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A previous report of 4 heterogeneous cases demonstrated that automated

manual lymphatic drainage therapy (AMLDT), administered by a novel,

pneumatic mat of 16 pressurized air channels that inflate and deflate

sequentially to mimic the stretch and release action of manual lymphatic

drainage therapy (MLD), altered lymphatic contractility and relieved pain. Near-

infrared fluorescence imaging (NIRF-LI) was used 1 h before AMLDT, during 1 h

of AMDLT, and 30–60 min after treatment to obtain images that could be used

to determine lymphatic contractility, as measured by pulsing frequency over a

given timeframe. Herein, a case of type 2 complex regional pain syndrome

(CRPS, with nerve dysfunction confirmed) and lymphedema following a

complex fracture on the lower leg is reported in further detail, with a discussion

explaining the association between autonomic and lymphatic dysfunction and

their combined contribution to the development of chronic pain. More

specifically, this case provides clinical evidence of the association between

autonomic nervous system dysfunction, lymphatic dysfunction, and CRPS. We

believe that the regulation of lymphatic flow is a potential therapeutic pathway

to alleviate the symptoms of CRPS. Further research on the association

between autonomic and lymphatic dysfunction and pain is warranted,

particularly in patients with CRPS and symptoms of edema following leg fractures.

KEYWORDS

manual lymphatic drainage, automated MLD therapy, complex regional pain syndrome,

autonomic dysfunction, lymphatic dysfunction, lymphatic contractility, pain, near-

infrared lymphatic imaging

1 Introduction

Every year, approximately 29 per 100,000 people develop complex regional pain

syndrome (CRPS), a systemic disorder involving chronic pain and inflammation usually

triggered by a traumatic injury of the extremities and manifesting as edema, altered

dermal temperature and color, digit and/or limb dystrophy, and allodynia (1–5).

Fractures, crush injuries, sprains, and surgery are the most frequent reasons for CRPS
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development (1, 6–8). There are 2 types of CRPS: type 1 occurs

without a triggering nerve injury, while type 2 develops after a

nerve injury. Treatment options are very limited and do not

provide long-term pain relief. The United States Food and

Drug Administration has not approved a pharmacological

treatment for this debilitating condition, although multiple

pharmacologic treatments have been recommended, including

nonsteroidal anti-inflammatory drugs, steroids, gabapentin,

bisphosphonates, ketamine, botulinum toxin A, and various

antioxidants (9, 10).

A complex and highly integrated cascading chain of

inflammatory and neuroimmune responses are thought to

contribute to CRPS development, with an initial proinflammatory

cytokine storm observed following injury (1, 11–14). Acute CRPS

is characterized by reduced levels of norepinephrine, a stress

transmitter of the sympathetic nervous system (SNS) and

increased levels of α-1 adrenergic receptors. These in turn cause

increased blood flow and vasodilation in the affected extremity (7,

15–17), resulting in the production of more proinflammatory

interleukin-16 (IL-16). Elevated IL-16 induces B lymphocytes and

increases antibody production, including immunoglobulin G and

M (IgG and IgM) (13, 18, 19). As CRPS progresses to a chronic

condition, the persistent proliferation of proinflammatory

cytokines further increases norepinephrine levels, reducing α-1

adrenergic receptors, and resulting in a persistent vasoconstriction.

Additionally, there is a heightened immune response that is

characterized by dysfunctional T-cell activity and exaggerated

neuroinflammation and nociception, mediated by altered IgG and

IgM antibodies (1, 11, 12).

The hallmark symptom of CRPS is a regional, nociplastic pain

that is disproportionate to the initial injury, without damaged

tissue or dysfunctional somatosensory system, and it can

manifest in contralateral “uninjured” extremities (1, 20, 5,

21–53). Nociplastic pain is a type of pain in which augmented

central nervous system pain and sensory processing and altered

pain modulation play prominent roles (24). Although nociplastic

pain is most associated with CRPS at the time of diagnosis,

affected patients can also feel nociceptive pain (caused by the

elevated nociceptors in nonneural tissue) and neuropathic pain,

as well as mixed pain (21).

Researchers increasingly understand that the autonomic

nervous system (ANS) and the lymphatic system work together in

a highly coordinated, cellular-molecular response to immunogenic

threats and support vascular and lymphatic homeostasis via

neurotransmitter and neuropeptide communications within the

lymph nodes (25). In vivo studies provide evidence of the

association between ANS neurotransmitters and lymphatic

dysfunction. When norepinephrine was injected into mice, SNS

nerve fibers in the lymph node capsule and parenchyma

drastically increased lymph flow, demonstrating crosstalk occurs

between the SNS and the lymphatic system (26). Sympathectomy

treatment has been found to block the activated SNS in the lymph

nodes, reducing lymph flow by as much as 80% (26–28). Murine

models have also demonstrated that muscarinic and α-adrenergic

agonists promote lymphatic contractility, while β2-adrenergic

agonists decrease contractility (27).

In a murine limb fracture model, popliteal lymph nodes from the

affected extremity had IgM deposits, which were resolved following

chemical sympathectomy (29). Consequently, CRPS has been

referred to as localized autoimmune syndrome mediated by

autoantibodies and involving ANS dysfunction (1, 6, 7, 15–17).

Therefore, the current hypothesis is that both autonomic and

lymphatic function contribute to CRPS (14), which further suggests

that the regulation of lymph flow is a potential therapeutic pathway

for CRPS.

In alignment with the evolution of CRPS understanding as a

manifestation of an autoimmune disease, in vivo studies have

demonstrated the CRPS is associated with lymphatic dysfunction

(29, 31–33). When the lymphatic system fails to achieve fluid

homeostasis in the body, there is a buildup of interstitial fluid

containing noxious inflammatory cytokines and corresponding

increased microvascular permeability leakage (33). The cytokines

persistently activate nociceptors and interfere with normal

lymphatic responsiveness and pumping following tissue injury,

rapidly decreasing lymphatic flow and pulsatile frequency, leading

to stasis and a chronic feed-forward loop of musculoskeletal and/

or nonmusculoskeletal nociceptors hypothesized to be responsible

for chronic pain (14, 33). The accumulated proinflammatory

cytokines in the interstitial fluid, IL-1β, IL-6, and tumor necrosis

factor-α, are in fact the same ones responsible for feeling pain (14,

35, 36). Over time, this chronic and painful inflammatory

response manifests as lymphedema (LE) (14, 31–33). LE is

prevalent in more than half of patients who have had leg fractures,

14% of whom have recurrent infections indicative of severe

LE (37). Additionally, this patient population is at risk of

developing CRPS (1, 6–8). Lymphoscintigraphy has confirmed

dysfunctional lymphatic flow in patients who have CRPS (34) or

postoperative pain (38). In a report of 3 patients with CRPS

and lower extremity peripheral edema who were treated with

sympathectomy, lymphoscintigraphy demonstrated the affected

legs of 2 patients underwent a drastic increase of lymphatic flow

posttreatment. The authors proposed that sympathetic alterations

caused by the patients’ CRPS increased SNS activity among the

lymphatic vessels in the affected area, concluding that the ANS

modulates lymphatic function (34). Among 4 patients who had

postoperative pain and edema following lower extremity surgery,

lymphoscintigraphy revealed increased lymphatic flow in the

affected leg of all patients, with one also showing dermal backflow,

a characteristic of LE (38).

Over the past decade, improved and validated techniques in

lymphatic imaging have enhanced the visualization and

quantification of lymphatic contractile function (39–44). Near-

infrared fluorescence lymphatic imaging (NIRF-LI) visualizes

lymphatic pumping in real time by tracing the flow of

indocyanine green (ICG) intradermally administered at relevant

anatomic sites (33, 39–44, 45–50). NIRF-LI and related ICG

lymphography techniques are additionally used in clinical practice

to map intraoperative sentinel lymph nodes to stage cancer,

intraoperative videoangiography, and to determine breast lesion

malignancy during mammography and ultrasonography (44).

We recently reported a case of CRPS with stage 1 LE following

a complex leg fracture that occurred 26 years prior, whose pain at
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least temporarily improved following treatment with a novel

pneumatic compression therapeutic (PCT) device for manual

lymphatic drainage (MLD) to the patient’s back that provides

daily pain relief in the home setting. This Class II, PCT device is

a 16-chamber mat that administers automated manual lymphatic

drainage therapy (AMLDT) to the patient in a supine position

(31). We observed in the CRPS and LE case that, in addition to

reducing pain in the patient [based on the change in Visual

Analogue Scale (VAS) scores before and after treatment], NIRF-

LI captured that AMLDT additionally altered pulsatile frequency

and improved lymphatic contractility, a beneficial effect that was

sustained at least 30 min posttreatment (31).

The goal of this paper is to further discuss how autonomic

dysfunction contributes to dermal lymphatic function and how

they collectively lead to CRPS. We provide a more in-depth

description of our case of CRPS and LE, as well as new evidence

from this case that supports the hypothesis that stimulating

dermal lymphatic contractility may improve pain management.

2 Lymphatic response to lower limb
trauma and the potential role of MLD
in pain management

Lower limb trauma has the potential to disrupt lymphatic

function and lymphatic homeostasis, and can result in impaired

lymphangiogenesis, limiting lymphatic recovery and reducing or

significantly impairing the natural state of interstitial fluid

dynamics. In an in vivo model of inflammation, mice were

injected with lipopolysaccharide and assessed with NIRF-LI to

evaluate the effect of inflammation on lymphatic function (33).

Within 4 h of injury, lymphatic propulsion was inhibited, as

shown by reduced lymphatic pulsing frequencies. Lymphatic

vessels had noticeable dilation with increased microvascular

permeability and leakage, and the same results were observed

after IL-1β, TNF-α, or IL-6 was injected. Mice were pretreated

with N-iminoethyl-L-lysine, which inhibited inducible nitric

oxide synthase and mitigated the deleterious effect of elevated IL-

1β, TNF-α, or IL-6 on lymphatic propulsion. Therefore, nitric

oxide is thought to mediate the cytokine storm occurring upon

inflammatory insult and in the presence of lymphatic stasis (33).

When a high-energy fracture of the lower extremity occurs,

severe soft tissue disruption alters lymphatic drainage patterns,

resulting in edema occurring during the acute healing phase as a

normal sequela (37, 51). Persistence of edema and lymphatic

dysfunction can result in loss of immunologic and soft tissue

regenerative capacity if recovery is incomplete. Significantly more

patients with lower extremity fractures and LE have reported

pain in the affected limb compared to those without LE (64% vs.

31%, p = .001) (37). There appears to be a positive correlative

relationship between the severity of the fracture and the

development of LE. Significantly more of these patients with LE

required soft tissue flaps or skin grafts (p = .018 and.014,

respectively), had wound infections and developed osteomyelitis

(p = .020), and developed compartment syndrome (p = .035). In

17 patients treated with skin grafting and muscle flaps following

severe compound tibial fractures, NIRF-LI revealed that all flaps

lacked functional lymphatic vessels with lymphatic blockage

observed at the scar edge, and skin/muscle flaps and grafts had a

dermal backflow pattern comparable to LE (51).

A PCT device is usually worn on the affected limb to increase

circulation and provide MLD, a therapeutic dermal and soft tissue

manipulation and massage technique that is often performed by

Certified Lymphedema Therapists and that is considered

standard of care to manage LE. Although lymphatic drainage

patterns are highly individualized and variable, including within

the same patient (31, 52), clinical evidence generated from NIRF-

LI supports that MLD and PCT improve lymphatic pumping

(39, 47, 49, 50). When massage-like cyclic compressive loading

was administered to rats, a proliferation of immune cells to

unaffected muscle was observed, demonstrating that massage

induces an immunomodulatory response to inflammation,

including in healthy tissue (53, 54). In 9 healthy athletes who

underwent a high-intensity sprint exercise, massage inhibited the

inflammatory response, as measured by reduced cytokines,

including those responsible for pain, such as IL-6 and TNF-α

(55). MLD was also reported to decrease edema in sprained

ankles, which the authors suggested was a result of SNS

inhibition coupled with induced activity of the parasympathetic

nervous system (56).

Investigation into the modulating effect of MLD upon pain has

produced varied results. In vivo research supports the beneficial

effect of massage on neuropathic pain. Two weeks after

undergoing spinal nerve ligation, rats had markedly elevated

levels of IL-6, TNF-α, and toll-like receptor-4 (TLR4) (36).

Following 2 weeks of massage, all inflammatory factors were

significantly reduced. Based on these results, the authors believe

that massage modulates TLR4 signaling, which in turn reduces

the release of inflammatory cytokines responsible for pain (36,

57). Unfortunately, clinical trials evaluating the use of MLD on

patients with CRPS have had critical design flaws and have

generated conflicting results on the therapeutic benefits (58–63).

Improved quantitative clinical trials and data are clearly needed

to understand the potential benefit of MLD on alleviating

symptoms of CRPS.

3 Revelations and new insight from a
recent case of CRPS and LE treated
with AMLDT

We recently reported that a novel AMLDT system (Neuroglide,

Eva Medtec, Bloomington, MN) reduced pain and altered

lymphatic contractility in 4 heterogenous cases, including 2 with

chronic pain, one of which had CRPS and stage 1 LE (31). We

now provide a more in-depth look at the case history of a

58-year old, white male patient with CRPS and LE, who

participated in this proof-of-concept study, with additional

NIRF-LI findings of the affected leg reported for the first time.

Figure 1 provides a detailed history spanning 26 years from the

traumatic injury onset in June 1997 to study participation in August

2023. The patient was in a high-energy, highway speed, motor
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vehicle accident that resulted in a complex, C3 pilon fracture of the

right distal tibia, fibula, and adjacent tibial diaphyseal ankle joint

fractures. He was otherwise healthy with a normal Body Mass

Index and did not have other comorbidities, nor did he take

medications that could have caused microvascular permeability

(such as diabetes or angioedema-causing medications).

He initially underwent open reduction and internal fixation; a

plate and 6 screws were inserted into the right fibula. Upon

hospitalization, the patient was administered narcotics, rendering

him unable to self-report his symptoms of compartment

syndrome that resulted from the severity of the trauma.

Consequently, compartment syndrome was diagnosed 48 h

postinjury. No inflammatory markers were tested during

hospitalization. Over the next 4 weeks of hospitalization, he

underwent multiple extensive surgeries, including a 4

compartment fasciotomy 72 h after the injury, external fixator

placement and bone fragment stabilization, multiple

compartmental debridement procedures, anterior compartment

split thickness skin grafting and eventually tibial bone grafting.

These multiple orthopedic procedures resulted in acute

microvascular hyperpermeability; consequently, extreme edema

developed in the affected area of the right lower extremity (31).

Upon discharge, he had continuous pain and edema and was

unable to return to work for 6 months after the accident (after

which he returned on part-time basis). He could not bear weight

on his right foot and had to sleep with his leg elevated. After

1 year, he began to drive again, albeit requiring ongoing leg

elevation, and he returned to full time work.

In March 1998, nearly 9 months after his accident, he

presented to a neurologist with neuropathic pain that was

secondary to nerve ischemia and was a result of the prolonged

compartment syndrome in the right foot. The affected foot was

noted to have bright red discoloration and vacillated between hot

and cold surface temperatures. Electromyography confirmed his

diagnosis of type 2 CRPS. He underwent 2 lumbar

sympathectomies, which only provided short-term pain relief.

[A previous case report of type 1 CRPS and edema in the leg

also found that multiple lumbar sympathectomies did not

provide sustained long-term relief of pain or edema (23)]. He

was then prescribed gabapentin and alpha blockers to manage

his mixed nociceptive-neuropathic pain; this pain medication

caused a groggy state and hindered his activities of daily living.

He declined opioid use. In June 1998, 1 year following the

accident, the patient had impaired ambulation due to flexion

contractures of the toes of his right foot. Additional corrective

surgery was performed for multiple toe fusion, though the

patient continued to experience mixed pain and heightened

sensory gain in the right foot. CRPS sequelae were observed to

be associated with the multiple, repetitive orthopedic surgeries.

A breakthrough in his CRPS management occurred in the

summer of 1999, 2 years after the accident, when he underwent

13 sessions of acupuncture (including 7 sessions of electrified

FIGURE 1

Detailed timeline of the case history of a 58-year-old male patient with type 2 complex regional pain syndrome (CRPS) and stage 1 lymphedema in the

right foot and calf. The timeline covers a 26-year period of care from traumatic injury onset in June 1997 to the onset and management of type 2

complex regional pain syndrome (CRPS) in the right foot and leg beginning in March 1998 through study participation in June 2023 (31). AMDLT,

automated manual lymphatic drainage therapy; NIRF-LI, near-infrared fluorescence lymphatic imaging; LE, lymphedema; VAS, visual analogue

scale, based on a scale of though 10 with 0, representing no pain and 10 representing maximum pain.
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acupuncture), which greatly ameliorated CRPS symptoms and

reduced pain. In September 1999, he declined a spinal implant

during a pain consultation, and he began to manage pain with

physical therapy and swimming therapy. While his pain reduced

and became more manageable, his edema failed to resolve over

time. He was subsequently diagnosed with Stage 1 LE, with

persistent dependency swelling and skin pitting.

Four years after the accident, in October of 2001, a right ankle

fusion was performed due to joint instability resulting from

progressive avascular necrosis.

During the ensuing 22 years, he has managed his CRPS and LE

with prescriptive gradient compression (20–30 mmHg) stockings

and exercise. He more recently began taking micronized purified

flavonoid fraction diosmin hesperidin (500 mg twice daily) for

his LE to alter microvascular permeability and enhance vein and

lymphatic tone. He reported the pain as persistent, with variable

intensity (VAS daily score of 3 to 8), more akin to a “consistent

background noise”. His CRPS continued to be characterized by

hyperalgesia and hypersensitivity and is prone to swelling. His

LE has never resolved. At the time of the study, his main CRPS

complaint was that, at the end of the day, his affected foot was

highly sensitive and had a feeling of heaviness and fullness.

Upon presentation at the study clinic, 32 injections of 25 μg

ICG were administered to the front and back of the patient’s

body, including his jaw line, neck, arms, umbilical region, and

feet and legs (31). One hour of NIRF-LI was performed to

observe the baseline drainage of ICG laden lymph fluid. Per

protocol, he next laid supine on the AMDLT mat for 1 h of

treatment with concurrent NIRF-LI. A follow-up NIRF-LI

assessment was done for 30 min posttreatment. He reported

baseline and posttreatment pain using the VAS. Lymphatic

contractility was measured by calculating pulsing frequencies

before, during, and after AMLDT. NIRF-LI images were analyzed

with ImageJ (US National Institutes of Health). The time stamps

of the first and last NIRF-LI images determined time lapsed, and

the number of pulses observed in a timeframe were counted to

calculate pulsatile frequency (pulses/min).

Figure 2 depicts an avatar of the patient with CRPS and LE,

showing the pulsatile frequencies obtained from NIRF-LI at the

ICG-injection sites before, during, and after AMLDT. These data

have already been reported and discussed in our previous

publication (31), but the findings in his right foot and leg

deserve further detailed notation. Lymphatic dysfunction with

dermal backflow and tortuous vessels were confirmed by NIRF-

LI in the calf and foot of the right leg (Figure 2 and

Supplementary Video S1). The “normal” medial dorsal lymphatic

collector should drain the ICG injection sites on the dorsum of

the foot. Instead, drainage was routed along the lateral region of

the lower right leg and into the area of dermal backflow

(indicated by the arrow at the beginning of Supplementary

Video S1). A medial calf incision is present from the prior 4

compartment fasciotomy that likely impairs lymphatic flow along

the medial calf ventromedial bundle where no dermal lymphatic

flow is identified. AMLDT increased pulsatile frequency by

nearly 2-fold, from 0.53 pulses/min at baseline to 0.96 pulses/min

during AMLDT (Figure 2). Supplementary Video S2 provides a

FIGURE 2

Avatar summarizing pulsatile frequencies (pulses/minute) captured by near-infrared fluorescence lymphatic imaging at anatomic indocyanine green

injection sites before, during, and after automated manual lymphatic drainage therapy (AMLDT) (31). The red star indicates the limb that was affected

with complex regional pain syndrome and stage 1 lymphedema.
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sample segment during AMDLT treatment. The moving arrow

indicates the movement of a bolus of ICG–laden lymph through

the vessel. Importantly, posttreatment pulsatile frequencies were

still elevated to 0.75 pulses/min (Figure 2) even after the AMDLT

was completed. Supplementary Video S3 shows a sample

posttreatment segment; the arrow near the bottom right points to

the lateral lymphatic vessel on the right leg that drained into the

area affected by backflow. The other visible vessels on both legs

near the Achilles tendon drain the ICG injection sites near the

Achilles tendon. Therefore, NIRF-LI clearly captured lymphatic

dysfunction in this patient with CRPS and LE, which at least

temporarily improved during and after 1 h of AMLDT.

Before treatment, the patient reported a VAS pain score of 5,

which decreased by more than half to a reported value of 2

immediately posttreatment. These initial clinical data suggest that

improving lymphatic contractility may reduce pain.

4 Discussion

The understanding that the autonomic innervation of

lymphatics is critical to full functionality has been largely

speculative (14). Our patient with CRPS and Stage 1 LE

exhibited the dynamic, characteristic mixed pain of CRPS

throughout his case history, with confirmed autonomic and

lymphatic involvement (Figure 1). He had a high-energy accident

with associated compartment syndrome and resulting nerve

ischemia, neuropathic pain development and numbness,

nociceptive pain, high sensory gain, and swelling and LE in his

injured right foot and calf. We believe that his nerve dysfunction

in the injured limb, which led to the development of chronic

pain, is also associated with reduced lymphatic contractility and

potentially some degree of microvascular hyperpermeability

within the lymphatics. Collectively, the autonomic and lymphatic

dysfunction contribute to the persistent negative, feedback loop

of CRPS and LE.

AMDLT is indicated for pain reduction. In our reported proof-

of-concept study of 4 heterogeneous cases, we demonstrated that

AMLDT both impacted lymphatic function and decreased pain

during and immediately following treatment (31). This

noncomparative, observational pilot study was limited by a very

small sample size, which limits its generalizability. A randomized

controlled trial is recommended to determine the long-term

effect of AMLDT on lymphatic function and pain with repeated

treatments over a longer timeframe (31). Nonetheless, the

additional findings reported herein from our CRPS and LE case

study support that lymphatic dysfunction is associated with

chronic pain, and improving lymphatic contractility in

dysfunctional areas may reduce associated pain through an

interplay of autonomic and lymphatic stimulation, which can be

explored in future research by performing neuropathic

assessment before and after repeated MLD and AMLDT

treatment to validate our initial observations.

In our case report, NIRF-LI was used to visualize real-time

lymphatic function; however, the quantification of lymphatic

contractility is pending validation across multisite studies. In a

pilot study that compared NIRF-LI on 24 healthy subjects

compared to 20 with LE, lymph propagation velocity, period, and

contractile frequency were significantly affected by LE status and

by limb (arm or leg) (46). However, quantification was highly

variable and may preclude diagnosis of LE on these measures

alone. In a swine wound model, that used NIRF-LI to compare

the effect of closed incisional negative pressure therapy to

ipsilateral controls over 5 visits in 2 weeks, repeated

quantification of propulsion rates was demonstrated (64).

Lymphatic activity upstream from the incision site was observed

to consistently decrease significantly from baseline over time

(p≤ 0.0157), while downstream rates demonstrated a significant

drop immediately following surgery (p < 0.01), recovered to

baseline by Day 6, and showed significant improvement from

baseline by Day 9 (p < 0.0001). Automated Lymphatic

Functioning Analysis (ALFIA) of NIRF-LI, an algorithm under

development to automate quantitative analysis, was validated

against manual analytic approaches in 9 subjects (3 healthy

controls and 6 with LE) (65). ALFIA incorporates an object-

tracking algorithm for visual stabilization to reduce motion

artifacts, a flow map to more reliably describe fluorescence

propagation, and a refinement algorithm to adjust the flow line

positioning. There were no statistically significant differences in

velocity and periodicity between manual analysis and ALFIA,

although periodicity was slightly longer with ALFIA with more

quantifiable propulsion events observed, likely due to the

adjustments for subject movement and stabilization features

of ALFIA (65).

Like lymphatic dysfunction and resulting LE (31, 48, 52), CRPS

varies highly among and within patients over time (1, 63). We

share new clinical data from a single case report with the hope that

there is more dialogue on the association between CRPS and LE,

which will then result in future research to generate stronger

evidence. A controlled, comparative study is needed to understand

the potential beneficial effect and long-term impact that improving

lymphatic contractility may have on patients with CRPS, in

particular, among those patients who have a history of lower limb

fractures and/or postoperative sequela. Ideally, future research will

involve both in vivo models and evaluate the impact of LE

management on pain reduction, by analyzing functional interference

of chronic pain over time and the impact of pain on activities of

daily living to allow for a more objective pain assessment (66, 67).

High-energy motor vehicle accidents and lower extremity fractures

are a common event that often result in multiple surgical

procedures and the development of chronic debilitating pain and

chronic lower extremity edema (23, 37). Future investigations

should evaluate the long-term association between lymphatic

function and potential chronic pain mitigation (31, 49).

In conclusion, we report preliminary findings from a case

report to build on the hypothesis that an interplay of persistent

autonomic dysfunction and lymphatic dysfunction results in

chronic pain, by providing clinical evidence of a case of CRPS,

with mixed neuropathic and nociceptive components and

persistent LE. The patient experienced pain relief and exhibited

improved lymphatic contractility during and following a single

1 h session of AMLDT, which suggests that improving lymphatic
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contractility in LE may reduce pain in associated CRPS. Larger,

longer, and controlled biochemical and NIRF-LI studies on

patients with CRPS and LE are indicated to better understand

the synergistic actions of the ANS and lymphatic system on the

development of chronic pain and to confirm that improving

lymphatic flow may alleviate and/or improve CRPS when used in

a consistent manner.
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