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Background:Opioids are often prescribed for pain relief, yet they pose risks such
as addiction, dependence, and overdose. Pregnant women have unique
vulnerabilities to opioids and infants born to opioid-exposed mothers could
develop neonatal opioid withdrawal syndrome (NOWS). The study of opioid-
induced epigenetic changes in chronic pain is in its early stages. This study
aimed to identify epigenetic changes in genes associated with chronic pain
resulting from maternal opioid exposure during pregnancy.
Methods: We analyzed DNA methylation of chronic pain-related genes in 96
placental tissues using Illumina Infinium Methylation EPIC BeadChips. These
samples comprised 32 from mothers with infants prenatally exposed to
opioids who needed pharmacologic NOWS management (+Opioids/+NOWS),
32 from mothers with prenatally opioid-exposed infants not needing NOWS
pharmacologic treatment (+Opioids/-NOWS), and 32 from unexposed control
subjects (-Opioids/-NOWS).
Results: The study identified significant methylation changes at 111 CpG sites in
pain-related genes among opioid-exposed infants, with 54 CpGs
hypomethylated and 57 hypermethylated. These genes play a crucial role in
various biological processes, including telomere length regulation (NOS3,
ESR1, ESR2, MAPK3); inflammation (TNF, MAPK3, IL1B, IL23R); glucose
metabolism (EIF2AK3, CACNA1H, NOTCH3, GJA1); ion channel function
(CACNA1C, CACNA1H, CLIC4, KCNQ5); autophagy (CTSS, ULK1, ULK4, ATG5);
oxidative stress (NGF, NRG1, OPRM1, ATP1A2); aging (GRIA1, NGFR, PRLR,
EIF4E); cytokine activity (TRPV4, RUNX1, CXCL8, IL18R1); and the risk of
suicide (ADORA2A, ANKK1, GABRG2, IGSF9B). These epigenetic changes may
influence 48 signaling pathways—including cAMP, MAPK, GnRH secretion,
estrogen signaling, morphine addiction, circadian rhythms, and insulin
secretion—profoundly affecting pain and inflammation-related processes.
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Conclusion: The identified methylation alterations may shed light on pain,
neurodevelopmental changes, and other biological mechanisms in opioid-
exposed infants and mothers with OUD, offering insights into NOWS and
maternal-infant health. These findings may also pave the way for targeted
interventions and improved pain management, highlighting the potential for
integrated care strategies to address the interconnected health of mothers
and infants.
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Introduction

Chronic pain, also known as persistent pain, is a complex

condition influenced by physical injuries, underlying medical

conditions, and neurological issues (1). It can result from

injuries, post-surgery complications, cancer, and pregnancy-

related discomfort (2). Pain is categorized into nociceptive,

neuropathic, and hyperalgesia types. Nociceptive pain stems from

tissue damage like injuries or inflammation, felt as sharp or

aching, that persists longer than the normal healing time (3).

Neuropathic pain, frequently persistent, emerges from nerve

system damage, characterized by enduring burning sensations

observed in conditions like diabetic neuropathy lasting beyond 3

months. Hyperalgesia, marked by heightened pain sensitivity to

even mild stimuli, can occur locally or globally due to factors like

injury, inflammation, or certain neurological conditions (4–6).

Pain management uses diverse medications and therapies, both

prescription and nonprescription, to ease severe pain (7). Opioids

are recognized for their pain-relieving properties and euphoric

effects, making them susceptible to misuse (8).

Prolonged opioid use during pregnancy can induce genetic and

epigenetic alterations in both mother and fetus, increasing

addiction vulnerability and impacting neurodevelopment (9–13).

These changes may contribute to birth defects, miscarriage,

premature birth, low birth weight, respiratory and feeding issues,

maternal health risks, NOWS, and future behavioral

challenges (14–16).

The relationship between epigenetic dysregulation and

persistent pain is an evolving research domain, with ongoing

studies enhancing our understanding of its impact on pain

tolerance (17). Recent studies have highlighted the role of

epigenetic changes in chronic pain (18), particularly through

DNA methylation, which influences genes regulating pain

signaling, inflammation, and stress responses (19). The

relationship between chronic pain and DNA methylation is

bidirectional. Pain can induce DNA methylation changes that

affect pain sensitivity, creating a complex feedback loop that

perpetuates chronic pain states (20). Opioids alleviate pain by

acting on the central nervous system, rather than directly

influencing pain-related genes (21). Chronic pain is influenced by

a complex interplay of factors, including inflammation, nerve

sensitization, changes in the central nervous system, genetics,

epigenetics, environmental influences, and gender differences
02
(22, 23). These factors can significantly impact pain perception,

tolerance, and the effectiveness of pain management strategies, as

well as the side effects experienced by individuals.

This study aims to identify key gene networks and epigenetic

changes associated with opioid-associated pain dysregulation

through a genome-wide analysis of methylation and

transcriptomic data. The findings may provide a foundation for

advancing pain management strategies.
Materials and methods

Patients diagnosed with OUD were identified based on the

criteria outlined in the Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (DSM-5) (24). Demographic and

clinical-pathological data, such as age, sex, ethnicity, gestational

age, and history of drug exposure, were gathered and this

information has been previously published (25, 26). The study

received approval from the Institutional Review Board of

Beaumont Health System, Royal Oak, MI, USA (HIC#:

2019-086). Pregnant women were identified retrospectively via

chart review from William Beaumont Hospital, Royal Oak, MI.

Informed consent was waived since the study solely involved

collecting discarded placental tissues and obtaining limited de-

identified demographic data from hospital records.

The diagnosis of NOWS, coded as P96.1, was established by

neonatologists following clinical criteria. Newborns born to

mothers with a history of opioid or illicit drug use underwent

monitoring in the inpatient unit for 4–5 days to detect signs of

NOWS. Assessment of the infant’s condition was conducted

using the Finnegan Neonatal Abstinence Scoring Tool (FNAST),

administered by postpartum and/or NICU nurses. If the FNAST

scores indicated the need for pharmacologic intervention, the

infant was transferred to the NICU for continued monitoring,

scoring, and treatment. Throughout the treatment process,

parental involvement was encouraged to optimize non-

pharmacologic approaches, which remained the primary focus

before and during pharmacologic treatment, regardless of the

need for medication. The FNAST scoring system guided

decisions regarding the initiation of pharmacologic management

with morphine.

A total of 96 formalin-fixed, paraffin-embedded (FFPE)

placental tissue biopsies were processed for DNA extraction.
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These samples were categorized into three distinct groups for

analysis. Group 1 comprised 32 placental tissue samples from

newborns exposed prenatally to opioids and requiring

pharmacologic treatment for NOWS (+Opioids/+NOWS). Group

2 consisted of 32 placental tissue samples from newborns

prenatally exposed to opioids but not requiring pharmacologic

treatment for NOWS (+Opioids/-NOWS). Lastly, Group 3 served

as the control, comprising placental tissue samples from

newborns with no prenatal opioid exposure and no NOWS

(-Opioids/-NOWS, control).
Illumina infinium methylationepic BeadChip

We performed genome-wide DNA methylation analysis on

bisulfite-treated genomic DNA using the Illumina Infinium EPIC

BeadChip (850 K) according to the manufacturer’s protocol at

the Beaumont Health Genomics Core Facility. The detailed

methodology has been previously described (25, 26). To ensure

the integrity of our microarray experiments, sample placement

on arrays was randomized for both cases and controls age and

gender (27). The EPIC array encompasses over 850,000

individual CpG sites across the genome at a single-nucleotide

resolution, encompassing multiple genes linked to pain.

Following scanning with Illumina iScan scanners, intensity data

(iDAT) files were imported into Illumina’s Genome Studio

methylation analysis package program.
Statistical and bioinformatic analysis

The IDAT files containing data were normalized using

Genome Studio software’s functional normalization method to

ascertain Cytosine methylation levels (represented as ß-values)

for each CpG site. Before analysis, CpG-probes with missing ß-

values were excluded. Differential methylation was evaluated by

comparing the ß-values of cytosines at individual CpG loci

between NOWS and control groups. To minimize confounding

variables, probes targeting sex chromosomes, non-specific

regions, and CpG sites within 10 base pairs of SNPs were

eliminated (28–30). Additionally, SNPs with a minor allele

frequency of ≤0.05 were exclusively considered for

subsequent analysis.

Distinguishing methylated CpG sites between individuals with

NOWS and controls was determined using predetermined cutoff

criteria with a false discovery rate (FDR) threshold of p < 0.05.

When multiple CpG sites were found within a gene, the one

with the highest area under the curve (AUC) receiver operating

characteristic (ROC) ranking and the lowest p-value was selected.

The calculation of p-values for methylation disparities between

the case and control groups at each locus followed previously

established methods (25, 31). Both raw p-values and FDR-

adjusted p-values, corrected for multiple testing using the

Benjamini-Hochberg method, were computed. Additionally, the

AUC for combinations of loci was computed using the “ROCR”

package (version 3.5.0) in the ‘R’ programming environment.
Frontiers in Pain Research 03
Chronic pain-associated gene selections

Pain-associated genes were identified through a comprehensive

analysis using an integrated genetic database. This database

combines data from genome-wide association studies (GWAS),

gene expression profiles, and curated literature on pain phenotypes

(32, 33). The focus was on genes with robust GWAS evidence

linking them to pain perception or chronic pain, genes documented

in known pain pathways, and those associated with opioid use,

particularly in the context of chronic pain management or opioid-

induced hyperalgesia. Detailed information on these genes,

including their functions, pathways, and relevant SNPs or

mutations, was carefully extracted and cross-referenced with

multiple databases to ensure accuracy and relevance, particularly in

the context of opioid use, addiction, and chronic pain. This

comprehensive approach highlights the genetic underpinnings that

link opioid use disorder with pain-related pathways and addiction

susceptibility. Additionally, to identify potential genes implicated in

pain, relevant review articles were consulted and reviewed (34–38).

These articles offered valuable insights by synthesizing existing

research, with a particular focus on genes involved in pain

perception, chronic pain, and opioid use. A total of 897 pain-

associated genes were retrieved including genes from the Human

Pain Genetics Database (https://diatchenko.lab.mcgill.ca/hpgdb/), a

hand-curated resource of genetic associations with human pain

phenotypes (Supplementary Table S1). Genes overlapping between

this database and published literature were included only once.

Supplementary Table S2 presents details on several key genes

and their biological roles associated with pain. The table

categorizes these genes based on their involvement in various

physiological and pathological processes, including diabetes,

telomere maintenance, glucose metabolism, aging, and suicide,

among others. Each entry provides information on the gene’s

function and its relevance to the context of pain.
Heatmap

The heatmap was created with the Complex Heatmap module

(v1.6.0) in the R package (v3.2.2). It displays the distribution of

methylated CpG sites among pain-associated CpGs, where each site

represents a single data point. This analysis aims to visually represent

methylation patterns across these regions. Hierarchical clustering of

the samples was performed using Ward’s method (39). Significantly

different methylated CpG sites between NOWS and control groups

were determined using FDR P-values ≤0.05. The area under the

receiver operating characteristic (AUC-ROC) was calculated based on

methylation levels at the most significant CpG loci.
Protein-protein interaction (PPI) network
analysis

We performed a PPI network analysis on the 111 differently

methylated genes implicated in pain perception in NOWS using
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the STRING database (version 12.0). Parameters set for the analysis

included a maximum false discovery rate (FDR) of 0.05 to focus on

statistically significant interactions, a minimum interaction

strength of 0.01 to include relevant but not necessarily strong

interactions, and a minimum count of 2 to be displayed in the

network, ensuring that only genes with at least one connection

were included. Notably, the MALAT1 gene (lncRNA), identified

as a noncoding gene, was excluded from this analysis due to its

inability to encode protein and hence participate in PPIs.
Gene ontology (Go) and KEGG pathway
analysis

The functional implications of these genes were further

investigated through Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

via the DAVID v6.8 tool. Enrichment analysis was conducted,

focusing on biological processes (BP), cellular components (CC),

molecular functions (MF), and metabolic pathways. Significant

terms and pathways (p-value < 0.05, Benjamini-Hochberg

corrected) were identified to elucidate the biological basis of

NOWS pain perception. Results from the GO and KEGG

analyses were visualized using bubble plots in R using the

ggplot2 package. Each bubble represents a GO term or KEGG

pathway, with size indicating gene count and color showing

significance, providing an intuitive view of the enriched

biological themes.
Venn diagram analysis

AVenn diagram analysis was performed to identify unique and

shared methylation patterns among genes associated with NOWS-

associated pain. Gene lists from four independent analyses were

compiled and visualized using InteractiVenn (40). This approach

enabled the identification of genes unique to each analysis as well

as those common across multiple analyses.
Results

The study’s four analyses identified differentially methylated

CpGs linked to pain-related genes, opioid exposure, and NOWS.

The first analysis compared the (+Opioids/+NOWS) group with

the (+Opioids/-NOWS), identifying 50 significant genes

(Supplementary Table S3). The second analysis, which compared

the combined (+Opioids/+NOWS) and (+Opioids/-NOWS)

groups with the (-Opioids/-NOWS, control), yielded 42

significant genes (Supplementary Table S4). The third analysis

compared the (+Opioids/+NOWS) group with the (-Opioids/-

NOWS, control), identifying 40 dysregulated genes

(Supplementary Table S5). Finally, the fourth analysis compared

the (+Opioids/-NOWS) group with the (-Opioids/-NOWS,

control) group, revealing 49 significant markers (Supplementary

Table S6).
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After combining and overlapping the results from the four

analyses, a total of 111 CpG sites (FDR p-values ≤0.05),
associated with 111 pain-related genes in individuals with

NOWS, were identified. When multiple genes overlapped in the

analyses, each was included only once. Of these, 54 CpG sites

exhibited hypomethylation, while 57 showed hypermethylation,

with each site included only once. (Table 1).
Heatmap assessment

The heatmap reveals two distinct clusters of CpGs, (i.e., NOWS

and control) utilizing CpG methylation markers associated with

pain sensation. One cluster is characteristic of NOWS patients,

while the other corresponds to the control group. This strong

observation provides significant backing to the idea that these

methylation markers are dependable indicators for discriminating

between individuals with NOWS and those without. These

results validate the precision and effectiveness of the methylation

markers in distinguishing between the two patient groups.

Supplementary Figures S1-S4 illustrate four distinct

analysis combinations.
PPI network characteristics

The Protein-Protein Interaction (PPI) network analysis, which

incorporated 110 nodes after excluding the noncoding MALAT1

gene, revealed significant connectivity among proteins implicated

in pain perception in NOWS. The network consisted of 350

edges, which is notably higher than the expected number of

edges (154), suggesting a non-random pattern of protein

interactions. The average node degree was calculated to be 6.36,

indicating a moderate level of interaction per protein, while the

average local clustering coefficient was 0.402, reflecting the

network’s tendency to form clusters. Remarkably, the PPI

enrichment p-value was less than 1.0e−16, indicating highly

significant enrichment beyond chance. This suggests that the

differentially methylated genes in NOWS are interconnected and

likely play a substantial role in pain perception. Visual analysis of

the PPI network revealed several highly connected nodes that

may be key regulators in NOWS pathophysiology (Figure 1).
Gene ontology (Go) analysis

The GO analysis identified significant terms across Biological

Process (BP) (Figure 2), Cellular Component (CC) (Figure 3),

and Molecular Function (MF) (Figure 4), that provide insights

into the molecular basis of pain perception in NOWS. Key

Biological Processes highlighted include the positive regulation of

cytosolic calcium ion concentration, calcium ion import across

the plasma membrane, and vasodilation, which suggest

alterations in ion regulation and vascular function may play a

critical role in NOWS-associated pain. Protein phosphorylation

and signal transduction were also prominent, indicative of
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TABLE 1 A comprehensive list of 111 CpG targets exhibiting significant methylation differences in NOWS is provided.

TargetID Gene Location p-Val FDR p-Val % Methylation AUC CI

Cases Control Difference Lower Upper
cg26635219 CFTR 7q31.2 9.67 × 10−3⁹ 8.36 × 10−33 24.59 14.19 10.40 0.76 0.64 0.88

cg13999099 IL6ST 5q11.2 2.41 × 10−3⁸ 2.08 × 10−32 26.41 16.95 9.46 0.92 0.85 0.99

cg22018329 GNA11 19p13.3 1.03 × 10−3⁷ 8.91 × 10−32 85.92 78.79 7.13 0.77 0.65 0.88

cg03659519 GALR1 18q23 5.45 × 10−3⁷ 4.72 × 10−31 17.00 10.84 6.16 0.68 0.56 0.80

cg15677797 KLF11 2p25.1 7.74 × 10−21 6.70 × 10−1⁵ 6.37 13.28 −6.91 0.57 0.45 0.69

cg02904605 NOTCH3 19p13.12 6.01 × 10−1⁷ 5.20 × 10−11 64.42 74.86 −10.43 0.78 0.67 0.89

cg21517792 MTA1 14q32.33 5.80 × 10−1⁵ 5.01 × 10−⁹ 78.15 85.62 −7.46 0.82 0.71 0.92

cg14117934 IL1B 2q14.1 1.07 × 10−1⁴ 9.26 × 10−⁹ 77.75 69.36 8.39 0.81 0.70 0.91

cg14929554 N4BP1 16q12.1 2.57 × 10−1⁴ 2.22 × 10−⁸ 60.20 70.37 −10.17 0.76 0.65 0.88

cg13377102 KCNAB3 17p13.1 6.63 × 10−1⁴ 5.73 × 10−⁸ 70.71 79.30 −8.59 0.80 0.69 0.91

cg04708753 CASP9 1p36.21 1.07 × 10−13 9.24 × 10−⁸ 5.83 11.12 −5.28 0.61 0.49 0.74

cg15929698 NPY 7p15.3 1.25 × 10−13 1.08 × 10−⁷ 50.16 40.25 9.90 0.75 0.63 0.87

cg08929188 CALCA 11p15.2 2.00 × 10−13 1.73 × 10−⁷ 25.95 17.92 8.02 0.75 0.63 0.87

cg16839955 ARNTL 11p15.3 4.03 × 10−13 3.48 × 10−⁷ 28.33 20.13 8.20 0.81 0.71 0.92

cg15442907 CACNA1C 12p13.33 5.63 × 10−13 4.87 × 10−⁷ 45.17 55.79 −10.62 0.78 0.67 0.90

cg06976250 ANKK1 11q23.2 5.99 × 10−12 5.18 × 10−⁶ 16.26 10.96 5.30 0.59 0.46 0.71

cg22623236 PDE10A 6q27 9.31 × 10−12 8.06 × 10−⁶ 62.35 71.33 −8.98 0.72 0.60 0.85

cg09711113 NLGN2 17p13.1 1.11 × 10−11 9.60 × 10−⁶ 53.95 63.63 −9.69 0.75 0.62 0.87

cg25885356 RUNX1 21q22.12 1.19 × 10−11 1.03 × 10−⁵ 44.32 35.28 9.04 0.72 0.59 0.85

cg27331241 PRKAR1B 7p22.3 1.77 × 10−11 1.54 × 10−⁵ 52.56 62.30 −9.74 0.71 0.59 0.84

cg22197205 CLIC4 1p36.11 1.83 × 10−11 1.58 × 10−⁵ 75.08 82.18 −7.10 0.75 0.64 0.87

cg08253824 SCN8A 12q13.13 1.85 × 10−11 1.60 × 10−⁵ 60.21 69.29 −9.09 0.71 0.59 0.84

cg03037030 TNF 6p21.33 3.01 × 10−11 2.61 × 10−⁵ 17.77 12.39 5.38 0.73 0.62 0.85

cg16243402 OPRM1 6q25.2 3.25 × 10−11 2.81 × 10−⁵ 22.90 30.46 −7.56 0.62 0.50 0.74

cg17546721 TGFBR2 3p24.1 5.00 × 10−11 4.32 × 10−⁵ 53.38 44.44 8.95 0.75 0.63 0.87

cg03652989 ULK1 12q24.33 5.15 × 10−11 4.45 × 10−⁵ 80.91 74.25 6.66 0.77 0.65 0.89

cg11978118 ADORA2A 22q11.23 6.95 × 10−11 6.01 × 10−⁵ 71.99 79.40 −7.40 0.77 0.66 0.89

cg00248439 GRK5 10q26.11 8.53 × 10−11 7.38 × 10−⁵ 89.72 84.80 4.93 0.70 0.57 0.83

cg16293347 TAOK3 12q24.23 1.15 × 10−1⁰ 9.95 × 10−⁵ 80.32 73.63 6.68 0.77 0.65 0.88

cg17782167 PLCE1 10q23.33 1.20 × 10−1⁰ 1.03 × 10−⁴ 63.77 55.31 8.46 0.75 0.63 0.87

cg15118537 PRKG1 10q11.23-q21.1 1.31 × 10−1⁰ 1.13 × 10−⁴ 72.65 64.95 7.69 0.73 0.60 0.85

cg09778136 ATG5 6q21 1.32 × 10−1⁰ 1.14 × 10−⁴ 49.51 58.94 −9.42 0.75 0.63 0.87

cg11211173 ATP1A2 1q23.2 1.47 × 10−1⁰ 1.27 × 10−⁴ 75.90 68.59 7.31 0.74 0.61 0.86

cg24062706 OSM 22q12.2 1.60 × 10−1⁰ 1.38 × 10−⁴ 36.26 28.16 8.10 0.71 0.59 0.84

cg20629735 IL18R1 2q12.1 1.72 × 10−1⁰ 1.49 × 10−⁴ 73.99 80.95 −6.96 0.76 0.65 0.88

cg24368031 MRC2 17q23.2 1.75 × 10−1⁰ 1.52 × 10−⁴ 28.42 20.97 7.45 0.75 0.63 0.87

cg12339476 MAPK10 4q21.3 2.34 × 10−1⁰ 2.02 × 10−⁴ 63.21 71.53 −8.32 0.73 0.60 0.85

cg25387779 GNAO1 16q13 4.10 × 10−1⁰ 3.55 × 10−⁴ 18.94 26.52 −7.58 0.65 0.51 0.78

cg01015652 ESR2 14q23.2-q23.3 4.44 × 10−1⁰ 3.84 × 10−⁴ 16.52 10.78 5.74 0.78 0.66 0.89

cg09031352 PTN 7q33 5.47 × 10−1⁰ 4.73 × 10−⁴ 38.19 47.35 −9.16 0.75 0.63 0.87

cg14299235 ABCA1 9q31.1 5.51 × 10−1⁰ 4.77 × 10−⁴ 67.75 59.84 7.91 0.68 0.55 0.81

cg05313261 MAPK3 16p11.2 5.72 × 10−1⁰ 4.95 × 10−⁴ 6.60 11.74 −5.14 0.88 0.80 0.97

cg03402505 GRIA1 5q33.2 5.84 × 10−1⁰ 5.05 × 10−⁴ 57.48 49.10 8.38 0.78 0.67 0.90

cg10274696 C7orf10 7p14.1 5.86 × 10−1⁰ 5.07 × 10−⁴ 64.73 72.72 −7.99 0.78 0.67 0.90

cg06942027 KCNJ2 17q24.3 6.04 × 10−1⁰ 5.23 × 10−⁴ 20.18 14.00 6.19 0.70 0.57 0.83

cg19690051 CAPN1 11q13.1 8.10 × 10−1⁰ 7.00 × 10−⁴ 15.48 9.98 5.51 0.89 0.80 0.97

cg12578250 PRDM16 1p36.32 1.10 × 10−⁹ 9.50 × 10−⁴ 58.24 66.72 −8.48 0.73 0.60 0.85

cg18302652 CXCL8 4q13.3 1.24 × 10−⁹ 1.07 × 10−3 15.36 21.35 −5.99 0.65 0.53 0.77

cg02081889 PCSK5 9q21.13 1.32 × 10−⁹ 1.14 × 10−3 14.37 9.15 5.22 0.79 0.68 0.90

cg07616332 SHMT1 17p11.2 1.35 × 10−⁹ 1.17 × 10−3 63.11 55.05 8.06 0.71 0.59 0.84

cg12602112 EDNRB 13q22.3 1.41 × 10−⁹ 1.22 × 10−3 11.09 17.06 −5.97 0.70 0.58 0.83

cg15787454 CPQ 8q22.1 1.53 × 10−⁹ 1.33 × 10−3 76.04 82.37 −6.32 0.74 0.62 0.86

cg16910896 LPAR1 9q31.3 1.55 × 10−⁹ 1.34 × 10−3 64.85 72.65 −7.80 0.72 0.59 0.84

cg12056044 IL23R 1p31.3 1.78 × 10−⁹ 1.54 × 10−3 60.52 68.71 −8.20 0.75 0.63 0.87

cg20583095 ESR1 6q25.1-q25.2 1.84 × 10−⁹ 1.59 × 10−3 34.11 26.51 7.61 0.77 0.65 0.88

cg13480658 AJAP1 1p36.32 2.05 × 10−⁹ 1.77 × 10−3 89.37 93.23 −3.87 0.72 0.59 0.84

cg04329125 CRIP2 14q32.33 2.05 × 10−⁹ 1.77 × 10−3 47.33 39.10 8.23 0.70 0.58 0.83

(Continued)
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TABLE 1 Continued

TargetID Gene Location p-Val FDR p-Val % Methylation AUC CI

Cases Control Difference Lower Upper
cg21176263 LMX1B 9q33.3 2.65 × 10−⁹ 2.29 × 10−3 64.92 72.69 −7.77 0.75 0.62 0.87

cg09021274 DLG2 11q14.1 2.98 × 10−⁹ 2.58 × 10−3 84.55 79.06 5.50 0.86 0.77 0.95

cg17500968 TRPV4 12q24.11 3.37 × 10−⁹ 2.91 × 10−3 84.86 80.02 4.83 0.68 0.56 0.80

cg09964361 CAMK4 5q22.1 3.42 × 10−⁹ 2.96 × 10−3 63.94 56.11 7.83 0.71 0.58 0.84

cg07164211 CACNA2D1 7q21.11 4.58 × 10−⁹ 3.96 × 10−3 79.12 84.79 −5.67 0.75 0.63 0.87

cg14972143 EIF4E 4q23 4.70 × 10−⁹ 4.07 × 10−3 16.56 11.10 5.46 0.84 0.74 0.94

cg02695252 PRLR 5p13.2 4.71 × 10−⁹ 4.07 × 10−3 72.17 78.88 −6.71 0.81 0.70 0.92

cg17369032 NGFR 17q21.33 5.51 × 10−⁹ 4.76 × 10−3 75.13 81.46 −6.33 0.77 0.65 0.89

cg25067242 NGF 1p13.2 5.88 × 10−⁹ 5.09 × 10−3 48.57 57.28 −8.72 0.77 0.65 0.88

cg25944168 EIF2AK3 2p11.2 6.28 × 10−⁹ 5.43 × 10−3 63.88 56.16 7.72 0.71 0.58 0.84

cg21685789 GABRG2 5q34 6.54 × 10−⁹ 5.65 × 10−3 57.62 49.72 7.90 0.73 0.60 0.85

cg06444178 ANKH 5p15.2 7.39 × 10−⁹ 6.39 × 10−3 15.10 9.97 5.13 0.78 0.66 0.89

cg17349736 NR3C1 5q31.3 7.40 × 10−⁹ 6.40 × 10−3 58.87 66.91 −8.04 0.76 0.64 0.88

cg21486834 RHBDF2 17q25.1 8.81 × 10−⁹ 7.62 × 10−3 81.54 86.77 −5.23 0.76 0.64 0.87

cg02111786 NRXN3 14q24.3-q31.1 9.60 × 10−⁹ 8.31 × 10−3 85.00 79.74 5.26 0.73 0.60 0.85

cg14129053 MYT1l 2p25.3 1.02 × 10−⁸ 8.86 × 10−3 72.28 66.10 6.18 0.65 0.53 0.77

cg11590170 GJA1 6q22.31 1.03 × 10−⁸ 8.87 × 10−3 79.56 73.47 6.09 0.74 0.61 0.86

cg21963925 CACNA1H 16p13.3 1.06 × 10−⁸ 9.16 × 10−3 90.85 87.19 3.66 0.60 0.48 0.73

cg24397382 STX1A 7q11.23 1.10 × 10−⁸ 9.53 × 10−3 71.48 64.43 7.05 0.70 0.57 0.83

cg15002761 IGSF9B 11q25 1.14 × 10−⁸ 9.87 × 10−3 87.39 91.52 −4.14 0.76 0.64 0.88

cg22849544 THRB 3p24.2 1.16 × 10−⁸ 1.00 × 10−2 18.73 24.80 −6.07 0.57 0.45 0.69

cg12078872 DDO 6q21 1.33 × 10−⁸ 1.15 × 10−2 80.37 85.75 −5.38 0.80 0.70 0.91

ch.12.28033R WNK1 12p13.33 1.48 × 10−⁸ 1.28 × 10−2 11.78 17.49 −5.71 0.61 0.48 0.75

cg23817893 CCDC81 11q14.2 1.50 × 10−⁸ 1.30 × 10−2 42.44 50.91 −8.46 0.75 0.63 0.87

cg08408433 PTGIR 19q13.32 1.54 × 10−⁸ 1.34 × 10−2 71.09 77.74 −6.65 0.72 0.59 0.84

cg09713515 DOCK4 7q31.1 1.56 × 10−⁸ 1.35 × 10−2 81.31 75.54 5.77 0.76 0.65 0.88

cg00781169 PTGER3 1p31.1 1.76 × 10−⁸ 1.52 × 10−2 60.07 67.91 −7.85 0.70 0.57 0.83

cg09070522 REST 4q12 1.91 × 10−⁸ 1.66 × 10−2 14.44 9.48 4.96 0.88 0.79 0.97

cg09397542 PHACTR1 6p24.1 1.97 × 10−⁸ 1.70 × 10−2 14.23 9.36 4.87 0.77 0.65 0.89

cg23947039 BDNF 11p14.1 2.04 × 10−⁸ 1.76 × 10−2 7.56 3.79 3.78 0.87 0.78 0.96

cg07539983 SPARC 5q33.1 2.17 × 10−⁸ 1.88 × 10−2 79.24 73.23 6.01 0.74 0.61 0.86

cg02726883 NF1 17q11.2 2.37 × 10−⁸ 2.05 × 10−2 14.59 9.63 4.96 0.91 0.84 0.99

cg05931684 EHMT2 6p21.33 2.48 × 10−⁸ 2.15 × 10−2 17.20 11.93 5.27 0.86 0.76 0.95

cg10439765 SLC12A5 20q13.12 2.61 × 10−⁸ 2.26 × 10−2 15.53 21.81 −6.27 0.70 0.57 0.82

cg19621317 ASIC1 12q13.12 2.63 × 10−⁸ 2.27 × 10−2 71.62 78.17 −6.56 0.80 0.70 0.91

cg19753937 NRG1 8p12 2.63 × 10−⁸ 2.28 × 10−2 74.82 80.88 −6.06 0.73 0.61 0.85

cg08644772 IKBKAP 9q31.3, 2.82 × 10−⁸ 2.44 × 10−2 83.19 87.94 −4.75 0.76 0.64 0.88

cg22952017 CTSS 1q21.3 2.99 × 10−⁸ 2.59 × 10−2 31.95 25.90 6.05 0.76 0.65 0.87

cg18793036 MME 3q25.2 3.02 × 10−⁸ 2.61 × 10−2 14.89 21.02 −6.12 0.65 0.52 0.79

cg09045305 ADARB2 10p15.3 3.20 × 10−⁸ 2.77 × 10−2 69.88 76.54 −6.66 0.74 0.62 0.86

cg21295398 BECN1 17q21.31 3.33 × 10−⁸ 2.88 × 10−2 74.35 67.82 6.53 0.83 0.73 0.94

cg08914905 PIK3C3 18q12.3 3.43 × 10−⁸ 2.97 × 10−2 75.40 68.99 6.41 0.71 0.58 0.84

cg01183713 ULK4 3p22.1 3.50 × 10−⁸ 3.03 × 10−2 67.27 74.21 −6.94 0.71 0.59 0.84

cg19137569 KCNN3 1q21.3 3.52 × 10−⁸ 3.04 × 10−2 32.61 40.65 −8.04 0.78 0.66 0.89

cg22762326 OXR1 8q23.1 3.59 × 10−⁸ 3.10 × 10−2 82.45 76.99 5.46 0.75 0.62 0.87

cg16298405 RUNX2 6p21.1 3.85 × 10−⁸ 3.33 × 10−2 9.95 14.56 −4.61 0.76 0.66 0.87

cg06069187 SARM1 17q11.2 4.15 × 10−⁸ 3.59 × 10−2 21.62 28.62 −7.00 0.67 0.54 0.80

cg18501142 MALAT1 11q13.1 4.46 × 10−⁸ 3.86 × 10−2 18.71 13.32 5.39 0.79 0.68 0.90

cg17457918 SCN1A 2q24.3 4.48 × 10−⁸ 3.87 × 10−2 41.52 49.70 −8.19 0.73 0.60 0.85

cg05337454 NOS3 7q36.1 4.58 × 10−⁸ 3.97 × 10−2 88.15 83.70 4.45 0.70 0.57 0.83

cg03786924 KCNQ5 6q13 4.94 × 10−⁸ 4.27 × 10−2 29.22 22.61 6.61 0.74 0.62 0.86

cg17403731 HCN2 19p13.3 5.12 × 10−⁸ 4.43 × 10−2 67.65 60.59 7.05 0.70 0.57 0.83

cg26701226 WSCD1 17p13.2 5.62 × 10−⁸ 4.86 × 10−2 4.69 8.29 −3.60 0.57 0.44 0.69

cg06422471 SHANK3 22q13.33 5.69 × 10−⁸ 4.93 × 10−2 21.70 15.91 5.80 0.71 0.58 0.83

This includes CpG sites with target ID, pain-associated gene IDs, chromosome locations, p-values, FDR p-values, and the percentage of methylation difference.
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FIGURE 1

Protein-Protein interaction (PPI) network analysis depicting 110 nodes and 350 edges. The network demonstrates a higher-than-expected level of
connectivity with an average node degree of 6.36 and an average local clustering coefficient of 0.402, indicative of a tightly knit network. This is
supported by a PPI enrichment p-value of less than 1.0e–16.
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complex signaling pathways involved in pain response. Terms

related to cardiac muscle function and nerve development were

notably enriched, reflecting the potential influence of these genes

on the neurophysiological adaptations in NOWS.

In Cellular Components a significant enrichment in genes

associated with the plasma membrane points to the importance

of membrane-bound proteins and receptors in nociception.

Other notable components included axons, neuronal cell bodies,

and various synapse structures, such as glutamatergic synapses,

suggesting a focus on neuron-specific structures and interactions.

Significant Molecular Functions implicated in the data include

scaffold protein binding and calmodulin binding, which may

influence intracellular signaling pathways related to pain. The

activity of voltage-gated calcium channels and protein kinase

activities were also highlighted, suggesting potential targets for

modulating neuronal excitability and signal transduction in pain

pathways specific to NOWS.
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The GO terms identified suggest that the differently methylated

genes in NOWS are significantly involved in neural signaling and

development, membrane dynamics, and intracellular signaling

mechanisms These biological themes provide a molecular

framework that may explain the altered perception of pain in

NOWS and could help in guiding further research into targeted

therapies for pain management in affected neonates

(Supplementary Tables S7–S9).
Pathway analysis

KEGG pathway analysis of the 111 differently methylated

genes identified their involvement in 48 pathways (FDR p-value

<0.05), with a primary focus on neuronal function and substance

use—both highly relevant to pain (Supplementary Table S10).

Notably, the cAMP and MAPK signaling pathways, which
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FIGURE 2

Displays the enrichment analysis for biological processes (BP). The size of each bubble corresponds to the number of genes associated with that term,
and the color gradient represents the FDR value, with darker shades indicating greater significance.
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exhibited high gene counts, play crucial roles in cellular responses

to external stimuli and pain modulation. The neuroactive ligand-

receptor interaction pathway, also enriched with a substantial

number of genes, suggests alterations in neurotransmitter

dynamics that may influence pain perception. Additionally, the

enrichment of multiple disease-related pathways, including

cancer and various infections, underscores the broader impact of

epigenetic modifications on cellular stress and immune

responses, which may have implications for pain regulation and

opioid withdrawal (Figure 5).
Venn diagram

The Venn diagram analysis revealed distinct and overlapping

methylation patterns, illustrating the complex epigenetic

landscape of NOWS-associated pain (Figure 6). Each analysis

identified a unique set of differentially methylated genes, while

several genes exhibited overlapping methylation changes,

suggesting their involvement in shared biological pathways.

Notably, the PLCE1 gene was consistently methylated across

all analyses, highlighting it as a core epigenetic marker for

NOWS-related pain. These findings reveal key regulatory
Frontiers in Pain Research 08
networks with therapeutic potential. See Supplementary

Table S11 for the full gene list.
Discussion

Pregnant women may use opioids for pain relief, addiction,

or treatment, but misuse can lead to epigenetic changes that

impact fetal development, affecting genes related to pain

sensitivity and neurological functions (41, 42). Epigenetic

changes during critical periods of fetal development can shape

pain perception and increase the likelihood of severe health

issues that may arise in adulthood, often rooted in early

infancy (33). Yet, how prenatal opioid exposure disrupts

epigenetic regulation and its lasting effects on pain

remains unknown.
Autophagy genes contribute to chronic pain

We identified ten dysregulated autophagy-related genes—

BDNF, LMX1B, ESR2, ULK4, ATG5, BECN1, MAPK3, PIK3C3,

CTSS, and ULK1—that affect neuronal development, pain
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FIGURE 3

Shows the cellular components (CC) with significant gene involvement. In all subfigures, the size of each bubble corresponds to the number of genes
associated with that term, and the color gradient represents the FDR value, with darker shades indicating greater significance.
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sensitivity, and long-term health. BDNF is essential for neuronal

survival and plasticity (43). LMX1B and ESR2 support

serotonergic neuron development and pain modulation.

Dysregulation of LMX1B increases pain sensitivity and mood

disorder risk, while ESR2 affects pain thresholds and mood via

estrogen signaling, underscoring their role in the complex

interplay of pain and mood regulation (44). ULK4 and ULK1

are critical enzymes that initiate autophagy, dysregulation of

ULK1 or ULK4 impairs autophagy, causing damaged proteins

to accumulate in neurons. This can lead to neurodegeneration,

increased cellular stress, inflammation, and heightened pain

sensitivity, raising the risk of chronic pain (45). ATG5 is vital

for autophagosome formation; abnormal expression can

impair autophagy, causing neuroinflammation and chronic

pain (46). BECN1 regulates autophagy initiation; dysregulation

may result in neuron damage and an increased risk of

neurodegenerative diseases (47). MAPK3, part of the MAPK/

ERK pathway, affects pain perception and neural plasticity,

impacting cognitive function (48). PIK3C3 is involved in

autophagy and endocytic trafficking; dysfunction may lead to

neuroinflammation and chronic pain (49). CTSS, linked to

neuropathic pain, may increase neuroinflammation and affect

immune function (50).
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Cytokines may affect pain perception

Dysregulation of cytokine genes, such as IL23R, can alter pain

perception through immune modulation (51); while NR3C1,

encoding the glucocorticoid receptor, affects pain pathways and

inflammation, with its dysregulation potentially leading to

inflammatory pain (52). Reduced NR3C1 expression is associated

with chronic cocaine use and linked to anxiety disorders and

depression (53); MAPK3 (ERK1) is key in the MAPK pathway,

facilitating pain signal transmission and modulating the

nociceptive pathway, crucial for pain perception regulation (48);

TNF and IL-1β, key pro-inflammatory cytokines, play crucial

roles in glial cell function, aging, obesity, depression, and pain

modulation by heightening oxidative stress, exacerbating

neuroinflammation, and increasing pain perception (54); NGF

promotes neuropathic pain through nerve sensitization and

sprouting (55); IL-18 and its receptor IL18R1 may contribute to

pain signaling, diverging from their traditional roles in the

immune system (56); CXCL8 promotes inflammatory pain

through neutrophil recruitment (57); BDNF, a neurotrophin, is

crucial in numerous pain conditions, especially neuropathic pain

(58), and is linked to obesity, type 2 diabetes mellitus, and other

facets of metabolic syndrome (59); TRPV4, a cation channel,
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FIGURE 4

Bubble plots of molecular functions (MF) enrichment analysis.

Radhakrishna et al. 10.3389/fpain.2025.1497801
plays a role in nociception and pain sensation (60); The lncRNA

MALAT1 is significantly upregulated in the spinal cord and

microglia, making it a key player in pain regulation (61), Its

modulation of miR-129-5p and HMGB1 further highlights its

role in neuropathic pain mechanisms (62). Estrogen receptors

ERα and ERβ, encoded by ESR1 and ESR2, are essential for pain

modulation and metabolic functions, including glucose

metabolism and insulin sensitivity with their dysregulation

affecting both pain sensitivity and overall metabolic processes

(63). Variants in ESR1 and ESR2 genes affect menopause timing

and symptom severity, with ESR1 influencing the onset and ESR2

affecting symptoms like hot flashes and bone density (64). In

women with opioid addiction, these variants are linked to

irregular menstruation, early menopause, worsened symptoms,

and increased anxiety, depression, and chronic pain (65, 66);

CAMK4, a kinase in calcium signaling, is linked to pain

processing and synaptic plasticity (67); OSM, a cytokine,

contributes to inflammatory and neuropathic pain (68); while

TGFBR2, a receptor for TGF-β, is involved in pain-related

cellular processes (69). Also, RUNX1, a transcription factor,

affects sensory neuron development and pain processing (70).
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Chronic pain can trigger addiction

Chronic pain frequently leads to opioid and alcohol use,

disrupting brain chemistry and causing dependence (71). We

identified 22 dysregulated pain-related genes in infants

exposed to opioids in utero, affecting neurodevelopment, stress

response, and reward pathways, thereby increasing the

likelihood of addiction and opioid use later in life. SCN8A

affects neuronal excitability, increasing addiction risk (72),

while BDNF influences dopamine signaling, with lower levels

linked to vulnerability (73). Changes in OPRM1 may alter

opioid sensitivity (74), and variants in ANKK1/DRD2 disrupt

dopamine signaling, increasing susceptibility to addiction (75).

NPY impacts stress responses (76), and MAPK dysregulation

affects synaptic plasticity (77). Variants in NR3C1, calcium

channels (CACNA1C, CACNA1H, CACNA2D1), and

GABAergic genes (ABRG2, GRIA1) further influence addiction

pathways. PRKAR1B, NRXN3, SHANK3, and immune genes

(TGFBR2, IL1B, TNF) contribute to addiction risk, with

autophagy-related genes (BECN1, ULK1, ULK4) may

contribute to neurodegeneration, as previously detailed (78–80).
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FIGURE 5

Gene ontology enrichment and KEGG pathway analysis of differentially methylated genes in NOWS cases, compared to normal controls, highlight
significant involvement in pain-related pathways. The size of the bubble corresponds to the number of enriched genes within each pathway.
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Chronic pain can lead to depression and
suicidality

Chronic pain can lead to depression, a major risk factor for

suicidality (81). We found multiple deregulated genes involved in

pain, such as TNF, IL1B, and IL6ST (82–84), were identified as

being associated with both depression and suicide. Gene

variations affecting inflammation play a key role in depression,

linking chronic pain, mood disorders, and suicide risk. Suicide is

also reported in conditions like major depressive disorder,

Alzheimer’s disease, and Autism Spectrum Disorder. In our

study, we identified several key genes associated with suicidal

behavior, such as BDNF, KCNJ2, NOS3, CACNA1C, PCSK5,

GRIA1, ESR1, ANKK1, DLG2, GABRG2, IGSF9B, PRDM16, and

NR3C1. Variations in these genes may contribute to the complex

interaction of biological, psychological, and environmental factors

that may increase suicide risk in individuals in later life (83, 85–88).
Telomere genes in pain

Telomere maintenance genes, essential for preserving telomere

length and integrity, have emerged as potential modulators of pain
Frontiers in Pain Research 11
sensitivity (89). As telomeres shorten with age and stress, they are

linked to cellular aging, and increased inflammation, and can

influence pain perception (90). The dysregulated genes identified

in this study, including NOS3, CFTR, ESR1, MAPK3, MTA1,

ESR2, PRDM16, IKBKAP, RUNX2, REST, DLG2, PIK3C3,

SHMT1, and PLCE1, may impact pain perception by affecting

inflammation, oxidative stress, and neuronal excitability pathways.
Pain can promote impulsivity

“Pain can lead to impulsive behavior by affecting decision-

making and self-control (91). Those experiencing pain may

engage in risky activities, such as overusing opioids, which can

result in addiction (1). Pain also amplifies emotional distress and

weakens self-regulation, further increasing impulsivity (92). We

identified five dysregulated genes associated with impulsivity:

BDNF, MAPK10, NRG1, NRXN3, and PRKG1. BDNF, a key

biomarker for impulsivity, regulates impulse control by shaping

neural circuits for decision-making (93). MAPK10 influences

impulsivity through stress pathways and brain regions controlling

behavior. NRG1 affects synaptic networks tied to impulse control

(94), while NRXN3 variants alter synaptic efficacy, contributing
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FIGURE 6

Venn diagram showing the overlap of differentially methylated genes across four analyses, each comparing methylation patterns related to NOWS-
associated pain. • Analysis I: Compares (+Opioids/+NOWS) vs. (+Opioids/-NOWS) to identify methylation differences linked to NOWS-associated pain.
• Analysis II: Compares (+Opioids/+NOWS) and (+Opioids/-NOWS) vs. (-Opioids/-NOWS, control) to identify CpG targets associated with pain.•
Analysis III: Compares (+Opioids/+NOWS) vs. (-Opioids/-NOWS, control) to pinpoint methylation changes in NOWS-related pain genes. • Analysis
IV: Compares (+Opioids/-NOWS) vs. (-Opioids/-NOWS, control) to identify CpG targets with differential methylation in pain-related genes.
Analysis 1. Description of opioid use in opioid-exposed infants with and without NOWS: Comparison of infants requiring pharmacologic
management for NOWS+Opioids/+NOWS) vs. those who did not require treatment (+Opioids/–NOWS). This analysis identifies epigenetic and
molecular differences between opioid-exposed newborns with NOWS requiring treatment and those without withdrawal, pinpointing factors that
trigger withdrawal. Analysis 2. Comparison of Opioid-Exposed Infants vs. Unexposed Controls: This analysis compares opioid-exposed infants—
both those requiring pharmacologic management for NOWS (+Opioids/+NOWS) and those not requiring treatment (+Opioids/-NOWS)—with
unexposed controls (-Opioids/-NOWS). Understanding these variations helps uncover prenatal opioid exposure and its influence on the newborn’s
molecular and epigenetic makeup. Analysis 3. NOWS vs. unexposed controls. (opioid-exposed infants who required pharmacologic management
for NOWS vs. unexposed controls (+Opioids/+NOWS vs. -opioids/-NOWS, control), revealing key markers underlying withdrawal symptoms.
Analysis 4. Distinguishing opioid-induced epigenetic changes: Comparison between NOWS infants who do not require pharmacologic
management (+Opioids/-NOWS) vs. (-Opioids/-NOWS, control) revealing key opioid-induced alterations that illuminate early molecular mechanisms.
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to impulsivity (95). PRKG1 disrupts synaptic plasticity and

neurotransmitter release, impacting impulse control (96).
Glucose metabolism

Glucose metabolism is crucial for physiological functions,

including pain perception, possibly due to glucose level

fluctuations (97, 98). Glucose metabolism and pain are

bidirectional; elevated glucose levels can reduce pain tolerance, as

seen when glucose infusion lowers pain thresholds (98). Diabetic

patients often experience heightened pain sensitivity

(hyperalgesia), linking altered glucose metabolism to pain

perception (98). Conversely, acute severe pain decreases insulin
Frontiers in Pain Research 12
sensitivity by affecting nonoxidative glucose metabolism,

indicating that pain influences glucose metabolism (99). The

hormonal response to pain, involving stress hormones,

underscores the importance of pain management in maintaining

metabolic balance (99). The study identified genes like NR3C1,

CACNA1C, CACNA1H, ESR1, CFTR, KLF11, EIF2AK3,

NOTCH3, GJA1, and STX1A as linked to glucose metabolism

and pain sensitivity. NR3C1 mediates glucocorticoids’ anti-

inflammatory and analgesic effects, affecting glucose metabolism

and pain (100). CACNA1C and CACNA1H, which encode

voltage-gated calcium channels, influence neurotransmitter

release and pain sensitivity through glucose balance disruption

(101). CFTR, linked to cystic fibrosis, causes metabolic

irregularities that impact pain (102). KLF11 regulates glucose
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metabolism and insulin, with variations affecting pain sensitivity

and diabetes (103). EIF2AK3, involved in ER stress and glucose

metabolism, is associated with chronic pain (104). NOTCH3, a

cell signaling receptor, may modulate pain through interactions

with metabolic regulators (105). GJA1, a gap junction protein,

influences glucose metabolism and pain signaling. STX1A,

important for neurotransmitter release, affects pain sensitivity

and glucose metabolism (106).
Obesity

Obesity worsens chronic pain by increasing inflammation and

aggravating conditions like rheumatoid arthritis and fibromyalgia,

while also raising the risk of metabolic syndrome, heart issues,

diabetes, and cancer (107). This bidirectional relationship fuels a

cycle where obesity heightens pain and reduces physical function,

while chronic pain limits activity, contributing to weight gain

and further exacerbating both conditions (108). Our study

identifies that dysregulation in genes like NOS3, TNF, BDNF,

ESR1, ESR2, LMX1B, ATP1A2, OPRM1, NPY, THRB, NRXN3,

SPARC, and MYT1l significantly impacts the interplay between

obesity and chronic pain. Earlier discussions covered NOS3, TNF,

BDNF, ESR1, and ESR2. LMX1B plays a key role in obesity by

regulating adipogenesis and energy metabolism (109). LMX1B

mutations linked to nail-patella syndrome (NPS) may also

contribute to chronic pain, suggesting heightened pain sensitivity

(110); ATP1A2 helps regulate metabolism by maintaining ion

gradients across cell membranes and is linked to pain disorders

such as neuropathic pain and fibromyalgia. The OPRM1 gene,

linked to the mu-opioid receptor, affects obesity and pain,

especially in NOWS infants, with prolonged opioid use

disrupting appetite and metabolism, leading to weight gain (111);

NPY regulates appetite and energy balance, promoting feeding

behavior and fat storage, thereby contributing to obesity

development; THRB regulates metabolism and energy

expenditure through thyroid hormones, affecting metabolic rate

and potentially causing obesity if dysregulated. It also influences

pain sensitivity and inflammation; NRXN3 affects obesity traits

like BMI and adiposity through appetite-regulating neural

circuits and is linked to pain sensitivity (112). SPARC regulates

tissue remodeling, impacting obesity-related processes and pain

modulation. MYT1l, a transcription factor important for neural

development, is associated with intellectual disability, autism, and

obesity (113).
Circadian rhythm

Circadian rhythms, which regulate body processes over a

24-hour cycle, significantly affect pain perception and

management (114). Disrupted rhythms can worsen pain and

alter opioid processing, while pain and opioids can also impact

circadian rhythms (115, 116). Disruptions affect factors like

endogenous opioid levels, sleep, gene expression, and hormonal

regulation. We identified 12 genes linking circadian rhythms to
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pain regulation: ESR1, CACNA1C, KLF11, IL1B, ABCA1,

CAMK4, OSM, SHMT1, ARNTL, DOCK4, GNA11, and CRIP2.

ESR1 affects females’ circadian systems via estrogen levels.

CACNA1C modulates calcium influx, potentially disrupting

rhythms. KLF11 influences glucose metabolism, impacting

circadian patterns. IL1B’s proinflammatory effects affect the SCN,

disrupting rhythms. ABCA1 affects lipid signaling, possibly

disrupting rhythms (117). CAMK4 synchronizes peripheral

clocks. OSM modulates rhythms through inflammatory pathways

(68). SHMT1 impacts metabolic processes. ARNTL, the core

clock gene, regulates other clock genes, and mutations cause

disorders. DOCK4, associated with neuronal development, may

regulate rhythms. GNA11 influences light signaling pathways.

CRIP2 affects rhythmic gene expression in the heart, potentially

disrupting circadian rhythms (118).
Essential minerals and electrolytes in pain
management

Minerals and electrolytes are essential for nerve function and

pain regulation, governing nerve signaling and muscle

contractions, while dysregulated metal-associated genes can

disrupt DNA methylation and exacerbate chronic pain conditions

(119). Calcium ions, crucial for neurotransmitter release and

signaling, are disrupted by dysregulated genes such as CACNA1C

and CACNA1H, heightening pain sensitivity and altering pain

thresholds (120). Potassium channels (e.g., KCNJ2, KCNQ5)

regulate neuronal excitability by maintaining membrane potential

(121), while sodium channels (e.g., SCN1A, SCN8A) are vital for

action potential transmission and pain signaling (122).

Disruptions in these channels due to genetic variations or

prenatal opioid exposure can lead to abnormal pain signaling.

Selenium (PCSK5, BDNF) aids in antioxidant defense (123) and

neurotransmitter regulation, potentially reducing chronic pain

risk and neurodevelopmental issues from opioid withdrawal.

Lithium (BDNF) influences neurogenesis and pain regulation by

affecting BDNF levels, impacting the nervous system’s adaptation

to pain in opioid-exposed infants (124). ATP1A2 encodes a Na

+/K + ATPase subunit crucial for ion balance, and disruptions

can impact pain processing and heighten the risk of pain or

neurological issues such as migraine later in life (125).
Transporters can influence pain perception

Dysregulated transporters like ABCA1, SLC12A5, and ABCC7

(CFTR), critically affect infants exposed to opioids in utero by

altering neurotransmitter and ion movement across cell

membranes (9). ABCA1 affects lipid metabolism and cholesterol

transport. Altered ABCA1 can disrupt lipid balance, increasing

inflammation and pain sensitivity, and potentially impacting

nervous system development and long-term pain processing

(126). SLC12A5 encodes the K + -Cl- cotransporter KCC2,

essential for maintaining chloride homeostasis in neurons, which

is critical for proper synaptic inhibition and neuronal excitability.
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Impaired SLC12A5 function can lead to altered pain perception

and increased sensitivity, effects that may be aggravated in

individuals with a history of opioid exposure (127). ABCC7

(CFTR) regulates chloride ion transport across epithelial

membranes, impacting tissue homeostasis and inflammation.

While primarily associated with cystic fibrosis, CFTR

abnormalities can indirectly influence pain pathways by

promoting chronic inflammation and epithelial dysfunction,

leading to altered pain sensitivity and management (128).
Pathways

Our study identified 48 significant canonical pathways (FDR <

0.05). We highlight key findings relevant to pain and infants born

after prenatal opioid exposure.
cAMP signaling pathway

The cAMP signaling pathway is crucial for pain perception and

transmission in the nervous system. Activating the cAMP pathway

in the central nervous system induces hyperalgesia, whereas

inhibiting this pathway alleviates hyperalgesia in inflammatory,

non-inflammatory, and neuropathic pain models (129). There

were 14 genes identified in this pathway.
MAPK signaling pathway

The MAPK pathway regulates diverse cellular functions and is

crucial for transmitting pain signals from the injury site to the

brain, where they are interpreted as pain (48). Thirteen

differentially methylated genes have been identified in

this pathway.
AGE-RAGE signaling pathway in diabetic
complications

The AGE-RAGE pathway is critical in diabetic complications,

including pain (130). Advanced Glycation End-products (AGEs)

accumulate in tissues due to hyperglycemia, activating RAGE and

initiating signaling cascades (131). In diabetic pain, this pathway

contributes to neuroinflammation, oxidative stress, and nerve

damage, which are key factors in diabetic neuropathy. RAGE

activation leads to the production of pro-inflammatory cytokines,

chemokines, and reactive oxygen species (ROS), exacerbating

neuroinflammation and contributing to nerve dysfunction and

pain hypersensitivity (132). Eight genes are involved in this

pathway. Neurodegeneration pathways in NOWS, like oxidative

stress, inflammation, and apoptosis, may alter long-term pain

sensitivity and modulation (133). Infants with NOWS might

experience increased pain sensitivity or altered pain responses,

potentially persisting into childhood and adulthood. Calcium

signaling and Alzheimer’s disease-related pathways, essential for
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neural function, are disrupted in NOWS (134, 135). These

disruptions, combined with epigenetic changes, may contribute

to heightened pain sensitivity and neurological dysfunction

in affected infants. The PI3K-Akt pathway, vital for cell

survival and growth, significantly influences pain processes. It

can drive both adaptive responses that manage pain and

maladaptive processes that worsen chronic pain (136). The

enrichment of oxytocin signaling and circadian entrainment

pathways in NOWS affects both pain perception and broader

physiological systems in neonates, necessitating comprehensive

care strategies (137, 138).
Limitations

Current human placental studies are inadequate for identifying

biomarkers, and the underlying epigenetic mechanisms are not well

understood. While these studies offer preliminary evidence linking

therapeutic opioid use to epigenetic changes, further research is

essential to investigate the temporal dynamics of these

modifications in response to both prescription opioids and pain.

Establishing causality will require additional factors to be

considered. This study provides an intriguing potential proof-of

concept, but larger cohort studies are necessary to validate these

findings. Moreover, the differentially methylated genes identified

have not been subjected to further validation.

In conclusion, our cohort study revealed that opioid use for

pain management during pregnancy leads to disruptions in

epigenetic factors. These alterations could serve as biomarkers,

offering potential therapeutic targets and insights into the

molecular mechanisms underlying prescription opioid use and

pain. Notably, further investigation is needed to understand how

epigenetic changes in genes related to chronic pain, due to

maternal opioid use during pregnancy, affect NOWS. Looking

ahead, our future research will focus on validating key epigenetic

markers through functional studies, exploring their therapeutic

potential in preclinical models, and assessing the long-term

impact of these markers on individuals exposed to opioids.
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