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Serum bone metabolism
biomarkers in predicting tumor
bone metastasis risk and their
association with cancer pain: a
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Background: This study aims to develop a novel nomogram predictive model
utilizing serum bone metabolism biomarkers to accurately predict and
diagnose tumor bone metastasis. The creation of this model holds significant
clinical implications, supporting the development of targeted intervention
strategies, providing robust laboratory data, and guiding early patient treatment.
Methods: A retrospective cohort study was conducted involving 266 patients
treated at hospitals from September 2021 to January 2024. Patients were
classified into three groups based on disease characteristics: tumor patients
without bone metastasis, tumor patients with bone metastasis, and a control
group consisting of individuals with neither tumor nor bone metabolism-
related conditions. The primary serum bone metabolism biomarkers assessed
included the N-terminal mid fragment of osteocalcin (NMID), the total
N-terminal propeptide of type I procollagen (TPINP), and the C-terminal
telopeptide of type I collagen β-special sequence (β-CTX). Multivariate statistical
methods, including logistic regression and Cox regression, were employed for
data analysis, while the nomogram model was rigorously evaluated using a
variety of tools such as receiver operating characteristic (ROC) curves.
Results: The study found that the levels of NMID, TPINP, and β-CTX were
significantly elevated in patients with bone metastasis compared to the other
groups. These biomarkers were strongly associated with the incidence of
tumor bone metastasis and identified as independent risk factors for this
condition. The nomogram model demonstrated exceptional predictive
performance, characterized by high area under the AUC values, robust time-
dependent ROC curves, accurate calibration curves, and effective decision
curve analysis. Notably, a positive correlation was observed between NMID,
TPINP, β-CTX, and numeric rating scale (NRS) pain scores, providing valuable
biomarkers for evaluating and managing pain associated with tumor
bone metastasis.
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Conclusion: This study successfully established a nomogram predictive model
based on serum bone metabolism biomarkers, with NMID, TPINP, and β-CTX
emerging as critical indicators. The correlation between these biomarkers and
NRS pain scores offers a novel understanding of the pain mechanisms
associated with tumor bone metastasis, providing clinicians with essential
reference points for diagnostic and therapeutic decision-making, thereby
enhancing the practical application of the model in clinical settings.

KEYWORDS
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1 Introduction

With the relentless advancements in medical technology,

there has been a significant increase in the survival period of

patients with malignant tumors (1–3). However, this

improvement is coupled with an increased incidence of tumor

bone metastasis. Bones, ranking as one of the top three

common sites for malignant tumor metastasis after the lungs

and liver, show a metastasis rate that is 35–40 times higher

than that of primary bone tumors (4–6). This prevalence is

particularly notable in cancers such as breast, lung, prostate,

gastric, and thyroid cancers, with the highest occurrences

observed in lung, breast, and prostate cancers (4–6). The

diagnosis of tumor bone metastasis predominantly relies on

bone tissue biopsy or various imaging techniques (7, 8).

However, these methods, often hampered by their invasive

nature or lack of sufficient sensitivity, frequently fall short in

achieving the early diagnosis and timely intervention of tumor

bone metastasis. In this context, bone metabolism biomarkers

have emerged as vital indicators. These biomarkers, reflecting

the rate of bone absorption and formation, provide insights

into the extent of bone destruction and repair. During tumor

bone metastasis, cytokines disrupt the normal bone metabolism

by acting on osteoblastic and osteoclastic cells, leading to

abnormal fluctuations in bone metabolism biomarkers (9, 10).

One common complication among tumor patients is cancer
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pain, specifically pain associated with bone metastasis.

Epidemiological data indicate that approximately 80% of

patients with malignacnt tumors suffer from symptoms of bone

metastasis pain (11–13). This pain is intricately linked to

factors such as tumor invasion into the bone, compression of

nerve tissues, and the destruction of bone caused by metastasis

(11). Bone metastasis pain, a prevalent and often intolerable

symptom in patients with malignant tumors, tends to intensify

post-radiotherapy and chemotherapy (14, 15). Chronic bone

metastasis pain can evolve into intractable pain, exacerbating

symptoms like fatigue, appetite loss, anxiety, and depression,

thus profoundly affecting the patients’ quality of life (16, 17).

In the mechanism of malignant tumor bone metastasis, the

spread of cancer cells to bone tissues alters the bone’s

microenvironment, disrupting the equilibrium among bone

cells and leading to significant pain symptoms (18). Bone

metabolism biomarkers, which are released into the

bloodstream during bone metabolism, become imbalanced in

cases of bone metastasis (19, 20). Among the current diagnostic

methods for tumor bone metastasis, x-rays, MR scans, and CT

scans are extensively utilized, yet they have their limitations.

Bone metabolic biomarkers are increasingly recognized for their

convenience and sensitivity. Serum biomarkers like N-terminal

osteocalcin (NMID), total type I collagen N-terminal

propeptide (TPINP), and Beta-C-terminal telopeptide (β-CTX)

serve as crucial indicators of osteoblast activity, bone formation

and resorption rates, and bone matrix absorption and osteoclast

activity respectively (21–24).

This study is dedicated to exploring the relationship between

serum bone metabolism biomarkers (NMID, TPINP, and β-CTX)

in predicting tumor bone metastasis and their correlation with

cancer pain. By conducting an in-depth investigation of these

biomarkers, we aim to develop new strategies for early diagnosis

and intervention in tumor bone metastasis. Additionally, we seek

to establish more effective methods for assessing and treating

cancer pain. Our research endeavors to enhance the

understanding of the mechanisms underlying tumor bone

metastasis and the associated pain, thereby facilitating the

formulation of more comprehensive and precise treatment plans

for patients with malignant tumors. Ultimately, our objective is

to improve the quality of life and treatment outcomes for these

patients, addressing not only the physical aspects of their
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condition but also the overall impact on their well-being. Through

this study, we hope to contribute significantly to the field of

oncology, particularly in the management of bone metastases and

the alleviation of cancer-related pain.
2 Material and methods

2.1 Study design and participants

This retrospective cohort study was conducted at Union

Hospital, Tongji Medical College, Huazhong University of

Science and Technology, and The Third People’s Hospital of

Hubei Province, encompassing patients treated from September

2021 to January 2024. A total of 266 patients were enrolled,

categorized into three groups: the non-bone metastasis tumor

group (n = 90), the bone metastasis tumor group (n = 87), and a

control group consisting of individuals with non-tumor, non-

bone metabolism-related benign diseases (n = 89). Tumor

diagnoses were confirmed through a combination of

histopathological examination, medical imaging, and cytological

testing. Inclusion criteria were as follows: (1) patients

histologically diagnosed with malignant tumors based on surgical

pathology; (2) whole-body bone scans using ECT, with

suspicious areas further evaluated using x-ray, CT, or MRI scans,

and bone metastasis confirmed by at least two senior physicians.

Exclusion criteria included: (1) the presence of bone metabolic

diseases; (2) use of bisphosphonates, corticosteroids, or calcium

supplements within four weeks prior to screening; (3) traumatic

bone fractures occurring within the past 90 days; (4) receipt of

radiotherapy in the four weeks preceding screening. The study

was approved by the Ethics Committees of Union Hospital,

Tongji Medical College, Huazhong University of Science and

Technology, and The Third People’s Hospital of Hubei Province

(Ethics Approval Number: LW2023008).
2.2 Comprehensive data collection

The clinical pathological features of the patients, including

basic disease, gender, smoking, drinking, histology, T stage,

N stage, M stage, clinical stage, bone metastasis, age, NRS pain

scores, pain medication, dose of pain medication, frequency of

pain medication, survival status, overall survival (OS) were

collected from medical records. Blood indices including

neutrophils (Neu), lymphocytes (Lym), monocytes (Mon),

platelets (PLT), C-reactive protein (CRP), lactate dehydrogenase

(LDH), uric acid (UA), albumin (ALB), alanine transaminase

(ALT), aspartate transaminase (AST), alkaline phosphatase

(ALP), calcium (Ca2+), NMID, TPINP, β-CTX, inflammatory

burden index (IBI), systemic immune-inflammation index (SII),

prognostic nutritional index (PNI), neutrophil to lymphocyte

ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to

monocyte ratio (LMR), C-reactive protein to albumin ratio

(CAR), aspartate platelet ratio index (APRI), AST/ALT ratio

(AAR), and inflammation-immunity-nutrition score (IINS) were
Frontiers in Pain Research 03
measured within one week after diagnosis through routine blood

tests. Pathological staging was confirmed according to the 8th

edition of the American Joint Committee on Cancer (AJCC). No

patients underwent emergency resection. Treatment for the

patients was conducted in accordance with the guidelines of the

National Health Commission of the People’s Republic of China.
2.3 Rigorous follow-up protocol

After diagnosis, we obtained outcomes by reviewing medical

records and making follow-up calls every 3–6 months for the

first and second years, and then every 6 months for the third to

fifth years. The primary outcome was OS. OS was defined as the

interval from the date of tumor diagnosis to the date of death,

lost to follow-up, or the end of the follow-up (January 2024),

whichever came first.
2.4 Optimal cut-off determination

We selected the optimum cut-offs for NMID, TPINP, β-CTX,

AAR, APRI, CAR, IBI, LMR, NLR, PLR, PNI, SII and INNS using

X-tile software version 3.6.1 (https://medicine.yale.edu/lab/rimm/

research/software/, Yale University School of Medicine, New

Haven, CT) based on the association between each indicator with

the patients’ OS.
2.5 Statistical analysis

Continuous variables were presented as median or mean. The

student’s t-test or the Wilcoxon rank sum test was used for

comparisons between groups with continuous variables.

Categorical variables were expressed by counts and percentages.

The chi-square test was used for comparison between groups

with categorical variables, and the Fisher’s exact test was used

when the counts were limited. The area under the curves (AUCs)

and Harrell’s concordance indices (C-indices) of the indicators

were estimated and compared by q values (adjusted p values by

Benjamini & Hochberg method). The AUCs and C-indices were

calculated based on logistic regression models and Cox regression

models, respectively. Therefore, to demonstrate the prognostic

performances of indicators well, the AUCs and C-indices were

calculated together. Time-dependent ROC curves, time-AUC

curves, decision curve analysis (DCA), Kaplan–Meier survival

curves and Log rank tests were used to detect the prognostic

performance. Compared with ordinary ROC curve, time-

dependent ROC curve could observe the prognostic performance

of indicator at a specific point in time after operation.

Furthermore, time-AUC curve could observe the dynamic

prognostic performance of indicator at all point in time after

operation. Decision curve analysis is conducted to determine the

clinical usefulness of the indicator via quantifying the net

benefits at different threshold probabilities. Univariate and

multivariate Cox proportional hazards regression were applied to
frontiersin.org
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detect the associations of individual clinicopathological indicators

with OS by calculating hazard ratios (HRs) and 95% confidence

intervals (CIs). All statistical tests were two-sided, and p < 0.05

was considered statistically significant. Time-dependent ROC

curves, time-AUC curves, decision curves, Kaplan–Meier survival

curves, C-indices, and forest plots were performed using

packages “survivalROC”, “timeROC”, “ggDCA”, “survminer”,

“survival”, and “forestplot” of R 3.6.0 (The R Foundation for

Statistical Computing, Vienna, Austria), respectively. Other

statistical analyses were performed using SAS Statistics software

9.4 (SAS Institute Inc, Cary, North Carolina, USA).
3 Results

3.1 Baseline characteristics of patients

Between September 2021 and January 2024, 266 patients were

enrolled in the study. These individuals were divided into three

groups: 90 patients with tumors without bone metastasis, 87

patients with tumors with bone metastasis, and 89 patients in a

control group suffering from benign diseases unrelated to tumors

or bone metabolism. The gender distribution among these

groups included 93 males (35%) and 173 females (65%). 124

patients (46.6%) were under 65 years, and 142 patients (53.4%)

were 65 years or older. A substantial portion of the cohort, 170

patients (63.9%), had a history of comorbidities, whereas 96

patients (36.1%) had no such history. Smoking habits were

reported with 35 patients (13.2%) being smokers and 231

patients (86.8%) non-smokers. In terms of biochemical markers,

NMID levels were <16.5 ng/ml in 157 patients (59%) and

≥16.5 ng/ml in 109 patients (41%). TPNIP levels were <58 ng/ml

in 147 patients (55.3%) and ≥58 ng/ml in 119 patients (44.7%).

β-CTX levels were <515 pg/ml in 167 patients (62.8%) and

≥515 pg/ml in 99 patients (37.2%). Within the groups with and

without bone metastasis, there were 54 cases (30.5%) of lung

cancer, 37 cases (20.9%) of gastrointestinal tumors, 19 cases

(10.7%) of reproductive system tumors, 6 cases (3.4%) of

endocrine system tumors, 16 cases (9%) of hematological

malignancies, and 45 cases (25.4%) of other types. The

histopathological types were 144 cases (81.4%) of

adenocarcinoma, 9 cases (5.1%) of squamous cell carcinoma, and

24 cases (13.6%) of small cell carcinoma. In terms of clinical

staging, 13 patients (7.3%) were in stage III, and 164 patients

(92.7%) were in stage IV. Regarding pain management, 90

patients (50.8%) did not use analgesics, 53 patients (29.9%) used

non-steroidal anti-inflammatory drugs (NSAIDs), 17 patients

(9.6%) used weak opioids, and 17 patients (9.6%) used strong

opioids. The daily dosage of pain medication varied: 32 patients

(18.1%) received 10–15 mg, 98 patients (55.4%) received 30–

40 mg, 15 patients (8.5%) received 50 mg, and 32 patients

(18.1%) received 100–120 mg. The frequency of analgesic

administration was qd (once daily) in 7 cases (4%), q6 h (every

6 h) in 4 cases (2.3%), q8 h (every 8 h) in 10 cases (5.6%), and

q12 h (every 12 h) in 156 cases (88.1%) (Supplementary Table S1).
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3.2 Analysis of bone metabolism markers in
patients with malignant tumors

In the tumor groups, both with and without bone metastasis,

Neu and Mon counts were significantly lower than in the control

group (p = 7.37 × 10−2 and p = 6.42 × 10−2) (Figures 1A,B).

Notably, the PLT count in the group without bone metastasis was

higher than that in both the bone metastasis group and the

control group (p = 1.41 × 10−03) (Figure 1C). Additionally, when

comparing bone metabolism markers among the groups, those

with tumor bone metastasis displayed significantly higher levels of

NMID (p = 3.46 × 10−15), TPINP (p = 3.16 × 10−10), and β-CTX

(p = 5.00 × 10−12) than both the group without bone metastasis

and the control group (Figures 1D–F). The remaining laboratory

indices did not show any statistically significant differences.
3.3 Association of clinicopathological
features and laboratory parameters with
tumor bone metastasis, NMID, TPINP, and
β-CTX levels

Chi-square analysis revealed significant associations between

several variables and the occurrence of bone metastasis in tumors.

These variables include pre-existing medical conditions, smoking

history, CRP levels, LDH levels, PLT count, Lym count, ALP

levels, IBI levels, Ca2+, NMID, TPINP, and β-CTX (Figures 2A–K,

Supplementary Table S2). Elevated levels of NMID were

significantly correlated with the incidence of bone metastasis,

smoking history, PLT count, TPINP, β-CTX, and status

(Figures 3A–F, Supplementary Table S3). Variations in TPINP

levels showed significant associations with the presence of bone

metastasis, basic disease, smoking history, T staging, CRP levels,

NMID, β-CTX, IBI, and status (Figures 4A–I, Supplementary

Table S4). Furthermore, the expression of β-CTX was significantly

linked to bone metastasis, age, Lym count, NMID, TPINP, IBI,

NLR, and status (Figures 5A–H, Supplementary Table S5).
3.4 Survival analysis

A significant difference was observed in OS between tumor

patients with and without bone metastasis, with the former

group demonstrating markedly shorter survival times

(p < 0.0001) (Figure 6A). Notably, patients exhibiting high NMID

expression within their tumors had significantly reduced OS

compared to those with low NMID expression (Figure 6H).

Similarly, elevated TPINP expression in tumor patients correlated

with shorter OS, in contrast to those with lower TPINP levels

(Figure 6F). Additionally, increased β-CTX expression in tumors

was associated with a significant decrease in OS compared to

patients with lower β-CTX levels (Figure 6G). In the context of

the CAR, higher expression levels were linked to shorter OS

compared to lower CAR levels (Figure 6C). In a contrasting

trend, higher IBI expression was indicative of longer OS, as

opposed to lower IBI levels (Figure 6D). Furthermore, patients

with higher INNS expression in their tumors experienced
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FIGURE 1

Comprehensive analysis of bone metabolism markers in patients with malignant tumors. (A) Neu. (B) Mon. (C) PLT. (D) NMID. (E) TPINP. (F) β-CTX.
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significantly prolonged OS compared to those with lower INNS

expression (Figure 6E). Finally, patients with lower PLT count in

tumors showed significantly reduced OS compared to those with

higher PLT levels (Figure 6B).
3.5 Selection of relevant independent
prognostic factors

In this study, the median follow-up duration was 23.0 months.

By the end of this period, 89 patients (50.3%) had passed away. Our

findings revealed that in univariate Cox regression analyses, several

parameters including Neu, PLT, CRP, NMID, TPINP, β-CTX, IBI,

and NLR showed statistically significant differences (Table 1).

Subsequent multivariate analysis further identified NMID and

TPINP as independent risk factors for OS in cancer patients

(Figure 7, Table 2). This underscores their pivotal role in

predictive modeling, emphasizing the importance of these

biomarkers not only as diagnostic tools but also as critical

prognostic indicators in cancer management. Their relevance in

the clinical setting offers valuable insights into the disease

progression and patient outcomes, and these findings could

potentially guide therapeutic decisions and patient counseling in

oncological practice.
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3.6 Comparative analysis of diagnostic
performance of individual and combined
tumor bone metabolism markers in
detecting bone metastasis

In our study, significant differences were observed in the levels

of NMID, TPINP, and β-CTX, indicating their potential utility in

diagnosing bone metastasis in tumor patients. Specifically, the

one-year, two-year, and three-year Area Under the Curve (AUC)

values for NMID were 0.68, 0.76, and 0.85, respectively

(Figure 8A). For TPINP, these values were 0.62, 0.71, and 0.80,

respectively (Figure 8B), over the same periods. β-CTX

demonstrated AUC values of 0.60, 0.71, and 0.81 at one, two,

and three years, respectively (Figure 8C). Notably, the combined

assessment of NMID, TPINP, and β-CTX enhanced the

diagnostic accuracy, with the AUC values for the combined

markers reaching 0.70, 0.81, and 0.94 at one, two, and three

years, respectively (Figure 8D). These findings underscore the

superior diagnostic efficacy of the combined use of these

biomarkers over individual marker analysis in predicting bone

metastasis. The progressive increase in AUC values over time

highlights the growing reliability of these markers in long-term

patient monitoring, offering a promising avenue for early

intervention and tailored treatment strategies in oncological care.
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FIGURE 2

Chi-square analysis revealed significant associations between several variables and the occurrence of bone metastasis in tumors. (A) Smoking history.
(B) CRP levels. (C) LDH levels. (D) PLT count. (E) Lym count. (F) ALP levels. (G) IBI levels. (H) Ca2+. (I) NMID. (J) TPINP. (K) β-CTX.
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3.7 Model validation and assessment

In this study, we meticulously developed nomograms reflecting

OS based on an in-depth analysis of predictive models (Figure 9).

Utilizing calibration curves, we demonstrated the high congruence

between our model’s predictions and actual clinical outcomes,
Frontiers in Pain Research 06
underscoring the model’s exemplary fit and predictive precision

for 1-year, 2-year, and 3-year OS prognoses (Figures 10A–C).

This achievement highlights the model’s commendable accuracy

and reliability in prognostic assessments. Delving further, the

Receiver Operating Characteristic (ROC) curves were employed

for a nuanced analysis of the OS prognostic prediction model.
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FIGURE 3

Chi-square analysis revealed significant associations between several variables and the levels of NMID. (A) Bone metastasis. (B) Smoking history.
(C) PLT count. (D) Status. (E) β-CTX. (F) TPINP.
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FIGURE 4

Chi-square analysis revealed significant associations between several variables and the levels of TPINP. (A) Smoking history. (B) Basic disease. (C) Bone
metastasis. (D) T stage. (E) Status, (F) CRP. (G) IBI. (H) NMID. (I) β-CTX.
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The nomograms revealed AUC values at various time points as

follows: 0.71 for the first year, 0.83 for the second year, and an

impressive 0.96 for the third year (Figure 10D). These values not

only attest to the model’s robustness over diverse temporal

milestones but also emphasize its exceptional accuracy in

predictive tasks across various timeframes. Moreover, time-

dependent ROC curve analysis showcased the nomograms’

outstanding performance in predicting OS at distinct temporal

intervals. This revelation confirms the model’s efficacy in

accurately differentiating between positive and negative cases over

time, solidifying its exemplary performance in time-dependent

prognostic tasks (Figure 10E). To evaluate the clinical

applicability of our model, we employed Clinical Decision Curve

Analysis (DCA). This analysis assessed the net benefit (NB)

derived from implementing the nomograms across a spectrum of

threshold probabilities (Figure 10F). The results of this analysis

further affirm the model’s practical utility and superior predictive
Frontiers in Pain Research 08
prowess within a clinical setting, offering valuable decision-

support tools for clinicians in optimizing patient care strategies.
3.8 Correlation analysis of bone metabolism
biomarkers and cancer pain scores

This study delved into the correlation between three key bone

metabolism biomarkers: NMID, TPINP, β-CTX, and cancer pain

scores. Employing sophisticated correlation analysis

methodologies coupled with heatmap visualization techniques, we

meticulously assessed the relationship between the expression

levels of these biomarkers and the intensity of cancer pain. The

results of the correlation analysis revealed a statistically

significant positive correlation between the expression levels of

NMID, TPINP, and β-CTX and cancer pain scores. Specifically,

the correlation coefficient between NMID expression levels and
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FIGURE 5

Chi-square analysis revealed significant associations between several variables and the levels of β-CTX. (A) Age. (B) Bone metastasis. (C) Status. (D) Lym
count. (E) NLR. (F) IBI. (G) NMID. (H) TPINP.
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cancer pain scores was found to be 0.17 (p = 0.021), indicating a

direct and significant association (Figure 11A). Similarly, TPINP

and β-CTX also exhibited significant positive correlations with

cancer pain scores, with correlation coefficients of 0.24

(p = 0.001) and 0.19 (p = 0.011), respectively (Figures 11B,C).

Furthermore, the heatmap analysis provided deeper insights into

the complex interplay between these biomarkers and their

association with cancer pain scores. The heatmap, with its

nuanced gradation of colors, visually depicted the degree of

correlation between different biomarkers, offering a

comprehensive perspective on their role in the progression of

cancer (Figure 11D). These findings highlight the critical

importance of NMID, TPINP, and β-CTX in the

pathophysiology of cancer, particularly in the management of

cancer pain. These biomarkers, serving as indicators of disease

progression, could potentially guide pain management strategies

in cancer patients. Given the impact of cancer pain on patient

quality of life, the correlation study of these biomarkers opens

new potential avenues for the assessment and treatment of

cancer pain.
3.9 Development and validation of
prognostic models for overall survival and
bone metastasis risk in cancer patients

In our groundbreaking study, we have developed two

sophisticated prognostic models designed to assess the risk of OS

and the likelihood of bone metastasis in cancer patients. These
Frontiers in Pain Research 09
models integrate various clinical biomarkers, offering a

quantitative approach for predicting disease progression and

patient outcomes with enhanced precision.

P ¼ eW=(1þ eW)

P: This represents the predicted probability, indicating the

likelihood of a certain event occurring.

e: This is the base of the natural logarithm, approximately equal

to 2.71828.

W: Typically, this is a numeric value representing the weighted

sum of features calculated by the model.
3.9.1 The OS prognostic risk model is articulated
through the following formula

W ¼� 1:743þ 0:861� NormalNeuþ 1:502�HighNeu

� 0:119�Normal PLT� 1:186�High PLT

þ 0:223�HighCRPþ 0:933�HighNMID

þ 0:282�High TPINPþ 0:182�Highb-CTX

þ 0:291�Medium IBI� 0:483�High IBI

þ 0:444�MediumNLR þ 1:35�HighNLR

This formula is a result of an extensive analysis that combines

levels of Neu, PLT, CRP, NMID, TPINP, β-CTX, IBI, and NLR

to estimate the OS risk in cancer patients (Figure 12A,

Supplementary Table S6).
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FIGURE 6

Tumor bone metastasis, low PLT, low CAR; low IBI, low INNS, and high TPINP, β-CTX, NMID were associated with worse OS. (A) OS for tumor bone
metastasis or non-tumor bone metastasis patients. (B) OS for PLT. (C) OS for CAR. (D) OS for IBI. (E) OS for INNS. (F) OS for levels of TPINP. (G) OS for
levels of β-CTX. (H) OS for levels of NMID.
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TABLE 1 Clinicopathologic characteristics and single-factor cox regression analysis for OS in patients with and without bone metastasis in tumors.

Features All HR (Univariable)
Basic disease No 70 –

Yes 107 0.74 (0.49–1.13, p = 0.165)

Gender Male 58 –

Female 119 0.84 (0.55–1.30, p = 0.442)

Smoking No 159 –

Yes 18 0.47 (0.21–1.09, p = 0.079)

Drinking No 166 –

Yes 11 0.45 (0.14–1.43, p = 0.175)

Diagnostic Lung cancer 54 –

Gastrointestinal tumor 37 0.67 (0.35–1.28, p = 0.222)

Genitourinary tumor 19 0.72 (0.33–1.59, p = 0.417)

Endocrine system tumor 6 1.59 (0.55–4.56, p = 0.389)

Hematological system tumor 16 1.73 (0.81–3.69, p = 0.156)

Other 45 1.19 (0.70–2.04, p = 0.524)

Pathology Adenocarcinoma 144 –

Squamous Cell Carcinoma 9 0.50 (0.16–1.60, p = 0.245)

Small Cell 24 0.85 (0.45–1.61, p = 0.626)

T stage T2 51 –

T3 39 0.68 (0.38–1.21, p = 0.192)

T4 87 0.62 (0.38–1.00, p = 0.048)

N stage N0 11 –

N1 14 1.70 (0.58–4.92, p = 0.331)

N2 68 1.51 (0.64–3.59, p = 0.350)

N3 84 1.07 (0.45–2.54, p = 0.881)

M stage M0 21 –

M1 156 1.29 (0.67–2.49, p = 0.454)

Clinical stage 3 13 –

4 164 1.21 (0.56–2.63, p = 0.630)

Bone metastasis Single 75 –

Multiple 102 1.29 (0.84–1.99, p = 0.238)

Age <65 86 –

≥65 91 1.05 (0.69–1.59, p = 0.834)

Neu Low neu 11 –

Normal neu 158 0.47 (0.23–0.98, p = 0.044)

High neu 8 0.62 (0.18–2.05, p = 0.429)

Lym Low lym 36 –

Normal lym 138 0.66 (0.40–1.10, p = 0.113)

High lym 3 0.84 (0.19–3.61, p = 0.811)

Mon Low mon 1 –

Normal mon 165 0.28 (0.04–2.03, p = 0.208)

High mon 11 0.28 (0.03–2.34, p = 0.238)

PLT Low PLT 11 –

Normal PLT 156 0.31 (0.14–0.69, p = 0.004)

High PLT 10 0.23 (0.06–0.89, p = 0.034)

CRP Normal CRP 108 –

High CRP 69 1.62 (1.05–2.50, p = 0.029)

LDH Low LDH 2 –

Normal LDH 172 92,11,736.79 (0.00-Inf, p = 0.996)

High LDH 3 45,59,595.28 (0.00-Inf, p = 0.996)

UA Normal UA 1 –

High UA 176 33,15,932.51 (0.00-Inf, p = 0.995)

ALB Low ALB 21 –

Normal ALB 154 1.52 (0.70–3.28, p = 0.292)

High ALB 2 1.64 (0.20–13.33, p = 0.645)

ALT Normal ALT 167 –

High ALT 10 1.19 (0.48–2.94, p = 0.705)

AST Low AST 3 –

Normal AST 164 92,99,575.51 (0.00-Inf, p = 0.994)

High AST 10 82,82,066.37 (0.00-Inf, p = 0.994)

(Continued)
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TABLE 1 Continued

Features All HR (Univariable)
ALP Low ALP 1 –

High ALP 176 0.43 (0.06–3.12, p = 0.405)

Ca2+ Low Ca2+ 14 –

Normal Ca2+ 140 0.77 (0.38–1.54, p = 0.455)

High Ca2+ 23 1.11 (0.47–2.60, p = 0.809)

NMID Low NMID 68 –

High NMID 109 6.34 (3.61–11.14, p < 0.001)

TPINP Low TPINP 68 –

High TPINP 109 4.17 (2.53–6.88, p < 0.001)

β-CTX Low β-CTX 88 –

High β-CTX 89 4.00 (2.44–6.56, p < 0.001)

IBI Low IBI 70 –

Medium IBI 47 1.46 (0.87–2.43, p = 0.152)

High IBI 60 1.85 (1.11–3.07, p = 0.018)

SII Low SII 20 –

Medium SII 39 0.90 (0.46–1.78, p = 0.767)

High SII 118 0.64 (0.35–1.18, p = 0.150)

PNI Low PNI 19 –

Medium PNI 133 1.47 (0.64–3.40, p = 0.365)

High PNI 25 2.08 (0.82–5.30, p = 0.123)

NLR Low NLR 94 –

Medium NLR 48 1.20 (0.73–1.98, p = 0.470)

High NLR 35 1.70 (1.01–2.88, p = 0.047)

PLR Low PLR 20 –

Medium PLR 95 0.78 (0.42–1.43, p = 0.422)

High PLR 62 0.55 (0.28–1.07, p = 0.077)

LMR Low LMR 44 –

Medium LMR 109 0.99 (0.58–1.68, p = 0.962)

High LMR 24 1.81 (0.95–3.44, p = 0.069)

CAR Low CAR 2 –

Medium CAR 82 75,61,416.28 (0.00-Inf, p = 0.994)

High CAR 93 11,759,836.81 (0.00-Inf, p = 0.994)

APRI Low APRI 38 –

Medium APRI 61 0.88 (0.46–1.68, p = 0.701)

High APRI 78 1.71 (0.96–3.04, p = 0.070)

AAR Low AAR 49 –

Medium AAR 44 1.08 (0.62–1.90, p = 0.777)

High AAR 84 0.80 (0.49–1.31, p = 0.371)

INNS Low IINS 124 –

High INNS 53 1.40 (0.89–2.19, p = 0.146)

Painkillers No use 90 –

NSAIDs 53 0.99 (0.60–1.65, p = 0.983)

Weak Opioids 17 1.46 (0.73–2.89, p = 0.281)

Strong Opioids 17 0.84 (0.41–1.74, p = 0.642)

Painkiller dosage 10–15 mg 32 –

30–40 mg 98 1.12 (0.62–2.04, p = 0.707)

50 mg 15 1.21 (0.50–2.91, p = 0.673)

100–120 mg 32 1.39 (0.68–2.85, p = 0.366)

Painkiller administration schedule Qd 7 –

q6 h 4 1.49 (0.21–10.72, p = 0.690)

q8 h 10 2.85 (0.59–13.76, p = 0.193)

q12 h 156 2.46 (0.60–10.04, p = 0.210)

Neu, neutrophils; Lym, lymphocytes; Mon, monocytes; PLT, platelets; CRP, C-reactive protein; LDH, lactate dehydrogenase; UA, uric acid; ALB, albumin; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; ALP, alkaline phosphatase; Ca2+, calcium; NMID, N-terminal mid, fragment of osteocalcin; TPINP, total procollagen type 1 N-terminal propeptide; β-CTX, β-C-

terminal telopeptide of type 1 collagen; IBI, inflammatory burden index; SII, Systemic immune inflammation index; PNI, prognostic nutritional index; NLR, neutrophil to lymphocyte ratio;

PLR, platelet to lymphocyte ratio; LMR, lymphocyte to monocyte ratio; CAR, CRP to albumin ratio; APRI, AST to platelet ratio index; AAR, AST to ALT ratio; INNS, inflammation immunity

nutrition score.
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FIGURE 7

Multivariate analysis identified NMID and TPINP as independent risk factors for OS in cancer patients, as illustrated in the forest plot for OS.

TABLE 2 Multivariate cox regression analysis of clinically significant factors for OS in patients with and without bone metastasis in tumors.

Features All HR (univariable) HR (multivariable)
Neu Low neu 11 – –

Normal neu 158 0.47 (0.23–0.98, p = 0.044) 0.52 (0.21–1.26, p = 0.145)

High neu 8 0.62 (0.18–2.05, p = 0.429) 0.47 (0.12–1.76, p = 0.263)

PLT Low PLT 11 – –

Normal PLT 156 0.31 (0.14–0.69, p = 0.004) 0.75 (0.29–1.91, p = 0.543)

High PLT 10 0.23 (0.06–0.89, p = 0.034) 0.59 (0.13–2.58, p = 0.482)

CRP Normal CRP 108 – –

High CRP 69 1.62 (1.05–2.50, p = 0.029) 1.71 (0.80–3.68, p = 0.167)

NMID Low NMID 68 – –

High NMID 109 6.34 (3.61–11.14, p < 0.001) 4.16 (2.06–8.38, p < 0.001)

TPINP Low TPINP 68 – –

High TPINP 109 4.17 (2.53–6.88, p < 0.001) 2.02 (1.06–3.86, p = 0.033)

β-CTX Low β-CTX 88 – –

High β-CTX 89 4.00 (2.44–6.56, p < 0.001) 1.30 (0.68–2.48, p = 0.427)

IBI Low IBI 70 – –

Medium IBI 47 1.46 (0.87–2.43, p = 0.152) 1.31 (0.68–2.51, p = 0.422)

High IBI 60 1.85 (1.11–3.07, p = 0.018) 0.65 (0.21–2.00, p = 0.451)

NLR Low NLR 94 – –

Medium NLR 48 1.20 (0.73–1.98, p = 0.470) 1.37 (0.73–2.57, p = 0.320)

High NLR 35 1.70 (1.01–2.88, p = 0.047) 1.57 (0.72–3.46, p = 0.258)

Neu, neutrophils; PLT, platelets; CRP, C-reactive protein; NMID, N-terminal mid: fragment of osteocalcin; TPINP, total procollagen type 1 N-terminal propeptide; β-CTX, β-C-terminal

telopeptide of type 1 collagen; IBI, inflammatory burden index; NLR, neutrophil to lymphocyte ratio.
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FIGURE 8

(A) 1, 2, 3-year ROC curve for the single-indicator NMID model. (B) 1, 2, 3-year ROC curve for the single-indicator TPINP model. (C) 1, 2, 3-year ROC
curve for the single-indicator β-CTX model. (D) 1, 2, 3-year ROC curve for the combined indicators NMID, TPINP, β-CTX model.

Zhang et al. 10.3389/fpain.2025.1514459
3.9.2 The bone metastasis risk prediction model is
encapsulated in the following equation

W ¼� 30:046þ 0:88� NormalNeuþ 19:716�HighNeu

þ 34:35�Normal PLTþ 37:024�High PLT

� 1:634�HighCRP� 5:431�HighNMID

� 1:24�High TPINPþ 0:216�Highb-CTX

þ 0:785�Medium IBIþ 0:537�High IBI

� 0:327�MediumNLR þ 0:333�HighNLR
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This model strategically amalgamates the expression levels of

similar biomarkers to predict the risk of bone metastasis in

cancer patients (Figure 12B, Supplementary Table S7).

Both models are underpinned by robust statistical analyses

and a wealth of clinical data, aimed at providing a more precise

risk assessment to aid clinicians in formulating targeted

treatment strategies. These models not only predict the

trajectory of the disease but also serve as vital tools for clinical

decision-making. This innovative methodology paves the way

for personalized treatment and management of cancer patients,
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FIGURE 9

Nomograms reflecting OS based on an in-depth analysis of predictive models.

FIGURE 10

(A) 1-year calibration curve of the model. (B) 2-year calibration curve of the model. (C) 3-year calibration curve of the model. (D) 1, 2, 3-year ROC curve
of the model. (E) Time-AUC curve of the model. (F) Clinical Decision Curve Analysis (DCA).
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FIGURE 11

The correlation between three key bone metabolism biomarkers (NMID, TPINP, β-CTX) and numeric rating scale (NRS) pain scores. (A) Correlation
between NMID and NRS. (B) Correlation between TPINP and NRS. (C) Correlation between B-CTX and NRS. (D) The correlation heatmap depicting
the relationships between three key bone metabolism biomarkers (NMID, TPINP, β-CTX) and NRS pain scores.

Zhang et al. 10.3389/fpain.2025.1514459
promising significant improvements in treatment efficacy and

quality of life.
4 Discussion

This study has achieved significant breakthroughs in the

prediction and diagnosis of bone metastasis in cancer. By

establishing a nomogram prediction model based on serum bone

metabolism biomarkers, we offer a new perspective and method

for the early diagnosis and accurate prognosis of tumor bone

metastasis. Additionally, our research revealed a significant

correlation between bone metabolism biomarkers and cancer

pain scores, providing a novel strategy for understanding and

managing the pain in patients with tumor bone metastasis.

Bone metastasis causes tremendous suffering in patients.

Previous studies have provided valuable insights into the

mechanisms of bone metastasis (5, 11, 25–27). Tumor stem cells

undergo a three-step process in the metastasis of lung cancer cells

to bone: escape from the primary tumor, entry into the

bloodstream, and settlement in the bone (11). Key molecules play

a crucial role in this process, directly or indirectly influencing the
Frontiers in Pain Research 16
dynamic microenvironment (26). For example, the nuclear factor-

kappa B receptor activator (RANK) axis regulates the activation

of osteoclasts during osteolytic lesions (28). Increasing evidence

suggests that the bone marrow is one of the most common sites

of tumor cell metastasis. The “seed and soil” hypothesis,

supported by in-depth studies of bone organics, offers a plausible

explanation (29). The settlement of tumor cells (the “seeds”) in

the bone marrow (the “soil”) is not a passive process, but actively

driven by multiple molecules, activating the signaling pathways of

bone metastasis (29). Tumor bone metastasis is a complex cell

biological transformation involving various cell types and

molecules, including interactions between host cells and the

microenvironment, as well as cytokines, adhesion molecules,

hormones, and chemokines (30–32). Endothelial cells also play an

important role in bone metastasis, stimulating angiogenesis in the

extracellular matrix microenvironment to facilitate the migration

of tumor cells (33, 34).

Currently, the diagnosis of malignant tumor bone metastasis

relies heavily on imaging techniques, each with its limitations.

x-rays, though specific, have low sensitivity; SPECT whole-body

scans can sensitively, intuitively, and comprehensively reflect

changes in bone metabolism but lack specificity; PET-CT, while
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FIGURE 12

Development and validation of prognostic models for overall survival and bone metastasis risk in cancer patients (A) positioned above, the OS
prognostic risk model is articulated through the following formula. (B) Positioned below, the bone metastasis risk prediction model is
encapsulated in the following equation.
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accurate, is expensive; and CT and MRI are also costly and limited

in scanning range. Bone metabolism biomarkers reflect the

metabolic state of bones. During tumor bone metastasis, the

bone remodeling process accelerates, leading to an increased rate

of bone metabolism (11). This change often precedes the

morphological changes detected by imaging studies. The bone

metabolism process, including bone resorption and formation,

and related biomarkers can predict tumor deterioration (11). In

osteolytic lesions, the balance between osteoblast-led bone

formation and osteoclast-dominated bone resorption is disrupted,

leading to the production of related bone metabolism biomarkers

(35). Osteocalcin (OC) is a small, globular protein specifically

synthesized and secreted by non-proliferating osteoblasts (36).

Under the influence of calcium ions, the carboxylated glutamic

acid of OC promotes its binding with hydroxyapatite and

deposition in the extracellular bone matrix, thus facilitating bone

development (36). Studies show that OC has the capability to

attract and activate osteoclasts; its carboxylated end chemically

induces osteoclast precursors, thereby regulating bone resorption

(37, 38). A portion of OC is released into the bloodstream, and

about one-third of OC in serum is intact, another third is short

peptides of amino acids, and the remaining third consists of

cleaved NMID fragments. NMID in serum is stable and reflects

the level of osteocalcin in the bone, thereby indicating the

activity of osteoblasts and the status of bone formation and
Frontiers in Pain Research 17
resorption (39). It is a bone metabolism marker with high

sensitivity and specificity. β-CTX is a terminal peptide generated

during the degradation of type I collagen fibers by osteoclasts

during bone resorption, indicative of bone matrix absorption and

osteoclast activity (40, 41). The newly synthesized carboxy-

terminal peptide of type I collagen is alpha-type (α-CTX), while

the mature form is predominantly β-CTX (40, 41). Released into

the bloodstream, β-CTX is excreted directly through urine

without undergoing renal or hepatic metabolism, making it a

sensitive and specific marker (41). TPINP reflects osteoblast

activity and bone formation rate and is recognized as a bone

formation marker. Type I collagen, a crucial component of bone

matrix, is broken down into TPINP fragments during the

maturation of type I procollagen into type I collagen (42, 43).

TPINP reflects the synthesis of type I collagen and serves as a

sensitive and specific indicator of bone formation (42, 43).

Monitoring these bone metabolism biomarkers allows for a

deeper understanding of the process of tumor bone metastasis,

providing crucial information for early diagnosis and treatment.

Our study indicates that NMID, TPINP, and β-CTX, as

individual markers, hold significant predictive value for tumor

bone metastasis. Their expression levels in patients with tumor

bone metastasis are significantly higher than those in the non-

metastatic group and healthy controls, further affirming their

critical role in tumor bone metastasis. Particularly, when these
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three markers are used in combination, the predictive model’s

AUC value significantly increases, suggesting that these

biomarkers, when used together, possess higher sensitivity and

specificity in predicting the risk of tumor bone metastasis. The

changes in bone metabolism biomarkers not only reveal the

occurrence of bone metastasis but also reflect the interaction

between tumor cells and the host microenvironment. The

settlement and growth of tumor cells in the bone marrow

microenvironment depend not only on their own biological

characteristics but are also influenced by host environmental

factors. The variations in biomarkers such as NMID, TPINP, and

β-CTX indicate a disrupted dynamic balance between bone

resorption and formation in the process of bone metastasis. The

elevation of these biomarkers suggests intensified bone

destruction and remodeling, providing new insights into the

molecular mechanisms of tumor bone metastasis.

The Nomogram model developed in this study not only

enhances the diagnostic accuracy of tumor bone metastasis but

also provides robust support for clinical decision-making. By

accurately assessing a patient’s risk of bone metastasis, physicians

can more rationally formulate treatment plans and monitoring

strategies. Early intervention and treatment are especially crucial

for high-risk patients, contributing to improved quality of life

and prognosis. Moreover, our research has uncovered a

significant correlation between bone metabolism biomarkers and

cancer pain scores, offering a new perspective in understanding

the pain experienced by patients with tumor bone metastasis.

The positive correlation between the levels of biomarkers like

NMID, TPINP, and β-CTX, and cancer pain scores suggests that

these markers not only reflect bone metabolism status but may

also be directly linked to tumor-induced bone pain. This finding

is vital for improving pain management and enhancing the

quality of life in cancer patients. By monitoring these

biomarkers, physicians could more accurately assess the pain

levels in tumor patients and accordingly adjust treatment

protocols, such as optimizing pain control and bone-

protective therapies.

Despite the positive outcomes of this study, the mechanisms of

tumor bone metastasis remain complex and variable, necessitating

further in-depth research. Future work should focus on

comprehensively understanding the interactions between tumor

cells and the bone marrow microenvironment and exploring

additional potential bone metabolism biomarkers. Furthermore,

in-depth studies on patients with different types of tumors and

clinical stages are required to validate and optimize the predictive

model’s applicability and accuracy. It is important to

acknowledge that since this is a retrospective study, biases

influencing the causality between biomarkers and outcomes may

be present. The retrospective design introduces potential selection

bias, information bias, and confounding factors, which could

affect the interpretation of the observed associations between

biomarkers and tumor bone metastasis. These biases may limit

the ability to definitively establish causal relationships, and future

prospective studies will be essential to more rigorously assess the

temporal dynamics and causality between biomarkers and bone

metastasis. Our research provides new insights into the pain
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mechanisms of tumor bone metastasis, including the acidic

microenvironment caused by tumors and osteoclasts, cytokines

released by the tumor and stroma, and neuropathic factors.

A deeper understanding of these complex mechanisms will aid in

developing more effective treatment strategies to alleviate pain

and improve the quality of life for patients. However, overcoming

the limitations of the retrospective design and addressing the

aforementioned biases in future studies will be crucial in refining

the predictive models and validating these pain mechanisms.
5 Conclusion

In conclusion, this study contributes significantly to the

prognosis assessment and pain management of cancer patients

by constructing a risk prediction model and revealing the

correlation between bone metabolism biomarkers and cancer

pain scores. These findings not only enhance the accuracy of

diagnosis and prognosis assessment of tumor bone metastasis but

also provide new directions for clinical treatment. Our research

underscores the importance of adopting multifaceted and

comprehensive strategies in cancer therapy and the necessity of

exploring molecular mechanisms and potential applications of

biomarkers in future oncological research.
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