behaviors during temperature

place preference testing. In two other studies of IVD injury,

increased grooming, increased periods of immobilization, and

“wet dog shakes” behaviors are present by study end at 21 or 42

days after the injury (Table 2) (15, 88). In humans, psychosocial

factors are the strongest predictors of poor long-term outcome

(97, 98). Some of these factors such as mood and depressive

symptoms are thought to have a more influential impact on

outcome during the early than later stages of LBP (99). This

might be explained by underlying inflammatory processes. For

example, inflammation is involved in the exacerbation and

pathophysiology of depression (100–103) and, in turn, depression

can enhance systemic inflammation (100, 104). This may partly

explain why TNFα was elevated most in DP-2 rats and positively

correlated with mechanical sensitivity and negative psychosocial

behaviors. We have also previously shown that individuals with

poorer recovery after an acute episode of LBP have higher

depressive symptoms and a unique pro-inflammatory profile

(including elevation of TNFα) during the early-acute phase (8,

63, 66) As inflammation and specific psychological features can

fuel each other in a bidirectional manner (105, 106), we suspect

that a disturbance to either, as might occur with the onset of

LBP, could setup a negative cycle between the two that mediates

LBP persistence.

Some of the observed pain behaviors might be linked to the

release of bioactive substances from the injured disc(s), locally

altered biomechanics (e.g., in adjacent vertebral bodies, IVD, facet

joints), or both, after injury that causes mechanical or chemical

excitation of nociceptor afferents located within or near the

injured disc. Puncture of just the annulus fibrosis is thought to

produce pain symptoms mainly by altering the mechanical

properties of the disc via nucleus pulposus depressurization

(18, 19). Moreover, disc herniation can result in the release of the

contents of the nucleus pulposus (18, 19) that then sensitize nerve

tissue to produce pain symptoms (18, 74). Yet, there is evidence

that the herniated disc fragment weight measured intraoperatively

in humans does not correlate with the duration of symptoms or

severity of pre-operative symptoms (back and leg pain), or post-

operative improvements in back pain (107). This further

corroborates with our hypothesis that some pain behaviors (e.g.,

remote sensitivity) are likely explained by central sensitization

processes that we have yet to examine in these rats (94).

Serum assays after euthanasia at 18 weeks revealed elevated

levels of BDNF and TNFα in DP-2 relative to Sham DP rats.

TNFα is a key pro-inflammatory cytokine shown to increase in

dorsal root ganglia near disc injury sites between 1 day and 2

weeks after disc puncture (108, 109). TNFα and other

proinflammatory cytokines are secreted by cells in degenerating

IVDs (37) and contribute to associated pain symptoms (24, 51).

Previous studies have investigated the effects of TNFα and its

inhibitor, showing that TNFα exacerbates pain and IVD

degeneration, while anti-TNFα treatments have demonstrated

pain relief (110). Additionally, treatment with the anti-TNFα
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behavior (e.g., reduced locomotion, wet dog shakes, rotation of

the animal’s head towards the operated leg) after puncture of the

L4/5 IVDs in rats (41, 51), and reduces post-injury histological

damage (40). Administration of TNFα to cultured DRGs inhibits

neurite outgrowth from these DRG, which suggests that TNFα

has neurotoxic side effects that may further affect outcomes

(111). Although no studies have examined systemic levels of

TNFα in animal models of IVD injury, levels are elevated early

and remain high in individuals who do not recover after an acute

episode of non-specific LBP (8, 63). Interestingly, infliximab

treatment via intraperitoneal injection (systemic) also reduces

BDNF levels in dorsal root ganglia and the spinal cord after

exposing the tissues to herniated nucleus pulposus (112). BDNF

is expressed in low levels by nucleus pulposus and annulus

fibrosis cells normally, but increases as the disc undergoes

degenerative changes or is damaged/injured (42–44, 59). These

increases may be reflected systemically as BDNF can “spillover”

into circulation and its release is triggered by inflammatory

factors such as TNFα (42, 43, 46, 50), which is persistently

systemically elevated in individuals who do not recover after an

acute episode of LBP (8, 63, 66). This is important because

BDNF can sensitize and alter pain pathways at every level via its

strong capacity to regulate synaptic plasticity within the

peripheral and central nervous system (113). Inappropriate or

elevated BDNF expression that persists has been proposed to

contribute to maladaptive plasticity processes involved in central

sensitization (57)—a required step in the development and

maintenance of chronic pain (50, 114). Indeed, higher systemic

levels of BDNF correlate with higher generalized sensitivity in

animals (115) and in humans experiencing pain (56). These and

our findings that BDNF and TNFα were elevated with IVD

damage and correlated with remote sensitivity support the

hypothesis that sustained elevated levels of circulating BDNF

might be a mechanism by which inflammation initiates and

maintains central sensitization leading to chronic pain (50).

A next step is to examine inflammatory and BDNF profiles

in central nervous system tissues from these rats to confirm

this hypothesis.

This study has some limitations. First, only female rats were

included. As sex is an important factor in the modulation of

pain, and sex differences in pain behaviors have been reported in

other disc puncture studies (21, 116), sex differences should be

considered in future animal studies. This limitation is somewhat

mitigated by findings that women bear the burden of chronic

LBP (1, 2), sex has been found to inconsistently predict

outcomes over 12 months in a human study (117), and no sex

differences in disc height and histopathology changes have been

reported (21). Our design also makes our findings directly

relatable to those of Lillyman et al. (17) who studied the effects

of disc injury in female rats across 18 weeks. Second, we assayed

for biomarkers in blood collected only at euthanasia at 18 weeks

post-injury. This means that we were unable to detect any

changes in BDNF and TNFα earlier during the acute and

subacute phases in response to IVD injury. Third, we did not

investigate nervous system tissues to confirm the presence of
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peripheral and central sensitization. An investigation of the

peripheral and central nervous systems are the next steps to

confirm the role of TNFα, BDNF and other mediators of

neuroplasticity in the development of pain and chronicity

following IVD injury.
5 Conclusion

To our knowledge, this is one of the most extensive

examinations of pain-related behaviors in a rat model of injury-

induced discogenic LBP over a timeframe (18 weeks) that

accounts for the acute to chronic transition. Multi-level IVD

injury resulted in earlier, prolonged and more pronounced pain

behaviors suggestive of more advanced peripheral and central

sensitization, than single level IVD injury. BDNF and TNFα may

have a role in these relationships but will need to be

examined longitudinally and within central nervous system

tissues to confirm.
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