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Introduction: This study aims to investigate the interregional functional

connectivity in chronic back pain patients with widespread hyperalgesia,

patients with localized back pain, and pain-free controls using stimulus-

evoked high-density EEG recordings.

Methods: We conducted high-density EEG recordings to compare the

functional connectivity and betweenness centrality between these groups.

Results: Compared with controls, chronic pain patients showed altered

functional connectivity between regions that process cognitive information

and regions that process sensory or affective information. Widespread

hyperalgesia, however, is further differentiated from localized pain by

decreased inter-hemispheric connectivity of sensory and affective areas and

increased intra-hemispheric connectivity between sensory and cognitive

cortices. Graph-theoretic analysis showed that whereas chronic pain is

associated with decreased centrality of prefrontal, orbitofrontal, and cingulate

areas, widespread hyperalgesia is distinguished by increased centrality of

prefrontal and insular areas.

Discussion: Together, our results show that although widespread hyperalgesia

shares certain features with localized pain, it is further characterized by distinct

cortical mechanisms.
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Introduction

Widespread hyperalgesia, heightened pain sensitivity outside the primary area of

disease (1–4), is prevalent in pain conditions like osteoarthritis, rheumatoid arthritis,

and low back pain (5–8). It correlates with higher pain intensity and daily activity

interference, worsening overall health (9). Despite its prevalence and associated

morbidity, its mechanisms remain poorly studied.
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Imaging studies and serum or plasma markers often don’t

correlate with widespread hyperalgesia symptoms (10, 11). Given

the non-anatomical pain distribution and hypersensitivity, the

central nervous system (CNS) is believed to play a key role, with

widespread pain or widespread hyperalgesia likely involving

nociplastic mechanisms (12–25). Key regions in aversive and

cognitive processing of pain include the anterior cingulate cortex

(ACC), insular cortex (IC), prefrontal cortex (PFC) and medial

orbitofrontal cortex (mOFC) (14, 17, 26–45). The ACC, a hub

for aversive processing (26–34, 46, 47), has been shown in

animal and human studies to causally regulate generalized

aversive response to nociceptive inputs, suggesting its

involvement in the mechanisms underlying widespread

hyperalgesia (12, 15, 26, 48). The IC is another critical region for

aversive processing implicated in fibromyalgia and other

rheumatological disorders that show nociplastic features (49–51).

Both the ACC and the anterior IC have been shown to process

bottom-up aversive experiences (52, 53), while the PFC and

mOFC are known to provide top-down cognitive regulation of

pain (17, 45, 54–56).

Despite ongoing research, two key questions about widespread

pain and hyperalgesia remain unanswered. First, what circuit

mechanisms cause disordered nociceptive processing in

unrelated, disease-free anatomical regions characterizing

widespread hyperalgesia? Second, does widespread hyperalgesia

represent a quantitative increase in the strength of maladaptive

plasticity in nociceptive circuits already existing in chronic

localized pain, or is it caused by distinct circuit changes not seen

in localized pain?

Although widespread hyperalgesia may occur in both animals

and humans, animal models of widespread hyperalgesia may not

accurately reflect clinical conditions. Therefore, human

neuroimaging pain studies offer valuable insight and neural

biomarkers. While resting-state brain activity provides

characterization of functional connectivity (FC), it often lacks

specificity due to unknown influences from other cognitive

processes. To fully understand the mechanisms of widespread

hyperalgesia, it is important to study neural activity specifically

during active period of nociceptive processing. Thus, we

conducted noxious stimulus-evoked EEG recordings in chronic

low back pain patients with widespread hyperalgesia, localized

low back pain, and pain-free controls. Our findings indicate that

while chronic pain patients exhibit numerous alterations in FC

in response to noxious stimuli, widespread hyperalgesia differs

from localized pain by distinctly reduced inter-hemispheric

connectivity within sensory areas and affective areas. Such inter-

hemispheric synchronization deterioration is coupled with an

increase in intra-hemispheric connectivity between sensory and

non-sensory cortical regions. Furthermore, whereas chronic pain

is associated with decreased centrality of the prefrontal,

orbitofrontal and cingulate cortical areas, widespread hyperalgesia

is characterized by increased centrality of prefrontal and insular

cortical areas. Our results indicate that, although widespread

hyperalgesia shares certain common features with chronic

localized pain at the cortical level, it is also characterized by a

distinct set of circuit mechanisms.

Methods

Study participants

This study was approved by the New York University

Grossman School of Medicine Institutional Review Board

(8/22/2019, #i19-01088) and conducted in accordance with the

latest version of the Declaration of Helsinki. Written informed

consent was obtained from all participants.

Inclusion criteria for chronic back pain patients were diagnosis

of chronic low back pain lasting longer than 6 months with a

baseline average back pain intensity >4 on a 0–10 numerical

rating scale; age between 18 and 75 years; and American Society

of Anesthesiologists (ASA) physical status 1–3. Exclusion criteria

included acute lumbosacral radiculopathy with sensory or motor

symptoms, systemic signs or symptoms, cognitive impairment

(by history) or clinical signs of altered mental status; history of

schizophrenia; daily benzodiazepine use; and pregnancy.

Assessment of pain, function, and mood

Prior to EEG recordings, participants underwent a

comprehensive assessment of pain, function, and mood based on

recommendations from the National Institutes of Health (NIH)

Task force on research standards for chronic low back pain (57).

PROMIS numeric rating scale—pain intensity, PROMIS pain

interference 4a, PROMIS anxiety 8a, PROMIS depression 8a, and

PROMIS sleep disturbance assessed symptoms over the preceding

week. The McGill Pain Questionnaire short form was used to

assess the multidimensional component of pain. PROMIS

physical function 4a assessed physical function.

EEG recordings and mechanical stimulation

Brain activity was recorded using high-density

electroencephalography (EEG), equipped with two integrated bipolar

leads for vertical electrooculogram (EOG; 64-channel Quik-Cap Neo

Net, Compumedics Neuroscan, Charlotte, NC, USA) with the

ground electrode positioned on the left cheek. The EEG cap was

interfaced with a 64-channel Neuroscan SynAmps 2/RT and Nuevo

Amplifier (Compumedics Neuroscan, Charlotte, NC, USA). Each

recording session began with two 5-minute baseline recordings

(5 minutes with eyes closed, followed by 5 minutes with eyes open)

prior to the administration of mechanical stimuli. Participants were

blindfolded during the EEG recordings and asked to stay relaxed and

in a wakeful state during the behavioral tasks. Weighted mechanical

pinprick stimulators (MRC System GmbH, Heidelberg, Germany)

exerting forces of 32 mN and 256 mN were used to apply

mechanical stimuli both to the lower back and the dorsum of the

right hand. 10–20 trials per force were applied at each site with

stimulations delivered in random order with an interstimulus

interval of approximately 10 s. Participants were asked to rate each

stimulus on a 0–10 numeric rating scale, with 0 indicating no pain

and 10 indicating high pain. All data were captured using the Curry
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8 software (Compumedics Neuroscan, Charlotte, NC, USA) with a

sampling rate of 1,000 Hz.

Pain phenotyping

A threshold for hyperalgesic response to 32 mN stimulation to

the hand, a site typically not affected by back pain, was defined as

2 standard deviations above the mean pain rating in control

participants. Chronic low back pain participants reporting pain

scores below this threshold with 32 mN stimuli to the hand were

defined as having chronic localized pain. Chronic low back pain

participants reporting pain scores above this threshold with 32 mN

stimuli to the hand were defined as having widespread hyperalgesia.

EEG preprocessing

MNE-Python (version 1.6.1) was utilized for preprocessing (58).

First, raw signals were down-sampled to a rate of 400 Hz and a band-

pass filter between 1 and 100 Hz was applied. A band-stop filter with

3 Hz width was applied at 60 Hz to eliminate electrical line noise.

Noisy EEG channels were identified and subsequently interpolated

using PyPREP (59). Criteria for noisy channel detection included

low signal-to-noise ratio (SNR), lack of correlation with other

channels, low or high relative deviations, presence of high-

frequency noise, and poor prediction by other channels based on

the random sample consensus approach.

All signals were re-referenced to the average reference. An

independent component analysis (ICA) based on the fast ICA

algorithm was conducted on the EEG data within the −2.5–2.5 s peri-

stimulus time windows. This process utilized a number of independent

components (ICs) equivalent to half the number of EEG channels

(60). ICs that represented artifacts originating from eye movements,

recorded in the EOG electrode, were removed from the EEG data.

The cleaned data were analyzed using functions in MNE-Python,

in addition to custom-written Python code. Datawere segmented into

epochs ranging from−2.5 to 2.5 s in peri-stimulus time. Noisy epochs

were identified using the AutoReject package based on Bayesian

optimization and were automatically marked for rejection (61).

Automatically rejected epochs accurately matched trials marked in

the recording notes as containing movement.

To highlight changes in oscillatory activity, epochs were z-scored

relative to their pre-stimulus baselines. Z-scored epochs were achieved

by subtracting the mean of the baseline period (−2.5–0.0 s) from each

epoch (−2.5–2.5 s), followed by division by the standard deviation of

the baseline. This procedure ensures a common scale for all epochs,

facilitating more accurate comparisons and analyses.

Source model

To project sensor-space time series to source space, the Minimum

Norm Estimate (MNE) was employed, using its implementation in

MNE-Python (62). The surface-based, three-shell boundary element

model used for anatomical reconstruction was derived from

“fsaverage”—a template brain MRI constructed from 40 brain MRI

scans (63–65). Loose-orientation was set to 0.2 for inverse solution

computation to allow source space dipoles freedom of rotation

without deviating extensively from an orientation perpendicular to

the cortex. The regions of interest (ROIs) selected for source-

localization were the dorsal and rostral anterior cingulate cortices

(dACC, rACC), the dorsolateral prefrontal cortex (dlPFC), the

medial orbitofrontal cortex (mOFC), the primary somatosensory

cortex (S1), and the insular cortex (IC). Both left and right

hemisphere regions were considered for connectivity analysis,

resulting in a total of 12 regions.

Source-space frequency-domain
representations

To secure a robust stimulus response from each participant,

source-space z-scored epochs were averaged. Next, frequency-domain

representations were estimated from the averaged source-space z-

scored epochs using a batch of multitapers with digital prolate

spheroidal sequence (DPSS) windows, one for each of the canonical

frequency bands— theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),

low-gamma (30–58.5 Hz) and high-gamma (61.5–100 Hz).

Functional connectivity (FC) analysis

Connectivity analyses of EEG data were performed using a phase-

based approach (66). Phase-based connectivity measures rely on

temporal synchronization of brain activity, and thus are more strongly

affected by contextual factors. In this study, functional connectivity

was investigated using the debiased weighted phase lag index-square

estimator (dwPLI) (67). dwPLI is a well-established and highly

sensitive phase-based connectivity, a modification of the weighted

phase lag index (wPLI), offering a more robust measure against noise

and volume conduction effects. It quantifies the asymmetry of phase

differences and is debiased to minimize the influence of random

phase relationships. The values range from 0 to 1, with 0 indicating

either no interaction or symmetric phase differences, and values

approaching 1 indicating strong asymmetric phase coupling. Thus,

dwPLI is resistant to volume conduction without the risk of reduced

sensitivity, as real synchrony at zero phase lag is also discarded. If the

wPLI exceeds the phase lag index (PLI), the dwPLI will be negatively

biased for small sample sizes, resulting in values below 0.

Centrality analysis

To better understand the network topology of chronic pain, we

analyzed the betweenness centrality of the source space ROIs. Node

betweenness centrality, a concept borrowed from graph theory, is

the number of shortest paths between pairs of other nodes that

pass through a given node. Nodes with high betweenness

centrality serve as a bridge between many pairs of other nodes.

In our context, each ROI is a node in the pain processing

network, and the connections between them, based on dwPLI,
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are the edges. Regions in the brain with high betweenness centrality

act as hubs in the network.

Weighted betweenness centrality was computed using

betweenness_wei.m from Brain Connectivity Toolbox (15, 68).

Because centrality must be estimated from a connection-length

matrix, the inverse of each connectivity matrix was taken prior to

centrality estimation. The resulting centrality vector (BC, 1xN) is

normalized to the range [0,1] as BC[(N-1)x(N-2)], where N is the

number of nodes in the network.

Functional grouping

To reduce the degree of freedom and improve the detection statistics

in the presence ofmultiple comparisons, individual cortical regions were

grouped into sensory (S1), affective (ACC and IC) and cognitive areas

(mOFC and dlPFC), for both left and right hemispheres. To achieve

this, three reduction techniques were tested: mean, median, and

maximum. For either FC or centrality measure, the mean, median,

and maximum value of the regions within each group were

computed, resulting in a connectivity matrix (or centrality vector)

with N = 6, for the three groups in both hemispheres. Maximum

value was selected as the reduction technique for functional grouping.

Statistical analysis

Behavioral data

Pain numeric ratings were analyzed using IBM SPSS Statistical

Software (Version 28, IBM, New York, United States) and GraphPad

Prism (Version 9.4.1, GraphPad Software, Boston, United States).

Results were expressed as mean ± standard deviation (SD), standard

error of mean (SEM) or median [interquartile range] for continuous

variables. Results were expressed as frequency and percentage for

categorical variables. An unpaired t-test was used to compare mean

pain scores of chronic low back pain patients with localized pain vs.

widespread pain. P < 0.05 was considered significant.

Analysis of FC and graph-theoretic
measures

FC measures were compared using the non-parametric Mann–

Whitney U-test to account for non-Gaussian distributions in the

EEG data of each participant. Results were expressed as mean ± SEM

for continuous variables. P < 0.05 was considered significant.

Results

A subset of chronic pain patients
demonstrates widespread hyperalgesia

We used a high-density (64-channel) EEG cap with two

integrated bipolar leads for horizontal and vertical

electrooculogram (EOG; 64-channel Quik-Cap Neo Net,

Compumedics Neuroscan, Charlotte, NC, USA) to measure brain

activity before, during and after the application of noxious

stimuli to the dorsum of the right hand of all participants

(n = 43; 24 with chronic low back pain and 19 pain-free control

participants; Table 1). None of the participants had chronic pain

in the right hand, thus allowing us to evaluate how the presence

of chronic pain alters normal cortical nociceptive response or

hyperalgesic response. Two calibrated mechanical stimulations

were used to provide acute noxious inputs (32 mN and 256 mN).

Whereas the 32 mN mechanical stimulation did not trigger pain

in control subjects, the 256 mN mechanical stimulation did (17).

Next, we separated chronic low back pain patients with

widespread hyperalgesia (n = 12) from patients with chronic

localized low back pain (n = 12), using hyperalgesic response to

the 32 mN stimulation to the hand as a criterion (Figure 1,

Table 1; see Materials and Methods). Patients with widespread

hyperalgesia reported higher pain scores for both the 32 mN

stimulus and the 256 mN stimulus to the dorsum of their right

hand (Figure 1B).

Chronic pain is associated with changes in
cortico-cortical connectivity in response to
a noxious stimulus

We conducted stimulus-evoked EEG recordings in all

patients (Figure 1C). After source localization, we examined

interregional FC among cortical regions using a phase-

coupling method known as debiased weighted phase lag index

(dwPLI) (67, 69) (Figure 1D). Pain has sensory, affective and

cognitive dimensions, and different cortical regions have

primary roles in each of these dimensions. We focused our

inquiry on cortical areas known to process these different

dimensions of pain: primary somatosensory cortex (S1), ACC,

IC, mOFC and dorsolateral PFC (dlPFC) (Figure 1D). Further,

to understand how distinct groups of cortices interact at the

level of sensory, affective and cognitive dimensions, we

adopted a functional grouping strategy in FC analysis in the

frequency domain where oscillations at different frequency

bands are associated with distinct mechanisms in pain

processing. This grouping strategy also enhances the power of

our analysis. Thus, we grouped individual cortical regions into

sensory (S1), affective (ACC and IC) and cognitive areas

(mOFC and dlPFC), then performed FC analysis at the group

level. We examined how FC was altered in chronic pain

patients in response to a noxious stimulus (256 mN). Here, we

found that in response to a noxious stimulus, chronic pain is

associated with increased FC between cognitive areas and the

sensory cortex that is contralateral to the stimulus, but

decreased FC between cognitive areas and the ipsilateral

sensory cortex in the beta frequency (13–30 Hz), as well as

increased FC between cognitive and affective cortices in the

high-gamma frequency (61.5–100 Hz) (Figure 2). In contrast,

FC at other frequency bands failed to reach

statistical significance.
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A unique pattern of grouped FC
distinguishes widespread hyperalgesia
from localized pain

Next, we asked whether widespread pain has its own distinct

mechanistic features not found in patients who experience only

localized pain (Figure 3). Thus, we conducted grouped FC

analysis for widespread hyperalgesia vs. localized pain. We

found that, compared with localized pain, widespread

hyperalgesia is associated with a number of changes in FC in

response to the noxious (256 mN) stimulus. These changes

include decreased inter-hemispheric FC between the sensory

areas and between affective areas in the alpha frequency

(8–13 Hz), and increased FC between the cognitive areas and

the sensory cortex ipsilateral to the stimulus in the beta

frequency (Figure 3). These results indicate that widespread

hyperalgesia has its own mechanistic features compared with

localized pain.

TABLE 1 Demographics and pain characteristics for study subjects.

Pain-free controls (n = 19) Localized CLBP (n= 12) Widespread pain (n= 12)

Demographics

Gender, N (%)

Male 16 (84) 9 (75) 9 (75)

Female 3 (16) 3 (25) 3 (25)

Age, mean (± SD), year 47.4 ± 14.5 51.4 ± 16.5 54.3 ± 14.9

Pain characteristics

Duration of pain, N (%)

6 months–1 year 0 (0.0) 0 (0.0) 1 (8.3)

1–5 years 0 (0.0) 7 (58) 5 (42)

> 5 years 0 (0.0) 5 (42) 6 (50)

Pain frequency/last 6 months, N (%)

Every day 0 (0.0) 8 (67) 6 (50)

At least half the days 0 (0.0) 3 (25) 5 (42)

Less than half the days 0 (0.0) 1 (8.3) 1 (8.3)

No pain 19 (100) 0 (0.0) 0 (0.0)

Back pain with radiculopathy, yes, N (%) 0 (0.0) 7 (58) 8 (67)

Prior treatments, N (%)

Opioids 0 (0.0) 5 (42) 6 (50)

Psychological counseling 0 (0.0) 3 (25) 5 (42)

Exercise therapy 1 (5.3) 8 (67) 10 (83)

Injections 0 (0.0) 6 (50) 7 (58)

Medication quantification scale (MQS)a, mean (± SD)

NSAIDsb 0.4 ± 1.1 1.3 ± 2.8 1.7 ± 1.8

Muscle relaxantsc 0.0 ± 0.0 0.6 ± 1.0 1.4 ± 2.3

Neuropathic mood agentsd 0.0 ± 0.0 0.9 ± 1.6 0.8 ± 1.3

Opioidse 0.0 ± 0.0 2.8 ± 6.7 4.3 ± 5.3

MQS total 0.4 ± 1.1 5.6 ± 7.2 8.1 ± 6.9

Pain and quality of life questionnaires

PROMIS T-score (mean ± SD)f

8a anxiety 43.8 ± 7.9 53.9 ± 11.3 58.0 ± 10.6

4a pain interference 41.6 ± 0.0 61.4 ± 6.7 63.6 ± 7.6

4a physical function 46.1 ± 2.7 38.5 ± 6.7 38.0 ± 7.3

PROMIS numerical rating scale (0–10)g 0.1 ± 0.3 5.5 ± 1.5 6.3 ± 2.4

8b depression 42.7 ± 6.7 48.0 ± 9.7 54.6 ± 8.0

Sleep disturbance 47.2 ± 9.7 52.1 ± 4.0 53.8 ± 10.2

McGill, total score (mean ± SD)h 15.0 ± 0.0 30.0 ± 8.8 31.0 ± 11.8

McGill sensory dimension 11.0 ± 0.0 23.4 ± 7.0 23.3 ± 9.2

McGill affective dimension 4.0 ± 0.0 6.2 ± 2.4 7.7 ± 3.3

aThe MQS is a tool to objectively quantify pain by computing numeric values for the patient’s pain medication profile, with higher scores representing a higher medication consumption.
bIncludes medications such as Ibuprofen, Acetaminophen, Naproxen, Etodolac, Celecoxib, Diclofenac, Aspirin, Indomethacin, Nabumetone, Oxaprozin, Prioxicam, Meloxicam.
cIncludes medications such as Baclofen, Carisoprodol, Cyclobenzaprine, Metaxalone, Methocarbamol, Tizanidine.
dIncludes medications such as Amitriptyline, Bupropion, Carbamazepine, Citalopram, Desipramine, Doxepin, Duloxetine, Escitalopram, Fluoxetine, Gabapentin, Imipramine, Milnacipran,

Nortriptyline, Oxcarbazepine, Paroxetine, Pregabalin, Sertraline, Topiramate, Trazodone.
eIncludes medications such as Codeine, Fentanyl, Hydrocodone, Hydromorphone, Meperidine HCl, Methadone, Morphine, Oxycodone, Oxymorphone, Tapentadol, Tramadol.
fWith exception of the 4a physical function scale, high PROMIS T-scores mean more of the concept being measured.
gRepresenting the average pain intensity in the past 7 days, scored from 0 to 10.
hThe McGill pain score is used to assess the quality aspects of pain. The higher the total score, the more the pain experience for the patient increases.
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Patients with widespread hyperalgesia
display distinct changes in nodal centrality
in the cortical functional network

To further understand the role of each individual cortical area

in driving the overall functional structure in response to noxious

inputs, we used an independent graph-theoretic approach to

calculate the betweenness centrality, which characterizes how

important a cortical area is in organizing a network response to

a nociceptive input. We denoted each of the cortical areas (S1,

ACC, IC, mOFC, or dlPFC) as a node in pain processing. Our

results reveal that chronic pain patients, compared with control

subjects, showed decreased centrality of the right dlPFC in the

theta frequency (4–8 Hz) (Figure 4A), decreased centrality of the

left mOFC but increased centrality of the right dorsal ACC in

the beta frequency (Figure 4B), and decreased centrality of the

left rostral ACC in the high-gamma frequency (Figure 4C). In

contrast, when we compared patients with widespread

hyperalgesia with patients with localized back pain, a distinct set

of nodal centrality emerged. Here, we found increased centrality

in the right dlPFC in the alpha frequency (Figure 5A), increased

centrality of the right IC in the beta frequency (Figure 5B), and

decreased centrality in the right rostral ACC in both the beta

and low-gamma (30–58.5 Hz) frequencies (Figures 5B,C) in the

widespread hyperalgesia cohort. These results suggest that

different cortical mechanisms may be responsible for widespread

hyperalgesia as compared with chronic localized pain.

Discussion

EEG connectomes offer a powerful tool for studying brain

connectivity and advancing our understanding of brain function

and dysfunction in both healthy and pathological conditions. In

this study, we examined interregional FC among cortical circuits

in response to a noxious stimulus in chronic pain patients and

FIGURE 1

Characterization of patients with widespread hyperalgesia using high-density electroencephalography (EEG) recordings. (A) Patients experiencing

chronic low back pain, further characterized into those with only localized pain and those with widespread hyperalgesia (see Materials and

Methods), as well as pain-free controls underwent EEG recordings. (B) Patients with widespread hyperalgesia show increased sensitivity to both

32 mN stimulus and 256 mN stimulus to the dorsum of their hand. Unpaired t-test, p≤ 0.05 (*). p≤ 0.01 (**), p≤ 0.001 (***) and p≤ 0.0001 (****).

(C) Resting-state EEG was collected, including 5-minute intervals with eyes open and 5-minutes with eyes closed. Additionally, EEG recordings

were performed during the application of pinprick stimuli (32 mN vs. 256 mN) to the dorsum of the right hand. (D) EEG data was analyzed and

source localization was performed to isolate cortical areas known to play prominent roles in pain processing (regions of interest, ROIs). These

include the primary somatosensory cortex (S1), insula (IC), anterior cingulate cortex (ACC; including rostral ACC or rACC and dorsal ACC or

dACC), medial orbitofrontal cortex (mOFC), and dorsolateral prefrontal cortex (dlPFC). Figure creation was assisted by biorender.com.
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pain-free controls. We found that chronic pain patients

demonstrated a large number of changes in FC between

cognitive-, affective-, and sensory-processing regions in a

frequency-dependent manner. More importantly, widespread

hyperalgesia, commonly found among chronic pain patients, is

further distinguished from chronic localized pain by a specific set

of FC changes, indicating unique pathogenetic features.

Study designs to investigate nociceptive
processing in patients with widespread
hyperalgesia

Two prominent questions in chronic pain research are (1) what are

the circuit mechanisms that give rise to disordered nociceptive

processing in unrelated, disease-free areas in the body in chronic

pain, and (2) is widespread hyperalgesia a progressively worse

condition of chronic localized pain, or is it caused by a distinct set of

circuit changes that are not found with localized pain? Several

features of our study design enable us to specifically address these

two key questions. First, in contrast to prior studies in neuroimaging,

which primarily investigate resting-state changes, we focused our

inquiry on stimulus-evoked neurophysiological changes. Taking

advantage of the temporal precision of EEG recordings, we are able

to analyze brain circuits specifically associated with nociceptive

processing by performing FC analysis after EEG source localization.

Another key feature of our study design is the application of noxious

stimuli to a disease-free site, enabling us to investigate generalized,

widespread hypersensitivity rather than localized hypersensitivity.

Furthermore, comparing patients with chronic localized pain to

patients with widespread hyperalgesia, we are able to isolate selective

mechanistic features of widespread hyperalgesia.

Functional connectivity associated with
nociceptive processing in chronic
pain patients

A key finding in our study is that, in response to a noxious

stimulus, there was a large range of changes in FC across

FIGURE 2

Disrupted mean connectivity across functionally grouped cortical networks are found in chronic pain patients. Left columns: FC between grouped

cortical networks in patients with chronic low back pain (n= 24); middle columns: FC between grouped cortical networks in pain-free controls

(n= 19); right columns: matrix comparing mean FC in patients with chronic low back pain vs. pain-free controls (red indicates higher mean

connectivity in chronic low back pain patients as compared to controls, blue indicates lower mean connectivity in chronic low back pain patients

as compared to controls, p-values displayed on matrix indicate statistically significant differences between the two mean connectivities). (A)

Noxious mechanical stimulation with 256 mN resulted in increased debiased weighted phase lag index (dwPLI) between cognitive-processing

cortical areas and the sensory cortex that is contralateral to the stimulus (p= 0.016), but decreased FC between cognitive areas and the ipsilateral

sensory cortex (p= 0.041) in the beta band of the chronic low back pain group as compared to pain-free controls. (B) Noxious stimulation

resulted in increased dwPLI connectivity between right hemisphere cognitive processing regions and left hemisphere affective processing regions

in the high-gamma band (p= 0.0388) of the chronic low back pain group as compared to pain-free controls.
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multiple cortical areas. This is not surprising, given that nociceptive

inputs are processed in a distributive manner throughout the

neocortex. The convergence of the nociceptive information

carried by distributive circuits is critical for the overall experience

of pain, and these circuits may be synchronized by neural

oscillations recruited locally that then propagate across long-

range projections (70).

Prior fMRI and EEG studies have primarily focused on resting-

state FC. In these studies, several featured networks have emerged

as highly relevant, including the default mode network (DMN) and

salience network (SN) (53, 71). The DMN comprises many of the

prefrontal cortical regions and has been implicated in widespread

hyperalgesia and pain in fibromyalgia and other rheumatological

disorders (49–51). The SN, comprised of the IC and ACC, has

also been shown to process the bottom-up sensory stimulus-

driven aversive experience, which includes pain (52, 53). Mood

disturbances associated with fibromyalgia and other chronic pain

conditions have been correlated with changes in the DMN and

SN, as well as in their functional connection to the IC and

rostral ACC (72, 73).

In contrast to prior studies of resting-state changes in the

brain, our study focused on nociceptive processing, specifically

in response to a noxious stimulus at a disease-free site, to

uncover potential disruptions in brain circuits for endogenous

nociceptive processing. Several key regions comprising the

DMN and SN, nevertheless, featured prominently in our

analysis. For example, we found altered nodal centrality of

ACC as well as dlPFC. In addition, we found increased FC

between cognitive areas and the sensory cortex that is

contralateral to the stimulus, but decreased FC between

cognitive areas and the ipsilateral sensory cortex. Our

results, in the context of the prior work on resting-state FC,

indicate that altered FC at baseline can also translate

into disorderly nociceptive processing. These results are

further compatible with data from animal models of chronic

pain (12, 15, 23).

Cortico-cortical FC can vary from individual to individual,

and thus we conducted a functional grouping analysis by

combining different cortical areas into groups that process the

sensory information (S1), affective information (ACC and IC),

FIGURE 3

Unique features in mean connectivity across functionally grouped cortical networks in patients with widespread hyperalgesia. Left columns: FC

between grouped cortical networks in patients with widespread hyperalgesia (n= 12); middle columns: FC between grouped cortical networks in

patients with localized pain (n= 12); right columns: matrix comparing mean FC in patients with widespread hyperalgesia vs. patients with localized

pain (red indicates higher mean connectivity in widespread hyperalgesia patients as compared to localized pain patients, blue indicates lower

mean connectivity in widespread hyperalgesia patients as compared to localized pain patients, p-values displayed on matrix indicate statistically

significant differences between the two mean connectivities). (A) Noxious mechanical stimulation with 256 mN resulted in decreased inter-

hemispheric dwPLI connectivity between the sensory cortices and affective cortices (p= 0.011, p= 0.0496) in the alpha band of the widespread

hyperalgesia group as compared to the chronic localized pain group. (B) Noxious stimulation resulted in increased dwPLI connectivity between

the cognitive processing regions and the sensory cortex that is ipsilateral to stimulus in the beta band (p= 0.021) of the widespread hyperalgesia

group as compared to the chronic localized pain group.
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or cognitive information (dlPFC and mOFC) of pain. With this

analysis framework, we find that chronic pain patients, including

those with localized pain and those with widespread

hyperalgesia, display a very different FC pattern compared

with control subjects. Specifically, chronic pain is associated

with increased connectivity between cognitive areas and the

sensory cortex that is contralateral to the stimulus, as well as

between cognitive and affective cortices. These changes are

most prominent in the beta and high-gamma frequencies.

Faster frequency (e.g., gamma) oscillations are typically

confined to a small neuronal space and are known to involve

bottom-up sensory processing, whereas slower frequency

(theta, alpha and beta) oscillations are recruited from larger

brain networks sometimes associated with persistent brain

states such as the state of chronic pain (74–76). Both beta and

gamma oscillations in frontal and prefrontal cortical areas

have been shown to be positively correlated with ongoing pain

(25), whereas gamma oscillations in sensory and prefrontal

cortices are known to process sensory and aversive signals,

respectively, and have been shown to correlate with evoked

stimulus intensity (74, 77–84). Thus, our findings showing

alterations in FC in these frequencies indicate enhanced

nociceptive processing in response to a noxious stimulus in

chronic pain patients.

Unique mechanistic features distinguish
widespread hyperalgesia from chronic
localized pain

A key finding in our study is that, in contrast to patients who

have chronic localized back pain, patients with widespread

hyperalgesia showed additional changes throughout the cortex.

At the network level, we found that widespread hyperalgesia is

distinguished from localized pain by decreased inter-hemispheric

FC between the sensory areas and between affective processing

areas in the alpha frequency, and at the same time increased FC

between the cognitive processing areas and the sensory area

ipsilateral to the stimulus in the beta frequency in response to a

noxious stimulus.

Inter-hemispheric FC plays an important role in integrating

cognitive, affective and sensory circuits, and is in fact one of the

salient and stable features of intrinsic brain function (85).

Decreased inter-hemispheric FC has been shown in fMRI studies

to have a strong correlation with a number of neuropsychiatric

disorders, notably major depression and autism (85–88). There is

also emerging evidence from resting-state fMRI studies for

disordered inter-hemispheric FC in certain chronic pain

conditions (89). Since we did not observe this deficit in inter-

hemispheric FC of sensory areas when we compared chronic

FIGURE 4

Chronic pain is characterized by changes in node centrality in theta, beta, and high-gamma frequency oscillations. (A) Noxious mechanical stimulation

with 256 mN resulted in decreased centrality of the right hemisphere dorsolateral PFC in the theta band (p= 0.0302), (B) Noxious stimulation

decreased centrality of the left hemisphere medial OFC (p= 0.0095) and increased centrality of the right hemisphere dorsal ACC (p= 0.0269) in

the beta band. (C) Noxious stimulation decreased centrality of the left hemisphere rostral ACC in the high-gamma band (p= 0.0441) in the

chronic low back pain group (n= 24) as compared to pain-free controls (n= 19). Data are shown as mean +/− SEM.
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pain patients with controls, this selective disruption in FC indicates

that widespread hyperalgesia is not simply a progression from

chronic localized pain but has distinct network features that may

be responsible for widespread hypersensitivity.

In addition, our graph-theoretic analysis demonstrated that

widespread hyperalgesia is further characterized by increased

centrality of the IC. This was not seen among chronic pain

patients as a whole. Given the important role of the IC in

processing the aversive component of pain (35), this result is not

surprising, especially in the context that patients with widespread

hyperalgesia are also more likely to experience heightened

aversive or affective components of pain and have higher

comorbidity with mood disorders (9, 90).

Overall, our results indicate that while some maladaptive

cortical circuit disruptions are found in both widespread

hyperalgesia and localized pain groups, other cortical

mechanisms underlying widespread hyperalgesia may be distinct

features not found with localized pain. These results thus shed

important light on the mechanisms of widespread or

nociplastic pain.

There are several limitations of our study that present

opportunities for future studies. First, due to our focus on some

of the well-known cortical pain-processing nodes, we did not

study FC involving all brain areas critical for pain regulation. For

example, subcortical regions which are known to be involved in

pain processing include hippocampus, amygdala and nucleus

accumbens. Future studies need to examine the roles of these

regions in nociceptive functional connectivity, using techniques

such as fMRI or intracranial recordings. Secondly, as we grouped

distinct cortical regions into networks (sensory, affective and

cognitive), there is the possibility that we have reduced the

multi-functionality of certain cortical regions. For example, while

the IC is known to regulate affective component of pain, studies

have shown that it also has a role in sensory processing (91, 92).

Likewise, PFC has roles in both cognitive and to a lesser degree

affective processing of nociceptive inputs. Thirdly, neuroplasticity

is known to play a key role in widespread pain, where both glial

cells and neurons can interact to cause persistent synaptic

changes in both the brain and spinal cord (6, 93), and future

studies are needed to identify the relationship between these

cellular mechanisms and the long-range FC identified in the

present study. Lastly, more male than female patients enrolled in

our study, and thus studies are needed to further characterize sex

differences in widespread pain (94).

Our present results indicate that chronic pain causes

disruptions in functional connectivity in response to nociceptive

inputs. More importantly, whereas chronic pain in general is

associated with decreased centrality of prefrontal, orbitofrontal,

FIGURE 5

Select features in node centrality further characterize widespread hyperalgesia from localized pain. (A) Noxious mechanical stimulation with 256 mN

resulted in increased centrality of the right hemisphere dorsolateral PFC in the theta band (p= 0.016). (B) Noxious stimulation decreased centrality of

the right hemisphere rostral ACC (p= 0.0275) and increased centrality of the right hemisphere insular cortex (p= 0.0483) in the beta band. (C) Noxious

stimulation decreased centrality of the right hemisphere rostral ACC in the low-gamma band (p= 0.0024) in patients with widespread hyperalgesia

(n= 12) as compared to patients with localized pain (n= 12). Data are shown as mean +/− SEM.
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and cingulate areas, widespread hyperalgesia is further

distinguished by increased centrality of prefrontal and insular

areas. Therefore, although widespread hyperalgesia shares some

features with chronic localized pain, it is also characterized by

distinct cortical mechanisms. Insights into these mechanistic

differences can enhance our theoretical understanding of chronic

pain. At the same time, understanding how disrupted cortical

connectivity contributes to widespread hyperalgesia can open

new avenues for targeted interventions from a translational point

of view.
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