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Background: Reliable and validated scores assessing pain-related outcomes are

an essential component of pain management. Point estimates, e.g., on the

numeric rating scale (NRS), are widely used. Given the broad spectrum of

physiological and psychological factors involved in a patient’s pain experience,

these point estimates entail inherent uncertainty. To account for this

uncertainty, we propose a statistical framework featuring uncertainty intervals

on a numerical scale assessing pain intensity.

Methods: We describe a non-parametric statistical method to estimate the

effectiveness of a pain intervention when patients provide an uncertainty

interval of pain intensity rather than a single point estimate. We consider pain

intensities on a generic numerical pain scale (NPS) ranging from 0 to 10 and

illustrate the method’s performance with proof-of-concept simulation studies

and sensitivity analyses.

Results: The simulation studies demonstrate that the non-parametric method

can derive correct estimates of the average treatment effects in idealized

settings. Importantly, the method can represent the traditional pain

assessment with point estimates when the widths of the uncertainty intervals

are gradually decreased toward the mean of the uncertainty interval.

Conclusion: We proposed a new statistical framework to account for patient-

specific uncertainties in pain intensity as measured on a numerical scale. The

clinical importance of the method lies in its ability to reflect the large

heterogeneity of individual pain experiences and the possibility of investigating

pain-related aspects that go beyond a traditional pain assessment with point

estimates. Future clinical studies are required to assess the method’s clinical

validity and utility.
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Introduction

The reliable assessment of a patient’s pain by validated instruments constitutes a

cornerstone of modern pain management (1). Several assessment tools are available,

e.g., the numeric rating scale (NRS) or the visual analog scale (VAS). However, it is

sometimes difficult for patients to decide on a specific NRS measure. Pain intensity is

often dynamic and with more or less pronounced fluctuations over time. These

unidimensional scales provide the main components for validated multidimensional
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questionnaires such as the Brief Pain Inventory (BPI) or the PAIN

OUT questionnaire developed for patients either suffering from

chronic pain or acute postoperative pain (2, 3).

In this brief research report, we study a specific statistical aspect

of current pain measurement tools, notably the NRS and the VAS.

In particular, we consider the fact that current pain assessment

tools traditionally quantify the pain intensity by a point estimate

—be it for a single question or as part of multiple point

estimates of a questionnaire. Given the multidimensional aspects

and multifactorial processes involved in an individual’s pain

experience, we examine the possibility of extending the point

estimate-based pain assessment using a patient-specific

uncertainty interval of pain intensity. This extension is motivated

by clinically relevant aspects of pain assessment that go beyond

the current abilities of pain assessments with point-based

estimates: For example, are the patients more or less certain of

their experienced pain intensities after an intervention?

Uncertainty intervals on a pain scale of interest could provide

additional, clinically relevant insights into the patients’ pain

perception that would not require additional items on a

questionnaire or additional dichotomous items.

Therefore, we aim to propose a statistical method that allows

the incorporation of individual-level uncertainty in pain intensity

as expressed in intervals on a numerical pain scale (NPS). Using

a suite of simulation studies, we provide a step-by-step

introduction to the method and its performance. We further

compare the accuracy of the method to traditional pain

assessments with point-based estimates. We conclude by

discussing clinically relevant aspects when implementing the

method in a real-world setting and the need to examine the

method’s clinical utility and validity in future studies.

Methods

Objective

The objective of the statistical method is to provide a mean

estimate and an associated 95% confidence interval (CI) of the

average treatment effect (ATE) in a before-and-after setting

where a cohort receives a pain-related treatment. Importantly,

individual pain intensities are expressed with uncertainty

intervals on a numeric pain scale (NPS) of arbitrary units at the

two time points. To mimic the established pain scores, the NPS

ranges from 0 to 10 in this study.

Illustration example

As a motivational example for the subsequent technical

description, we illustrate the case of a point estimate using a

small illustration example shown in Figure 1: Four patients

reported their pain intensity on the numerical pain scale before

and after an analgesic intervention (Figure 1A). The scenario of

interest here is the case when patients can provide uncertainty

intervals on the pain scale, instead of point estimates (Figure 1B).

Statistical framework

We introduce the different steps involved in the proposed

framework in Figure 2 using the data of the small cohort shown

in Figure 1. Figure 2A illustrates the uniform probability

distribution of pre- and post-intervention pain intensities. The

FIGURE 1

Illustration of a traditional pain assessment with a single point estimate (A) and with the interval assessment (B) on a numerical pain scale (NPS).
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pre- and post-intervention pain intensities are considered uniform

random variables where the lower and upper boundaries are

defined by the patients’ pain intensity intervals. For example,

Patient 1 stated his pre-intervention pain levels between 5.8 and

7.3 units on the NPS and his post-intervention pain levels

between 3.3 and 5.4 units.

We can now consider the patient-specific treatment effects. In

the case of traditional point estimates, these would correspond to a

single number: For example, the treatment effect for Patient 1

would be a pain reduction of 3.6 units on the NPS scale (pre-

intervention pain level of 7.2 units and post-intervention level of

3.6 units; Figure 1A). In the case of uncertainty intervals, the

FIGURE 2

Illustration of the different steps involved in estimating the average treatment effect (ATE) and associated 95% confidence interval (CI) in pain

intensities in the presence of uncertainty intervals on a numerical pain scale (NPS). Distributions of pre- and post-intervention pain intensity levels

(A) and the associated distributions of the changes in pain intensities for individual patients (B, C). Bootstrap estimation of the ATE and its 95% CI.

The vertical dashed line refers to the true ATE of the simulated cohort.
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patient-specific treatment effects are random variables, whose

distributions are shown in Figure 2B. The triangular shape of the

resulting distributions results from the so-called convolution of

the patient-specific pre- and post-intervention pain intervals.

The convolution is best explained for the case where the

uncertainty intervals of pre- and post-intervention pain intensities

do not overlap, such as in the case for Patient 3; this patient

stated pre-intervention pain levels between 2.1 and 3.7 units and

post-intervention pain levels between 3.8 and 5.2 units. Note that

Patient 3 showed an overall increase in pain levels after the

intervention. The triangular shape of Patient 3’s distribution of the

treatment effect can be derived by first considering the smallest

post-intervention pain level (3.8 units) and the largest pre-

intervention pain level (3.7 units), resulting in a small increase in

pain level of 0.1 units, corresponding to the lower left orange

corner of the triangle in Figure 2B. Conversely, considering the

largest post-intervention pain level (5.2 units) and the smallest

pre-intervention pain level (2.1 units) results in the largest possible

change in pain intensity of 3.1 units, which corresponds to the

lower right orange corner of the triangle in Figure 2B.

However, these changes in pain intensities are very unlikely

and simply denote the possible range of patient-specific

treatment effects, as these correspond to the lower and upper

boundaries of the pain uncertainty intervals. Other values of the

treatment effect are much more likely as different values of the

treatment effect can result from subtracting a particular post-

intervention pain level from a particular pre-intervention pain

level: If one computes all possible differences of post- and pre-

intervention pain levels for Patient 3, the resulting orange shape

is the orange triangular in Figure 2B.

Statistical estimation

We infer the ATE’s sampling distribution using bootstrap

sampling in a three-stage process illustrated in the

Supplementary Material:

• First and related to sampling uncertainty, we sample four

patients from the original cohort with replacement.

• Second and related to patient-specific uncertainty in pain

intensities as expressed in the pain uncertainty intervals, we

draw for each patient one sample from its (uniform) post-

intervention distribution and one sample from the (uniform)

pre-intervention distribution and calculate the individual

treatment effect. The individual treatment effect corresponds to

one sample of the probability distributions shown in Figure 2B.

• Third, we calculate the ATE of the bootstrapped cohort by

averaging the individual treatment effects.

We repeat the ATE calculations for a given bootstrapped cohort

100 times (Step 2 above). We then repeat the bootstrap sampling

of the cohort (Step 1 above) also 100 times, resulting in an

empirical, non-parametric sampling distribution of the ATE from

which we can calculate the ATE of −0.6 (95% CI: −2.0 to 1.0)

units as illustrated in Figure 2C.

All simulations were computed in R version 4.2.3 (4).

Proof-of-concept simulation

As proof of concept, we demonstrate the application of the

methodology for an idealized, simulated cohort of 50 patients. For

simplicity and illustration purposes, the uncertainty intervals are

equal for each patient and are chosen as 3 units on the NPS. The

true population ATE was fixed to −2 units (a pain reduction).

The sample size was chosen such that the uncertainty intervals of

individual patients could be comprehensively illustrated (Figure 3)

—featuring both overlapping and non-overlapping uncertainty

intervals—as well as having enough power to detect the ATE. No

formal sample size calculation was performed, as the illustration of

the uncertainty intervals was the primary objective of the proof-of-

concept simulation rather than statistical efficiency.

Figure 3A shows the distribution of pain intensities (N = 50).

The average pain intensities in the simulated cohort are 6.2

(standard deviation: 1.5) units for pre-intervention and 4.4

(standard deviation: 1.5) units for post-intervention (Figure 3A).

The ATE of the simulated cohort is a pain reduction of −1.8

units. Note that there is a difference of 0.2 units from the true,

underlying population ATE: this difference results simply from

sampling. Applying the non-parametric method outlined above,

we estimate the ATE as −1.8 (95% CI: −2.0 to −1.6), thus

correctly estimating the ATE of the simulated cohort (Figure 3C).

Sensitivity analyses

We further investigate the method’s performance in two

sensitivity analyses shown in Figure 4.

The first sensitivity analysis considers the ATE’s estimate and

95% CI with respect to sample size, where we repeat the above

proof-of-concept simulation with sample sizes ranging from

N = 5 patients up to N = 1,000 patients; all other parameters of

the simulations—notably the widths of the uncertainty intervals

—are the same. With respect to the cohort’s sample size, the

mean estimate of the ATE is sensitive to sampling uncertainty

for sample sizes below 100 patients but correctly estimates the

ATE of the particular sample (i.e., −1.8 units). Increasing the

sample size results in a correct estimate of the population ATE

of −2 units (Figure 4A).

The second sensitivity analysis examines the impact of the

width of the uncertainty interval on the treatment effect

estimates: We incrementally shrink the width of the uncertainty

interval (a 100% width corresponds to the patient-reported

interval width) toward the interval’s mean value (corresponding

to 0% width). Thus, this sensitivity aims to mimic the

convergence toward a traditional point measure of pain intensity.

At 0% width, the results are compared with and benchmarked

against the estimate from a paired Wilcoxon rank sum test.

Figure 4B illustrates that the uncertainty of the inferred

treatment effect decreases for smaller interval widths and

highlights that the estimates derived with the non-parametric

method outlined here agree very well with the median and 95%

CI of the ATE derived with the paired Wilcoxon rank sum test.
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Discussion

Point estimates of pain intensity with a single value on a

numerical scale, e.g., the NRS or VAS, play a pivotal part in

modern pain assessment. However, multiple factors render this

task of objectifying the subjective pain experience a challenging

task (5). For example, these factors can relate to cultural, social,

and environmental factors interacting with the nature of the pain

experienced by a patient (6). There are multiple ways in practice

to quantify the associated uncertainty in these point estimates,

FIGURE 3

Application of the methodology to an idealized, simulated cohort (N= 50 patients). (A) Illustration of the patients’ assessed pain intensity intervals

before and after a pain-related intervention on a numerical pain scale (NPS). (B) Probability distributions of pre- and post-intervention pain

intensities as well as the associated changes in pain intensities (post-intervention minus pre-intervention). (C) Non-parametric sampling

distribution of the average treatment effect (ATE) derived with the method outlined in this brief research report. The mean and 95% CI of the ATE

are shown, and the vertical dashed line refers to the true ATE of the simulated cohort.
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for example, by providing a more detailed context to the pain

intensity of interest, e.g., by providing a specific recall period

(current pain, pain intensity in the last 24 h, or minimum and

worst pain experienced with the last 24 h) (7, 8).

In this brief research report, we proposed a statistical method

that incorporates patient-specific uncertainties related to the

broad spectrum of physiological and psychological factors

involved in pain directly for the question of interest. The method

enables patients to report their pain intensities with uncertainty

intervals rather than a single value. As this is the first attempt to

incorporate uncertainty intervals in estimates of pain intensities,

we first focused on proof-of-concept simulations with associated

sensitivity analyses to introduce the method. To the best of our

knowledge, there are no real-world observational or interventional

studies collecting such data. Overall, Figures 3 and 4 demonstrate

the method’s validity in estimating the ATE and associated

uncertainties in the idealized, proof-of-concept simulations.

We emphasize that this proof-of-concept simulation study does

not discuss the clinical validity and clinical utility of the proposed

method. These topics require additional future work as the main

objective of this brief research report is to introduce and discuss

the statistical possibility of working with uncertainty intervals in

pain intensities. When moving from this proof-of-concept study

toward clinical implementation, special attention will be required

in the explanation of the exact meaning of the uncertainty

intervals to the patients to ensure a consistent and transparent

implementation. For example, when asking patients for the

uncertainty intervals regarding their pain level, one could

imagine explaining that the uncertainty levels relate to their

confidence in a particular pain item, for example, in current

pain. Concretely, one could ask: “On this scale ranging from 0

(no pain) to 10 (worst possible pain), what is the level of your

current pain? You may indicate your certainty by either

providing a single number as an answer (very certain) or a range

FIGURE 4

Sensitivity analyses to examine the method’s performance with respect to sample size (A) and to the width of the uncertainty interval on a numerical

scale for pain intensity (B). In Panel (A), solid dots represent the mean average treatment effect (ATE), and the gray shading represents the inferred 95%

CI. The dotted and dashed lines denote the true ATE of the sample and the population, respectively. In Panel (B), the width is gradually decreased from

the full width (denoted by a 100% width) toward the mean value of the uncertainty interval (denoted as 0% width), allowing for benchmarking the

method with a traditional statistical test for nominal, paired data (Wilcoxon rank sum test).
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of pain levels that you feel representative of your current pain.”

Another use case of the proposed methodology could be to

quantify the patient’s perception of uncertainty regarding a

particular pain item, for instance worst pain experienced over the

last 24 h. We note, however, that the exact definition of the

uncertainty intervals in a clinical setting requires further

discussion with clinicians.

Importantly, this study does not question the current practice

of assessing pain intensities with point estimates. It rather

demonstrates potential future avenues for pain assessment and

possibilities to extend the current practice of point estimates by

incorporating patient-specific uncertainty intervals. There are

several advantages of these uncertainty intervals: First, the ranges

can assess more individualized pain experiences and may differ

before and after an intervention. Additionally, the uncertainty

intervals can be contrasted to a minimum clinically significant

difference in pain intensity in a straightforward fashion (9).

Second, the proposed method offers the possibility to infer

ranges of pain intensities—for example, minimum and maximum

pain—using a single question rather than multiple questions.

Thus, the methods allow for incorporating additional

information without adding more items related to the

uncertainty of pain experience (e.g., binary or ordinal items

where uncertainty can be explicitly stated). The method therefore

avoids the issue of multiple comparisons and alpha-inflation

when multiple hypotheses are tested.

Third and in the context of the general difficulty of analyzing

pain scores (10), the proposed non-parametric method makes

only the assumption that the uncertainty intervals imply

uniformly distributed pain intensities—the ATE estimation and

its associated uncertainty can also be performed with different

assumptions about the nature of the sampling distribution.

Fourth, the method can be easily adopted to the discrete NRS

by replacing the uniform distribution of the uncertainty intervals

with discrete probability mass functions. In terms of

practical implementation in a questionnaire, the uncertainty

intervals could be collected on either the NRS or VAS scale—the

proposed method works for both discrete ordinal scales and

continuous scales.

This analysis features some inherent limitations. Notably, a

detailed investigation of all possible statistical aspects of the

framework was beyond the scope of this study. In particular,

the robustness and consistency of the estimator need further

analysis with theoretical underpinnings. Additionally, this brief

research report primarily focuses only on the statistical aspects

of pain assessment and could not discuss the context of pain

definitions and classifications as outlined in the International

Statistical Classification of Diseases and Related Health

Problems (ICD-11).

To conclude, we illustrated a proof-of-concept simulation study

of a statistical framework extending the current practice of

assessing pain intensity with point estimates to incorporate

inherent individual uncertainties using uncertainty intervals on a

numerical pain scale.
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