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Peripheral inflammation is
accompanied by cerebral
hypoperfusion in mice
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2The Graduate Center, City University of New York, New York City, NY, United States
Introduction: Chronic pain is a disabling condition that is accompanied by
neuropsychiatric comorbidities such as anxiety, depression, and cognitive
decline. While the peripheral alterations are well-studied, we lack an
understanding of how these peripheral changes can result in long-lasting brain
alterations and the ensuing behavioral phenotypes. This study aims to quantify
changes in cerebral blood perfusion using laser speckle contrast imaging
(LSCI) in the murine Complete Freund’s adjuvant (CFA) model of unilateral
peripheral inflammation.
Methods: Twenty four adult male and female C57BL/6 mice were randomly
assigned to control (0.05 ml saline) or 1 of 3 experimental groups receiving
CFA (0.01 ml, 0.05 ml, and 0.1 ml) on the right hindpaw. Three days after the
intraplantar injections, animals were examined for signs of inflammation and
subjected to craniotomy and in vivo LSCI of the parietal-temporal lobes.
Results: Unilateral administration of CFA resulted in signs of local inflammation
as well as cerebral hypoperfusion in dose-dependent manner.
Discussion: To our knowledge, this is the first study using laser speckle contrast
imaging to examine the effects of CFA-induced peripheral inflammation on
cerebral blood perfusion. It serves as a first step in delineating the path by
which insult to peripheral tissues can cause long-lasting brain plasticity via
vascular mechanisms.
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Introduction

Inflammation, an adaptive defensive response under homeostatic conditions, plays a

crucial role in driving tissue repair and fighting likely pathogens. Pain is one of the

cardinal signs of inflammation potentially caused by released mediators forming an

“inflammatory soup” capable of nociceptor sensitization (1). Under pathological

conditions, inflammation could lead to chronic pain often presenting with multiple co-

morbid psychiatric disorders, including mood alterations (2) and cognitive impairment

(3). One pivotal mechanism that could explain the chronification of pain as well as its

resistance to classical treatment is the concept of pain centralization, where initial

sensory events can gradually alter the central nervous system, resulting in amplified

pain and/or aberrant pain that exists without peripheral sensitization. Alterations in

brain circuitry have been extensively reported across a spectrum of pain conditions,

such as complex regional pain syndrome (4–8), fibromyalgia (9, 10), neuropathic pain

(11–17), and migraine (18), thus prompting the quest for treatments that could reset
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these systems. However, most of the research in this area overlooks

the evolving brain microvascular changes that may parallel

cellular plasticity.

The expensive and somewhat primitive nature of minimally-

invasive techniques that could be used to study the pain brain in

animal models have historically posed significant practical

limitations. The rapid technological advances in the field of in

vivo blood perfusion imaging paired with the high clinical

relevance of such studies have resulted in renewed interest in the

role of brain vascular changes and its role in linking peripheral

insults to central nervous system (CNS) alterations (19), with

laser speckle imaging gaining popularity as a method of in vivo

perfusion quantitation in the clinic (20, 21). Of particular interest

are cortical regions such as the somatosensory and motor

cortices, both due to logistical considerations (ease of imaging of

superficial structures), as well as the documented involvement of

these areas in the experience of pain (22).

This study aims to quantify changes in mechanical sensitivity,

cognitive function, anxiety, as well as cerebral blood perfusion

using laser speckle contrast imaging (LSCI) in the murine

Complete Freund’s adjuvant (CFA) model of unilateral

peripheral inflammation. This effort is a first step in addressing

the identity of the “black box” between central and peripheral

mechanism of pain, thereby opening the door to entirely novel

therapeutic venues that do not only target the injured tissues but

rather address the node of pain chronification.
Materials and methods

Animals

Twenty female and 24 male C57BL/6, 12–16 weeks of age, were

purchased from a commercial supplier (Jackson lab, USA) and

habituated for 14 days at the Queens College animal facility

before the start of the experiment. Animals were housed in

groups of 3/cage on a 12-h light/dark cycle and an ambient

temperature of 20°C to 22°C, with food and water available

ad libitum. All animal procedures were approved by the Queens

College Institutional Animal Care and Use Committee (Flushing,

NY, USA) and conform to the NIH guidelines (23) and the

“animal subjects” guidelines of the International Association for

the Study of Pain.
Induction of peripheral inflammation

Two cohorts of mice were used: one for the behavioral

experiments and the other for the imaging studies. Animals were

randomly assigned to control or one of three experimental

groups as described below. Normal saline or undiluted CFA

(Sigma-Aldrich, Munich, Germany) were administered to the

intraplantar surface of the right hindpaw under isoflurane

anesthesia. Signs of hindpaw swelling and abnormal gait were

noted by the observer as qualitative measures 3 days after the

unilateral injections. Certain injury models may present
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challenges to blinding due to the potential for group identity

indicators, particularly when the affected limb is directly

examined, as seen in the von Frey assay. In the behavioral

studies, data from the Y-maze, zero maze, and open field tests

were collected via video recording and subsequently analyzed.

Given that the recordings were captured from a top-down

perspective, the risk of inadvertently observing paw swelling or

other confounding factors was minimized. For the imaging

studies, animals were assigned random identifiers, and the image

analysis was conducted blindly using automated software.

(a) Control group: 0.05 ml of normal saline; n = 11. (b)

Experimental groups: Group 1: 0.01 ml CFA; n = 11. Group 2:

0.05 ml CFA; n = 11. Group 3: 0.1 ml CFA; n = 11.
Behavioral testing

All testing was carried out 3 days after treatment. All analyses

were blinded to the identity and experimental condition of the

animal. Mice were habituated to the testing room for 1hr prior

to the start of the experiments. All behavioral apparatuses were

cleaned and deodorized using 0.325% acetic acid (v/v). All videos

were recorded using GoPro cameras and analyzed using the

automatic animal tracking software Behaviorcloud©.

The following groups were used: (a.) Control group: 0.05 ml of

normal saline; n = 5. (b.) Experimental groups: Group 1: 0.01 ml

CFA; n = 5. Group 2: 0.05 ml CFA; n = 5. Group 3: 0.1 ml

CFA; n = 5.
Mechanical sensitivity
Calibrated monofilaments (Stoelting Co., USA) were applied to

the plantar surface of the hind paw and the 50% threshold to

withdraw (grams) was calculated as previously described (24).

The stimulus intensity ranged from 0.004 to 1.7 g, corresponding

to filament numbers 1.65, 2.36, 2.44, 2.83, 3.22, 3.61, 3.84, 4.08,

4.17, and 4.31. For each animal, the actual filaments used within

the aforementioned series were determined based on the lowest

filament to evoke a positive response (response = flexion reflex)

followed by five consecutive stimulations using the up–down

method. The filament range and average interval were then

incorporated along with the response pattern into each individual

threshold calculation.
Y-maze
Rodents’ natural inclination to explore new environments was

evaluated by quantifying spontaneous alternation in exploring the

arms of the maze. In a Y-shaped maze with three identical arms

(A, B, and C), mice tend to choose a new arm over one they’ve

already visited. The maze, was made in-house using opaque

white acrylic [arm dimensions: 37.4 cm × 7.6 cm × 23.3 cm

(LXWXH)]. Mice were placed in the center and allowed to

explore for 5 min. Mice with strong spatial working memory

typically entered a new arm without revisiting a previous one.

The test measured spontaneous alternation by tracking unique

sequences of arm entries (e.g., ABC, BCA). The percentage of
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alternation was calculated by dividing the number of unique

sequences by the total arm entries minus two.
Zero maze
The apparatus was made in-house and had the following

dimensions: inner circle diameter = 47 cm, outer circle

diameter = 54 cm, height = 25 cm. Mice were placed at the

boundary between the open and enclosed regions and allowed to

explore freely for six minutes. The time spent by the mice in

each of these regions was quantified.
Open field
The apparatus was built in-house as a 28 cm × 28 cm × 28 cm

(LXWXH) acrylic cube (light intensity = 130.2 lux at arena level).

Mice were placed in the center of the field and allowed to

explore for 6 min. The time spent in the central 10% and 25%

areas vs. the entire arena was calculated in addition to the speed

of locomotion in the central and peripheral areas.
Craniotomy

Mice were weighed and dexamethasone (5 ml/mg, i.p.) was

administered to prevent/reduce the occurrence of cerebral edema

caused by the side effects of isoflurane and the impact of drilling

the skull. Under isoflurane anesthesia, mice were transferred to a

stereotaxic frame and positioned on a heating pad with

continuous temperature monitoring, with sterile ointment

applied to the eyes to prevent dryness. The scalp was shaved and

cleaned with povidone before incision and drilling (drill bit

diameter = 0.8 mm). The mouse was monitored continuously

during surgery, the drill bit was cooled intermittently, and the

bone and tissues were moistened with normal saline to prevent

dryness. A skull window was created, exposing the cerebrum’s

left and right parietal-temporal lobes.
Laser speckle contrast imaging

The following groups were used: (a.) Control group: 0.05 ml of

normal saline; n = 6. (b.) Experimental groups: Group 1: 0.01 ml

CFA; n = 6. Group 2: 0.05 ml CFA; n = 6. Group 3: 0.1 ml

CFA; n = 6.

The Laser speckle imaging system was used to capture and

analyze blood flow dynamics (17) in the brain tissue 3 days post-

CFA/saline administration. The setup includes a coherent laser

light source, a camera for capturing speckle patterns, and RFLSI

iii computer software for data analysis (RWD Life Sciences,

Shenzhen, China). Following the skull window establishment, the

mouse brain tissue was exposed to laser intensity of 80 mw, and

white light intensity was level 4 for a recording duration of 12 s.

The exposure time was 8 ms, and the HD temporal algorithm

was 2048*2048. Blood perfusion data was analyzed for a constant

regions across all animals (0.7cm × 0.5 cm) using the RFLSI

iii software.
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Statistical analysis

Analysis of behavioral data was carried out using either one-

way analysis of variance (ANOVA, y-maze, zero-maze, open

field, cerebral perfusion) or two-way repeated measures ANOVA

(von Frey) followed by Bonferroni’s multiple comparison test.

The Brown–Forsythe test was used to assess equality of variances

among groups (standard deviations were not significantly

different among the groups for any of the datasets). Routs outlier

test (Q = 1.0%) was used to identify statistical outliers (no

outliers were detected). Significance was set at P value <0.05;

GraphPad Prism V8.0 (GraphPad Software, San Diego, USA).
Results

Unilateral injection of CFA into the mouse hindpaw resulted in

classic signs of inflammation per the subjective observation of the

experimenter 3 days after treatment. The administration of saline

was not linked to signs of hindpaw swelling or abnormal gait.

Meanwhile, the low dose of 0.01 ml CFA caused mild swelling in

the right paw and abnormal gait, the medium dose of 0.05 ml

CFA resulted in swelling extending beyond the paw as well as

abnormal gait, and the high dose of 0.1 ml caused swelling

extending farther beyond the paw and abnormal gait.

To provide a less subjective assessment of behavioral changes

related to paw inflammation, we conducted tests measuring

mechanical sensitivity (von Frey), working memory (y-maze),

anxiety-like behaviors (zero maze, open field), and overall

locomotor function (open field). Our results indicate a significant

increase in mechanical sensitivity following CFA administration

where, both groups receiving 0.05 ml or 0.1 ml of CFA

demonstrated reduced mechanical thresholds on the ipsilateral

paw when compared to the control group. No differences

between groups were observed for the contralateral

measurements [Figure 1A; CFA dose × Paw laterality factors

interaction % of total variation = 16, P = 0.02, F (3, 16) = 4.358;

CFA dose % of total variation = 25.74, p = 0.004, F (3, 16) =

6.590; Paw laterality factor % of total variation = 17.85,

p = 0.0015, F (1, 16) = 14.58; 0 ml CFA ipsilateral vs. 0.05 ml

CFA ipsilateral mean difference = 0.496, adjusted p value = 0.007,

95% CI of diff. = 0.1199–0.8723; 0 ml CFA ipsilateral vs. 0.1 ml

CFA ipsilateral mean difference = 0.492, adjusted p value = 0.007,

95% CI of diff. = 0.1158–0.8682; two-way repeated measures

ANOVA followed by Bonferroni’s test for multiple comparisons].

We did not detect any deficits in working memory using the

y-maze test [Figure 1B, one-way ANOVA p = 0.714, F (3, 16) =

0.4597]. However, we detected signs of anxiety-like behaviors in

the 0.1 ml CFA group compared to control in the zero maze

assay [Figure 1C, one-way ANOVA p = 0.005, F (3, 16) = 6.376;

Bonferroni’s multiple comparison test with an adjusted P value

of 0.002, mean difference = 22.07, 95.00% CI of diff. = 8.282–

35.87]. Surprisingly, anxiety-like behavior was not detected in

the open field assay, as measured by % time spend in the

central 10% area [Figure 2A, one-way ANOVA p = 0.870,
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FIGURE 1

Visual illustration of the study paradigms demonstrating the control (saline) and the 3 experimental groups in the von frey, y-maze, and zero-maze
assays. (A) Compared to the saline-treated group, animals receiving 0.05 ml or 0.1 ml of CFA demonstrated reduced mechanical sensitivity
thresholds on the affected hindpaw. No differences between groups were observed for the contralateral measurements (two-way repeated-
measures ANOVA followed by Bonferroni’s test for multiple comparisons). (B) No differences were observed in the % of unique entries in the
y-maze. (C) Animals receiving 0.1 ml of CFA spent less time in the open arenas of the zero-maze (one-way ANOVA followed by Bonferroni’s test
for multiple comparisons). ○ indicates females and □ indicates males. n= 5/group; error bars indicate S.E.M. Figure created using BioRender©.
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F (3, 16) = 0.2361] or central 25% area [Figure 2B, one-way

ANOVA p = 0.909, F (3, 16) = 0.1790]. Similarly, we did not

detect differences in the incidence of central area entry

[Figure 2C, one-way ANOVA p = 0.88, F (3, 16) = 0.222] for

central 10% area and Figure 2D, one-way ANOVA p = 0.68,

F (3, 16) = 0.52. It is noteworthy that due to the small size of

the open field apparatus, it is not one that is anxiogenic in

control animals.

Since many behavioral assays rely on motor function, we

measured the speed of locomotion in the central and peripheral

areas of the open field. No differences were observed in any of

the groups (Figures 2E,F). Central area: one-way ANOVA

p = 0.92, F (3, 16) = 0.159 and peripheral area: one-way ANOVA

p = 0.519, F (3, 16) = 0.785.

Peripheral inflammation was associated with cerebral

hypoperfusion in the parietal-temporal lobes in a dose-dependent

manner 3 days after CFA administration [Figure 3, one-way

ANOVA, p = 0.0004, F (3, 20) = 9.52]. Compared to the saline

control, 0.05 ml and 0.1 ml CFA-treated groups demonstrated

reduced perfusion rates (Bonferroni’s multiple comparison test

with an adjusted P value of 0.004, mean difference = 96.19,

95% CI of diff. = 28.17–164.2 for the 0.05 ml group and an

adjusted P value of 0.001, mean difference = 109.3, 95% CI of

diff. = 41.27–177.3 for the 0.1 ml group).
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Discussion

The CFA model of inflammation, while limited in its duration

and severity of symptoms, is valuable in demonstrating the link

between peripheral mechanisms of painful injury and the

ensuing behavioral changes and biochemical and molecular

alterations in central nervous system tissues. For example,

hindpaw inflammation (0.02 ml CFA) has been associated with

stimulus-evoked hypersensitivity as well as measures of voluntary

behavior alterations up to 9 days post-injection (25).

Additionally, CFA (0.05 ml) administration in the rat hindpaw

resulted in increased anxiety, increased levels of circulating

corticosterone as well as decreased global DNA methylation

levels in the amygdala 10 days after treatment (26). In a separate

study using in the same model, signs of increased blood-brain-

barrier (BBB) permeability were paralleled by alterations in

transmembrane tight junction protein levels (27). Our results

complement these observations by showing CFA-associated pain

and anxiety as well as dose-dependent cerebral hypoperfusion 3

days following the onset of inflammation.

These findings can be viewed within the wider scope of

peripheral inflammation using different models. For example, the

murine lipopolysaccharide (LPS) model has repeatedly been

associated with cognitive dysfunction (28) as well as aberrant
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FIGURE 2

Visual illustration of the study paradigm demonstrating the apparatus and the parameters measured. (A,B) No differences were observed in the time
spent in the central 10% (A) or 25% (B) arena. (C,D) No differences were observed in the incidence of entry to the central 10% (C) or 25% (D) arena.
(E,F) No differences were observed in the speed of locomotion in the central (E) or peripheral (F) arenas of the apparatus (one-way ANOVA).
○ indicates females and □ indicates males. n= 5/group; error bars indicate S.E.M. Figure created using BioRender©.

Kazeem et al. 10.3389/fpain.2025.1492773
synaptic phagocytosis by microglia (29), even prompting the

hypothesis that LPS exposure could be a contributing factor to

neurodegenerative disorders such as Alzheimer’s disease (30).

Inflammation subsequent to systemic LPS has also shown to be

accompanied by ultrastructural cyto-architechtural changes in the
Frontiers in Pain Research 05
BBB (31). Finally, reduced perivascular flow of cerebrospinal

fluid, in the absence of changes in blood flow, was observed in a

murine LPS model (32). There is some evidence for clinical

translation as well: in patients with chronic neck and upper body

pain, neck disability indices predicted cerebral hypoperfusion
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FIGURE 3

Visual illustration of the study paradigm demonstrating the control (saline) and the 3 experimental groups with the respective P-color images and gray
cerebral blood flow patterns in twenty-four mice brains 3 days post-CFA/saline injection. Groups receiving 0.05 ml or 0.1 ml of CFA demonstrated
reduced levels of cerebral perfusion (one-way ANOVA followed by Bonferroni’s test for multiple comparisons). ○ indicates females and □
indicates males. n= 6/group; error bars indicate S.E.M. Figure created using BioRender©.

Kazeem et al. 10.3389/fpain.2025.1492773
measured by single-photon emission computed tomography, with

higher indices being linked to greater hypoperfusion (33). In the

more extreme case of sepsis, behavioral changes such as delirium

and cognitive decline are linked to changes in cerebral

microcirculation. For instance, both perfused cerebral vessel

density and perfused small vessels were decreased in a ovine

model of septic shock due to peritonitis (34).

While our presented data is at the “proof of concept” stage, we

plan on exploring the hypothesis that alterations in cerebral

perfusion could present as a mechanistic link between peripheral

inflammation and brain plasticity, and there is evidence for

bidirectional modulation between the two. In models of chronic

cerebral hypoperfusion, the extent of hypoperfusion is correlated

to cognitive deficits (35) and vascular dementia is observed along

with loss of BBB integrity, with a recent study demonstrating a

role for the mechanosensitive piezo1 channel (36).

The adaptive value of cerebral hypoperfusion after peripheral

inflammation remains uncertain. It is possible that hypoperfusion

may aid in the minimization of inflammogen entry to the brain

(37). Similar to our findings, cerebral microcirculation was

shown to be impaired in an ovine model of experimental

peritonitis (38). Since peripheral LPS is associated with changes

in the BBB (31) the body might attempt to protect the brain by

limiting the infiltration of peripheral inflammatory mediators,

thereby preserving BBB integrity/limiting BBB damage and

reducing the likelihood of further neuroinflammatory processes.

It is also possible that it is secondary/compensatory instrument

to systemic metabolic change since systemic inflammation in

mice (LPS model) is associated with increased cerebral oxygen

demand (39). This “Metabolic hypothesis” (40) should be
Frontiers in Pain Research 06
considered alongside the “neurogenic hypothesis” where specific

neuronal populations may guide the vascular response (41),

especially since they could be exerting opposing effects (42). The

current experimental paradigm does not examine neuronal

activity or cellular energy demand in the context of cerebral

blood flow alterations. It is possible to study these variables

concurrently, for example by adopting an electrocorticography-

LCSI approach as shown in models of epilepsy (43).

Furthermore, future studies will target specific regions of interest,

compare the right vs. left hemispheres, and study timepoints

beyond the 3-day window explored in this manuscript.

The current study includes male and female subjects without

directly comparing the 2 sexes. This is due to the following

reasons: first, comparative data from male and female C57BL/6

mice showed no differences in anxiety-like behavior,

depression-like behavior, and cognitive abilities, with equivalent

between-group variances (44). This is reflected in our current

work where disaggregating data by sex did not result in any

significant changes. Second, our brief research report serves to

give an overview of this novel imaging method applied to a

model of peripheral inflammation. Future studies employing a

factorial design with sex as a factor will be used. As it stands,

the current study is not powered to detect sex differences.

Third, the NIH mandate of considering sex as a biological

variable is not the same as searching for sex differences.

Indeed, the relevant NIH policies do not to require the

doubling of the sample size nor do they require researchers to

carry out power studies to detect sex differences. The goal is to

include females in preclinical studies and show the data in a

transparent manner (45).
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To our knowledge, this is the first study using laser speckle

contrast imaging to examine the effects of CFA-induced

peripheral inflammation on cerebral blood perfusion. The

findings of decreased perfusion with increasing dose of CFA are

useful in providing a mechanistic link between central and

peripheral tissues in the processing of pain, and can provide

insight into the underpinnings of centralization/chronification in

other types of painful peripheral injuries.
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