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Introduction: Each human being experiences pain differently. In addition to the
highly subjective phenomenon, only limited labeled data, mostly based on short-
term pain sequences recorded in a lab setting, is available. However, human
beings in a clinic might suffer from long painful time periods for which even a
smaller amount of data, in comparison to the short-term pain sequences, is
available. The characteristics of short-term and long-term pain sequences are
different with respect to the reactions of the human body. However, for an
accurate pain assessment, representative data is necessary. Although pain
recognition techniques, reported in the literature, perform well on short-term
pain sequences. The collection of labeled long-term pain sequences is
challenging and techniques for the assessment of long-term pain episodes are
still rare. To create accurate pain assessment systems for the long-term pain
domain a knowledge transfer from the short-term pain domain is inevitable.
Methods: In this study, we adapt classifiers for the short-term pain domain to
the long-term pain domain using pseudo-labeling techniques. We analyze the
short-term and long-term pain recordings of physiological signals in
combination with electric and thermal pain stimulation.
Results and conclusions: The results of the study show that it is beneficial to
augment the training set with the pseudo labeled long-term domain samples.
For the electric pain domain in combination with the early fusion approach,
we improved the classification performance by 2.4% to 80.4% in comparison
to the basic approach. For the thermal pain domain in combination with the
early fusion approach, we improved the classification performance by 2.8% to
70.0% in comparison to the basic approach.

KEYWORDS
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1 Introduction

People learn the meaning of pain at an early stage of their lives, usually as a result of

tissue damage, but also for psychological reasons, whereby the feeling itself is a complex

and subjective phenomenon (1). Craig et al. (2) reported that the experience of pain is

a preservative action of the human body. Apart from the individual pain perception,

there are differences in experience pain between women and men, as reported in (3).

These differences originate from, for instance, different coping strategies of women and

men (4) or the hormone differences, as reported in (5, 6).

Pain can be categorized into acute and chronic pain: acute pain relates to pain with a

short duration, often in combination with tissue damage, chronic pain relates to lasting
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pain present over a longer duration (7). The pain intensity level,

distribution of the perceived pain and the period of the pain

experience are traits of pain (8) whereby the ability of the

adaption to heat pain over longer pain periods is more

prominent in women than in men (9). Moreover, as reported in

(10, 11), a prime cause why people seek the advice of a doctor is

the experience of pain. In most cases, a patient will tell a doctor

or nurse what pain they are experiencing and where it is

occurring, although not all people are able to express their pain,

for example due to unconsciousness or people which have

communication difficulties (12). In such cases, observable

behavior traits can be used by a practitioner to assess the

patient’s perceived pain intensity, for instance, facial expressions

or moaning (13).

The advances of observable behavior patterns might be limited

due to several factors such as the socialization to pain and the belief

systems of an observer which have an impact on the pain

assessment of another person (2). Craig et al. (2) reported that

the relationship between the observer and the person in pain

affects the pain rating. In (14), the authors outlined that a

pediatrician rates the experienced pain intensity of an infant

lower in comparison to the parents. An observer might also be

biased which might lead to over- or underestimation of the

actual pain intensity a patient is suffering (15). Assessments

might also be influenced by the patient’s attractiveness and hence

lead to subjective rating (16).

Alternatives to a patient’s self-report and observable behavior

traits are rooted in measurable biological components, such as

physiological processes, which is especially helpful for patients

which are not able to communicate properly, as pointed out by

Korving et al. (17). With physiological measurements, an

observer is able to perceive additional information in a non-

invasive manner (18). The authors identified typical physiological

measures used for a patient’s pain rating which are the

electrodermal activity, electromyography, the heart rate variability

and the heart rate through the electrocardiogram or

photoplethsymography, respiration and pupillometry. The source

of the alterations in the observed measures can be the

experienced pain intensity, but also, for instance, medication (19).

Regardless of the pain assessment technique, it is not possible

for doctors and nurses to constantly monitor a patient’s pain.

However, the accurate assessment of a patient’s pain level is very

important to ensure appropriate pain management that does not

harm the patient (20).

The described problems in the area of pain assessment are

addressed by the investigation of automatic pain recognition

(APR) systems, which generally use machine learning methods

for the central tasks of pain recognition. Our long-term research

goal is the development of APR systems for objective

pain assessment.

Most studies on automated pain assessment focus on pain

assessment in combination with short-term pain stimuli recorded

in a laboratory setting. However, in a hospital setting, patients are

more likely to be exposed to pain over longer periods of time (21).

In (9), Hashmi et al. reported that the human body habituates

over time to exposed heat pain and that adaptation to heat pain is
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greater in women. Hence, different body reactions are expected for

short-term and long-term pain elicitations, respectively, which

might be reflected in the recorded physiological signals. In (22,

23), lower detection rates are achieved for segments at the end of

a long-term (tonic) pain sequence in comparison to the segments

in the beginning when short-term pain models are evaluated on

tonic samples. Hence, an information difference between the

starting and ending segments exist. Based on the reported

outcomes, less information regarding the perceived pain intensity

is available at the end of a tonic sequence. In addition, it is

difficult to capture and accurately label tonic pain records during

a patient’s hospitalization.

In this study, we address the described challenges by applying

unsupervised domain matching from short-term (phasic) to long-

term (tonic) pain stimuli in combination with a variety of pseudo-

labeling approaches. The matching of two domains is performed by

the transfer of knowledge from one (source) domain to another

(target) domain (24, 25) (see Section 4.1). To this end, we apply

domain knowledge from the phasic pain stimuli to pseudo-

labeling tonic domain patterns by iteratively updating the

training data set for our pseudo-labeling model. Our aim is to

transfer phasic (source domain) pain models to the tonic pain

domain (target domain) in which limited data is available. With

the pseudo-labeling approaches, we aim to overcome the

challenges of habituation and adaptation to pain over time with

respect to pain assessment and make unlabeled tonic pain stimuli

accessible to an APR system. A lot of domain adaptation

approaches, which apply pseudo-labeling, focus on deep learning

techniques, for instance (26–28). However, with limited data in

the target domain (see Section 3) and a possible information loss

within the tonic pain sequence (see above), deep learning

approaches might lead to lower performances in comparison to

other techniques.

Our main contributions of this paper are as follows:
1. We address the task of pain duration adaptation of pain

classifiers by applying pseudo-labeling and unsupervised

domain adaptation.

2. We design selection criterion for tonic pain segments to

perform curriculum labeling (29) to create a pseudo-labeling

model for this adaptation task.

3. We compare the performance of the evaluated approaches with

the results obtained with baseline techniques.
The remaining part of this study is structured as follows. In

Section 2, we summarize recent studies in the area of APR

systems. In Section 3, we describe the pain database used for our

study, the preprocessing steps and the feature extraction. We

provide a brief formalization of the term domain adaptation and

summarize the applied methods in Section 4, followed by the

description of our experimental settings in Section 5. In

Section 6, we present our obtained results. We discuss the

outcomes in Section 7 and close this study with our conclusions

and a perspective on future works in Section 8.
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2 Related work

In this section we summarize recent outcomes in the field

of pain recognition, followed by an overview of pseudo-

labeling techniques.
2.1 Pain recognition

The field of APR systems gained a lot of interest, as it can be

observed by the variety of publications with respect to evaluated

pain assessment techniques, for instance, in (30–44), among others.

Semwal et al. (45) proposed a pain classification framework in

which spatial and temporal data from video streams and sound is

incorporated. Besides facial expressions and sound, body

movements are used to assess the pain intensity. A model for

each modality is created and the final outcome is based on the

decision fusion.

Pouromran et al. (46), analyzed the task of continuous pain

intensity level estimation on the BioVid Heat Pain Database (47).

In their study, the aim was to find the best machine learning

algorithm among a variety of evaluated approaches, the best

signal and the best features for various pain assessment tasks.

For their analysis, they extracted 22 hand-crafted time-series

features which were proposed by Lubba et al. (48). The best

results were obtained with the electrodermal activity (EDA)

signal in combination with the Support Vector Regression

algorithm. In addition, they identified the 3 most important

features, specific to the EDA signal, and showed that a model

trained on a reduced feature set (three statistical descriptors)

achieves similar results in comparison the the model created with

all 22 features. In (49), Gouverneur et al. analyzed different

feature extraction techniques, specific to the EDA signal. To this

end, different feature learning approaches were evaluated as well

as hand-crafted features on two different pain databases. Besides

standard hand-crafted features, additional EDA-specific features

were extracted. To make the feature extraction techniques

comparable, they presented the obtained feature vectors, specific

to each approach, to a classifier which was created with the

Random Forest (50) algorithm. Gouverneur et al. concluded, that

simple feature extraction approaches are able to compete with

complex feature learning approaches. In (51), Lu et al. proposed

a deep learning architecture called PainAttnNet to learn

dependencies over time within the physiological signals. The

evaluation was performed on the BioVid Heat Pain Database.

They obtained a state-of-the-art mean accuracy value of 85.56%

with the EDA signal for the binary classification task of no pain

vs. the highest pain intensity level.

Jiang et al. (52) proposed a neural network architecture which

includes a block for dynamic feature attention and a fusion

approach in which personalized features and classic hand-crafted

features are combined. The personalization was perform by

including a persons pain sensitivity. Feature extraction was

applied on different sizes of sliding windows over the

physiological signals. They evaluated their method on the BioVid
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Heat Pain Database and reported a mean accuracy value of

84:58% for the channel fusion of ECG and EDA in combination

with the classification task of no pain vs. the highest pain

intensity level.

Bellmann et al. (21) simulated long-term pain sequences based

on randomly stacked short-term pain stimuli to analyze a more

realistic pain assessment scenario. They evaluated their approach

on the BioVid Heat Pain Database. In a clinical scenario, patients

do not suffer from short-term pain, but from long-term or

continuous pain. With their setting, the aim was to provide an

upper bound, with respect to the detection of pain, in

combination with long-term pain sequences. Wally et al. (53)

reported initial results on the transfer learning task of phasic to

tonic pain events in the electric pain domain. They designed a

neural network architecture for the phasic electric domain and

evaluated the created model on the unsegmented tonic electric

pain events. In a previous study (22), we performed a basic pain

duration knowledge transfer task in combination with distance-

based approaches for the classification task of no pain vs. the

highest pain intensity level, whereby we analyzed the electric and

thermal pain domain, separately. The evaluation was performed

on the Experimentally Induced Thermal and Electrical (X-ITE)

Pain database (54). To this end, each model was trained on the

phasic pain domain data, whereby the model was evaluated on

an individual segment, specific to a tonic sample. The selection

of this segment was based on distance measures between all

segments of a tonic sample and class-specific prototypes of the

phasic pain domain. The segment with the lowest distance to a

class-specific prototype was then presented to the model. The

predicted label was used as the final label for the corresponding

tonic sample.

For additional information on pain recognition, we kindly refer

the reader to the following publications (18, 55) and (56).
2.2 Pseudo-labeling

For many of today’s data applications, only a limited amount of

labeled observations are available, but huge amounts of unlabeled

data points are accessible, whereby the data annotation process is

cost-intensive (57). With the technique of pseudo-labeling, a

semi-supervised learning approach (29), the aim is to

automatically annotate the unlabeled data points. A basic

approach was proposed in (58), in which the authors trained a

model solely on the available labeled data points followed by

predicting the class labels for the unlabeled sample. These

predictions were then used as the true labels. For instance,

pseudo-labeling is applied in image classification (59, 60) and

face recognition (61). In (62), a similarity-based pseudo-labeling

approach is proposed for the image classification in the

medical domain.

Over the last decade, various pseudo-labeling approaches in

combination with domain adaptation, were proposed. In domain

adaptation, a model is created in a so called source domain with

the objective to obtain a good performance in a so called target

domain whereby for the latter no labeled data is available (see
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Section 4.1). For instance, based on subspace mapping and label

confidence in combination with sample selection for the training

process (63–66), or by analyzing the relationship between

samples (67), or for semantic segmentation in combination with

uncertainty (68). Saito et al. (69) proposed a pseudo-labeling

approach in which a data point has to fulfill two conditions to be

considered as a training sample. In their framework, two

classifiers had to agree on a label for a data point and the

predicted class probability (confidence with respect to the

predicted label) of one of these classifiers had to be above a

predefined threshold. Further, the pseudo-labeling approach of

Choi et al. (26) uses curriculum labeling in combination with

artificial neural networks, specific to the task of domain adaptation.

As previous studies show, for instance (64), the access to

labeled target domain data is beneficial for a domain adaptation

task. A broad overview of pseudo-labeling based domain

adaptation approaches are provided by Li et al. (70).
3 Data set

In the following, we describe the pain database used in our

study and the steps required to process the collected sensory data

- including the extraction of the relevant features. We conclude

this section with a description of the extracted feature descriptors

and the total size of the databases for each pain level and

stimulus type (thermal/electrical stimulation).
3.1 X-ITE pain database

The Experimentally Induced Thermal and Electrical (X-ITE)

Pain Database (54) consists of data from 67 female and 67 male

subjects. All participants had no health issues at the time of the

data recordings. The data was collected during experimental pain

elicitation1 at the Ulm University.

During the experimentally induced pain, audio and video data as

well as physiological signals were recorded. The video data includes

recordings of facial expressions from different angles, the subject’s

whole body and thermal imaging. The physiological signals are

composed of the electrocardiogram (ECG), electrodermal activity

(EDA) and the electromyogram (EMG). Specific for the X-ITE

Pain Database is that EMG signals are collected from 3 muscles:

musculus trapezius (TRA), musclus corrugator supercilii (COR)

and musculus zygomaticus major (ZYG).

Two different pain stimulus types, namely electric and thermal,

were applied separately to the participants of the study. Besides the

stimulus type, short-term (phasic) and long-term (tonic) pain
1The data set was recorded in compliance with the ethical guidelines settled

in the World Medical Association Declaration of Helsinki (Ethical Committee

Approval: 372/16) and approved by the ethics committee of the Ulm

University, Germany.
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stimulation is analyzed separately, all in all four different

stimulation scenarios are considered. The stimulation was

performed in combination with different stimulus intensity levels.

A subject was stimulated with all available pain stimulus levels

in a randomized order. A phasic pain stimulation in combination

with thermal and electric pain was held for 4 and 5 s,

respectively. A tonic pain elicitation always had a length of 60 s.

Each subject was stimulated with each phasic pain level 30 times

whereas each tonic pain level was applied only once. Each

painful stimulus was followed by a no pain sequence, called

baseline. The length of the phasic baselines varied between 8 and

12 s, and were randomly selected after each elicitation. The no

pain sequences which followed the tonic stimuli, also called tonic

baselines, had always a length of 300 s.

The data of a participant was collected in one session. For each

physiological signal, the temporal resolution was set to 1000 Hz.

Note that in this study, we focus on the physiological signals, i.e.

the ECG, EDA and EMG signals.
3.2 Feature extraction

For the preprocessing and feature extraction, we followed our

previous works (22, 23). Many of the extracted features are

widely used in the literature, for instance in (31) based on the

X-ITE Pain Database and in (30) based on the SenseEmotion

(71) Database. The main steps of our feature extraction process

can be briefly summarized as follows:

Based on the time window analysis in (72), the temporal

windows, specific to the thermal pain elicitation, are extracted

with a shift of 3 s. The time windows, specific to the electric pain

elicitation, are shifted by 1 s. The time window length of each

phasic stimulus is fixed to 4 s. The tonic electric and thermal

time windows have a length of 57 and 59 s, respectively. As in

(22, 23), each tonic stimulus is split into segments with the same

window length as the phasic stimuli, whereby we ignore the last

segment of each tonic stimulus due to a reduced window size of

less than 4 s. Hence, a tonic stimulus is represented by 14

sequential time windows. Each signal, specific to an extracted

time window, was filtered by a 3rd-order Butterworth bandpass

filter, except for the EDA signal which does not show a periodic

behavior. From each EMG signal, we removed the frequencies

below 20 Hz and above 250 Hz. From the ECG signal, the

frequencies below 0.1 Hz and above 25 Hz were removed.

From each time window, 412 statistical descriptors were

extracted. From each EMG sensor signal (COR, TRA, ZYG), we

extracted 82 features. From the EDA signal, we extracted 79

features. From the ECG signal, we extracted 87 features.

Moreover, the EFU [early fusion, also called feature fusion in

(31)] signal represents the combined feature vector of all single

modalities (concatenation of the features, extracted from all

modalities). In the sequel, we refer to the early fusion of the

COR, TRA and ZYG signals by the EMG signal (concatenation

of the features, extracted from the listed modalities).

Note that in this study, we focus on the classification task of no

pain vs. the highest pain intensity level (pain tolerance level),
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TABLE 1 Samples per domain and class.

Electric domain Thermal domain

PB PP TB TP PB PP TB TP
3,720 3,719 123 123 3,727 3,716 121 124

PB, phasic baseline; PP, phasic pain; TB, tonic baseline; TP, tonic pain, whereby baseline

refers to a no pain sequence which followed a lowest pain intensity level in the

corresponding domains.
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specific to the thermal and electric pain domain, in combination

with the pain duration transfer learning task. We present the

amount of class-specific samples, no pain and pain in

combination with each pain domain and duration type, in

Table 1. For more information about the extracted time windows

and the computed statistical descriptors, we kindly refer the

reader to our previous works (23, 72).
4 Methods

In this section, we formalize the term domain adaptation and

describe the general technique of pseudo-labeling. We then

introduce the evaluated pseudo-labeling approaches which are

applied to assign pseudo labels to the tonic segments.
4.1 Domain adaptation

Following (24, 25), a domain D is defined by a d-dimensional

feature space X and a classifier f :X ! Y, whereby Y denotes the

c-dimensional label space. Let D ¼ {ðx1, y1Þ, . . . , ðxn, ynÞ} be a

data set with xi [ X , yi [ Y. In a classification task, the aim is

to create a classifier f based on D which leads to a good

classification performance on unseen data points whereby it is

assumed, that the unseen samples are drawn from the same

distribution as the training samples. In a transfer learning task,

two domains have to be considered which are defined as the

source domain DS ¼ ðX S, fSÞ and the target domain

DT ¼ ðXT , fTÞ, respectively. The aim is to create a classifier in

combination with the source domain data which will lead to a

good classification performance in the target domain. In the

literature, this scenario, in combination with the absence of

target domain labels, is called unsupervised domain adaptation

(UDA) (64). In the sequel, XS [ RnS�d denotes the source

domain data matrix with nS samples and d features. With yS, we

denote the corresponding label vector. With XT [ RnT�d , we

denote the target domain data matrix, which consists of nT
observations. The feature dimension is, again, denoted as d.
4.2 Pseudo-labeling based on structured
prediction in UDA

In (64), Wang and Breckon proposed a pseudo-labeling

approach, specific to UDA, in which they combine structured

prediction and the selection of pseudo labeled observations in an
Frontiers in Pain Research 05
iterative process. The aim is to align both domains in a

dimensional reduced subspace which is learned in an iterative

way by selecting pseudo labeled target domain samples for which

a high confidence, with respect to the assigned label, are

obtained. The approach has two tunable parameters, namely d1
and d2, which both represents the dimensionality of a subspace

at different steps within the approach. In the sequel, we refer to

this approach by the term SP approach.
4.3 Segmentation-based tonic pain sample
pseudo-labeling

Cascante-Bonilla et al. (29) proposed an iterative curriculum

labeling (CL) algorithm in which pseudo labeled samples are

selected for the next training iteration when a class-specific score

is above the defined confidence value. The confidence value is

adapted in each iteration, and is based on the r-th percentile

score, computed over the maximum class probability values of

the unlabeled data set. In each iteration, r is reduced by a

defined step size. Hence, the training set is able to change after

each iteration. The model is always created with the labeled and

currently pseudo labeled data. The algorithm terminates when all

unlabeled samples are added to the training set.

In this work, we modify the approach of Cascante-Bonilla et al.

to our segmentation-based problem for the domain adaptation task

of phasic to tonic pain events. With this modified approach,

specific for the pain domain, the idea is to overcome the effect of

habituation and adaptation to pain over time, as discussed in (9,

73, 74), which might lead to false classification of segments later

in time, as presented in (22, 23). Moreover, the body reactions to

pain over time are reflected differently in the physiological

signals. Hence, the segments over time provide different

information regarding the pain intensity. Moreover, the

informative content of a physiological signal is different over

various segments, e.g. ECG signal behaves different in

comparison to the TRA signal, pain information in the EDA

signal is delayed. In our approach, we do not apply the r-th

percentile score. Instead, we select all sample-specific segments,

when k segments of a tonic event fulfill certain criterion, with

respect to a specific class label. More precisely, we define four

different criterion in combination with an iterative evaluation.

Let S be a set of segments, specific to a tonic sample, which is

contained in XT . Let s [ S be a segment, which is used as an

individual data point in the training phase. Let cl [ [0, 1] be the

defined minimum confidence level. Let T be the maximum

amount of iterations, performed by the algorithm. The current

iteration is denoted by t. The algorithm terminates when T

iterations are evaluated.

A set S is only considered as training data in the upcoming

iteration, if the following criterion are fulfilled:

1. k segments of S have an averaged class-specific score above cl ,

for a specific class yj,

2. u segments of S have a class-specific score for yj above the

chance level,
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Algorithm 1 ACL algorithm, modified version of the
curriculum labeling algorithm (29), for the defined
pain recognition task.
Input: k, cl , u, q, p, T , classifier-specific settings
Output: Ct

1: XS0 , yS0  randomly select p% source domain samples
2: C0  classifier trained on (XS0 , yS0 )
3: t  0
4: while non of the termination criteria is reached do
5: Xnew  [] {holds segment sets S [ XT considered as training samples for the
next iteration}
6: t  t þ 1
7: for S [ XT do
8: yt  Ct�1(S) {decision vectors specific to S}
9: SyP  k segments highest pain class scores yt
10: SyB  k segments highest baseline class scores yt
11: if SyP fulfills 1. and 2. criterion then
12: if SyP fulfills 3. and 4. criterion then
13: Xnew  Xnew < S
14: else
15: do nothing {S is not considered}
16: end if
17: else if SyB fulfills 1. and 2. criterion then
18: if SyB fulfills 3. and 4. criterion then
19: Xnew  Xnew < S
20: else
21: do nothing {S is not considered}
22: end if
23: else
24: do nothing {S is not considered}
25: end if

Ricken et al. 10.3389/fpain.2025.1562099
3. Each of these k segments of S, as determined above, has a

confidence level above cl for the same class yj
4. The absolute differences between the class-specific scores of

consecutive segments of a tonic event are below q on average.

In addition, we only use p% of the source domain samples in each

iteration. With these requirements, we aim to create a model that is

able to perform an adequate pain assessment on all segments of a

tonic observation. In addition, if the requirements are fulfilled for

the pain class, we do not evaluate the requirements for the

baseline class since the pain detection is more challenging, as

described above. Further, if only the first two conditions are

fulfilled for the pain class, but the third and fourth conditions

are not, we do not evaluate the conditions for the no pain class

and vice versa, for the same reason. Note that we always favor

the pain class. On termination, the final model is returned,

which then can be used to pseudo-labeling the tonic observation-

specific segments.

An algorithmic overview is depicted in Algorithm 1. In the

sequel, we will refer to the adapted curriculum labeling approach

with the term ACL approach. To the best of our knowledge, no

such pseudo-labeling approach in combination with signal

segmentation exists in which all segments, specific to a time

series signal, are selected based on a subset of these segments in

combination with favoring one class (pain) over the other class

(no pain).

26: end for
27: XS0 , yS0  randomly select p% source domain samples
28: if Xnew is empty then
29: Xt�1  XS0 , yt�1  yS0 {no segments selected}
30: else
31: Xt�1  XS0 < Xnew, yt�1  yS0 < Ct�1(Xnew)
32: end if
33: Ct  classifier trained on Xt�1, yt�1 {trained from scratch}
34: end while
35:
36: return Ct
5 Experimental settings

In this section, we describe our experimental setup and the

parameter settings for the pseudo-labeling approaches.

In this study, we perform the classification task of no pain vs.

the highest pain intensity level (in the sequel: no pain vs. pain) in

combination with the classifier adaptation from phasic to tonic

pain events, whereby we focus on the physiological signals. Note

that each segment (see Section 3) in the training set is used as

an individual sample. To this end, we evaluate three different

pseudo-labeling approaches, i.e. naive pseudo-labeling (NAP)

approach [similar to (58), described in Section 4], the SP

approach (see Section 4.2), the ACL approach (see Section 4.3),

and analyze the performances in combination with each uni-

modal signal and the multi-modal signals (see Section 3), specific

to the electric and thermal domain. An overview of the evaluated

approaches is presented in Table 2.

The performance of each approach is measured by the

accuracy, due to the almost equal amount of samples for the

pain and no pain classes (see Table 1). The applied evaluation

protocol is the leave-one-subject-out cross-validation (LOSO-CV)

approach. In each iteration, we use the tonic events of the left

out subject as the test set. The final performance score is given

by the averaged accuracy over the LOSO-CV. Specific to one

LOSO-CV iteration, a classifier is created with the Random

Forest (RF) algorithm (50), as in (22, 23, 72). A comparison of

classifier types in (35, 49) showed that RF models in

combination with hand-crafted features can lead to competitive
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results in comparison to results obtained with deep learning

approaches and other types of classifiers. Each RF uses 100

Decision Trees (75) (DTs), whereby the maximum depth is

restricted to 10. The Gini index is used to rate the split quality.

In the evaluation of the reference approach, the training set of

one LOSO-CV iteration is constituted of tonic domain samples of

n� 1 subjects only. In the NAS approach, the training set of one

LOSO-CV iteration contains only phasic domain samples of

n� 1 subjects.

In the evaluation of the approaches UB, NAP, SP and ACL, the

training set of one LOSO-CV iteration is constituted of phasic

domain samples and the pseudo labeled tonic domain segments

of n� 1 subjects. With this set, a classifier is trained from

scratch and tested on the segments of the left out subject. For

each tonic sample in the test set, 14 decision vectors, one for

each segment, are obtained. We compute the class-specific

average score over the decision vectors and assign the class label

with the highest score to the tonic event.

For the NAP approach, a phasic domain model is used to

assign pseudo labels to the segments in the training set. The

optimal subspace dimensions in the SP approach are estimated
frontiersin.org
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TABLE 2 Summary of the evaluated approaches.

Abbreviation Approach
Ref. Reference Value: No pain vs. the highest pain level in the tonic pain domain. No segmentation is applied. A tonic pain domain model is trained with the

true labels of the tonic samples. The model is evaluated on tonic domain samples.

NAS No Adaptation (segments): Presenting segments of the tonic stimulus to the phasic pain domain classifier whereby the final label is obtained by a
majority vote.

UB Upper Bound: Perfect pseudo labels. The training set contains the labeled phasic stimuli and labeled tonic stimuli segments. The evaluation is performed
on tonic segments (majority vote).

NAP Naive Pseudo-Labeling: A phasic pain domain model is applied to the tonic pain domain segments to assign pseudo labels. A model is trained on the
phasic domain samples and pseudo labeled tonic segments. The evaluation is perform on tonic segments (majority vote).

SP Structured Prediction proposed in (64): Iterative approach to alignment the source and target domain in a subspace. A model is then trained on the aligned
domain data (phasic samples and tonic segments). The model is evaluated on tonic domain segments (majority vote).

ACL Adapted Curriculum Labeling: The modified CL approach which we introduce in Section 4.3. Iterative training set updates with confident pseudo labeled
tonic domain segments according to our defined requirements. A final model is then trained on the phasic pain domain samples and the tonic pain
domain segments. The model is evaluated on tonic domain segments (majority vote).
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by conducting a grid search over d1 [ {50, 60, 70} and

d2 [ {20, 30, 40} in combination with 5 iterations. Specific to the

ACL approach, the values cl [ {0:65, 0:70, 0:75, 0:80, 0:85, 0:90}

are evaluated in combination with 5, 10, 20 and 30 iterations. We

set the minimum number of segments k to 7, the amount of

used source domain data p is set to 80%, u ¼ 10 and q ¼ 0:2.

Note that we construct each RF classifier in the ACL algorithm

with the same settings as described above.

An upper bound (UB) is evaluated in which we simulate

perfect pseudo-labeling by using the true labels.

As the reference values (Ref.), we provide the obtained results

from the no pain vs. pain task in the tonic domain whereby we

use the unsegmented signal. Moreover, we create baseline results

in which a model is solely trained on phasic data, i.e. the

segmentation-based naive (NAS) approach (model evaluated on

segmented tonic events, label assigned as described above).

The standardization of the data is implemented by applying the

z-score (zero-mean, unit-variance). More precisely, for each

participant the phasic baseline and phasic pain tolerance stimuli,

specific to the electric and thermal domain, are selected. Then,

the z-score is computed over the combined participant-specific

phasic electric and phasic thermal domain datasets, respectively.

The same standardization is applied to the tonic domain, in

combination with the reference task. The standardization

approach is different to (22, 23, 72) and leads to distinct results

for the reference approach in comparison to the literature. For

the segments in the training set, we apply the same approach as

for the phasic pain events. Each tonic sample in the test set is

standardized by computing the z-score over the sample-specific

segments. For our experiments, we use the Python programming

language in combination with the Python data stack (76–80). An

overview of the experiment pipeline is depicted in Figure 1.
6 Results

In this section, we present the obtained results for the classifier

adaptation from phasic to tonic pain based on the described

pseudo-labeling approaches (see Section 4), whereby we measure

the performance on the classification accuracy of no pain vs. pain.
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First, we present the achieved results in the electric domain,

followed by the obtained results in the thermal domain. We close

each domain-specific section with a comparison of the

evaluated approaches.

Note that for the pseudo-labeling approaches, the training set of

one LOSO-CV iteration is constituted of phasic domain samples and

the pseudo labeled tonic domain segments of n� 1 subjects. For the

UB approach, the true labels are used. A model is then trained on the

created training set and evaluated on the segments, specific to the

tonic samples, of the left out subject (see also Section 5).
6.1 Electric pain stimulation

6.1.1 SP
The best performing d1 and d2 settings, specific to each signal,

are presented in Table 3. We also evaluated the best performing

settings in combination with 10 and 20 iterations, but did not

observe any improvements.

The best performing modalities are the TRA (80:8%), EMG

(76:8%) and EFU (72:6%) signals. The lowest performance is

observed for the ECG signal (54:4%).
6.1.2 ACL
We present a detailed overview of the achieved results, specific

to each signal, in Table 4.

The best performing modalities are the EFU (80:4%) and the

EMG (78:4%) signals over 10 and 5 iterations, respectively. The

lowest mean accuracy value is obtained for the ECG signal

(56:8%) in combination with 5 iterations and cl ¼ 0:9, as well as

for 30 iterations and cl ¼ 0:8. In most cases, a cl value of 0:9

(high confidence with respect to the label of a segment) did not

improve the outcomes. Especially for the EMG signal, higher cl
values led to lower outcomes. An increase of the number of

iterations did not necessarily improve the performance.
6.1.3 Comparison
In Table 5, we present the highest obtained accuracy rates in

combination with the pseudo-labeling approaches, including the

reference values and baseline results, specific to the electric domain.
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TABLE 3 Electric domain SP approach: the obtained signal-specific accuracy values (Acc.) of the best parameter settings, in combination with
5 iterations.

Settings and Acc. Signal

Parameter COR TRA ZYG ECG EDA EMG EFU
d1 70 50 60 50 50 50 60

d2 20 40 30 40 20 30 40

Acc. 59:6 80:8 60:8 54:4 56:0 76:8 72:6

The results are given in %.

FIGURE 1

The pseudo-labeling experiment pipeline to evaluate each pseudo-labeling approach. PSi denotes a phasic event with the corresponding label ySi . TSI
denotes a tonic observation whereby the corresponding segments are denoted by SJ [ {1, . . . , 14}. XS and yS is the set of phasic (source) domain
observations and the corresponding label vector, respectively. The set of tonic domain segments is denoted by XT .
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For each modality the NAS and NAP approaches are

outperformed by the ACL or SP approaches, except for the EDA

signal. Moreover, for each signal, the UB approach is

outperformed by one of the evaluated pseudo-labeling

approaches. For the EMG and EDA signals, the NAS approach

outperforms the UB approach.

The SP approach in combination with the TRA signal leads to

a maximum of 80.8% which is close to the within domain result

(Ref.: 82.8%). For the EMG signal, the highest classification

performance of 78.4% is obtained with the ACL approach (1.6%

above the NAP and SP approaches: 76.8%, 1.2% above the

NAS approach).

For the EDA signal in combination with the NAS approach, a

maximum of 67:2% is obtained which is the highest achieved

outcome for the EDA modality. For the EFU signal, the ACL

approach (80:4%) outperformed the NAP approach by 2:4% and

the SP approach by 7:8% and leads to a higher classification

performance in comparison to the UB approach (76:4%).

The highest classification performance is yielded by the SP

approach in combination with the TRA signal (80:8%). The

lowest accuracy value is observed for the ECG signal (ACL

approach: 56:8%).
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6.2 Thermal domain stimulation

6.2.1 SP
The signal-specific best performing d1 and d2 settings, are

presented in Table 6. We also evaluated the best performing

settings in combination with 10 and 20 iterations, but we did not

obtain improved results. The best performing modality is the

EFU signal for which a mean accuracy value of 69:2% is

obtained. The worst performing modality is the ECG signal for

which we obtained a mean accuracy value of 53:6%.
6.2.2 ACL
We present a detailed overview of the achieved results in Table 7.

For the EFU signal, an increase of the cl value led to higher outcomes

in combination with each evaluated number of iterations.

A maximum of 70:0% is obtained for cl set to 0:90 in

combination with 5 and 20 iterations. This is also the best

performing modality. The variation of the obtained outcomes are

mainly based in the random source domain data selection in

which more combinations are evaluated when the termination of

the algorithm is extended. For the EMG signal, similar to the
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TABLE 4 Electric domain ACL approach: the obtained results for the evaluated cl values in combination with 5, 10, 20 and 30 iterations, specific to
each signal.

Parameter Signal

cl COR TRA ZYG ECG EDA EMG EFU
5 Iterations 0:65 58:8 72:4 55:6 51:2 50:0 78:4 78:4

0:70 58:0 71:6 57:2 50:8 51:6 76:0 78:4

0:75 58:4 73:2 54:0 55:2 50:4 75:6 77:6

0:80 57:6 71:6 55:6 54:0 53:2 74:0 80:0

0:85 57:6 72:0 55:6 52:4 58:8 76:0 77:2

0:90 56:4 70:8 54:0 56:8 58:0 76:0 77:6

10 Iterations 0:65 61:2 72:8 54:4 50:0 49:6 76:0 79:2

0:70 58:8 73:2 56:0 49:2 49:2 75:2 78:0

0:75 58:0 73:6 58:4 54:4 49:6 77:2 78:0

0:80 58:0 72:8 54:8 55:6 52:0 75:6 80:4

0:85 59:6 72:0 54:4 52:4 60:0 74:8 78:0

0:90 58:0 70:4 54:8 53:6 60:0 73:6 76:4

20 Iterations 0:65 59:4 73:2 56:8 50:0 49:2 76:8 76:4

0:70 57:2 73:2 55:2 50:0 49:6 76:4 76:8

0:75 58:8 70:8 57:6 51:6 50:8 73:6 79:6

0:80 60:0 73:6 54:8 53:6 51:8 75:6 78:8

0:85 57:6 73:2 56:8 52:8 62:8 74:8 79:6

0:90 58:0 71:2 52:4 54:0 57:6 73:6 77:2

30 Iterations 0:65 61:6 74:4 54:8 48:4 50:4 76:8 78:8

0:70 58:8 73:6 55:6 50:8 50:0 75:6 79:2

0:75 58:0 72:8 57:2 52:0 50:8 75:6 78:0

0:80 58:0 73:2 57:2 56:8 50:8 75:2 79:6

0:85 57:6 73:6 54:4 54:4 57:6 74:0 78:0

0:90 57:2 72:4 55:2 54:0 60:4 72:8 77:2

The results are given in %. The highest outcomes are depicted in bold.

TABLE 5 Electric domain: summary of all obtained results, specific to each
signal and approach (APPR), given in %.

APPR

Signal

COR TRA ZYG ECG EDA EMG EFU
Ref. 68:4 82:8 67:2 79:2 82:0 85:2 88:4

NAS 56:8 70:4 56:4 50:8 67:2 77:2 72:8

UB 60:0 70:4 57:2 54:0 59:2 73:6 76:4

NAP 58:8 74:0 54:8 54:4 56:8 76:8 78:0

SP 59:6 80:8 60:8 54:4 56:0 76:8 72:6

ACL 61:6 73:6 58:4 56:8 62:8 78:4 80:4

A bold value denotes the highest accuracy value among the evaluated pseudo-labeling
approaches. An underlined value denotes the highest outcome among all evaluated approaches.
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outcomes of the EFU signal, higher cl values led to improved

outcomes whereby the highest accuracy value of 66:0% is obtained

with cl ¼ 0:90 in combination with 20 iterations. With the ECG

signal, we obtained the lowest classification performance (54:4%).
6.2.3 Comparison
In Table 8, we present the highest obtained accuracy rates in

combination with the pseudo-labeling approaches, including the

reference values and baseline results, specific to the thermal domain.

For the TRA signal in combination with the SP approach, we

obtained a classification performance of 57:2%, which is 1:2%

above the reference value (56:0%). For the ZYG signal, a

maximum of 66:4% is obtained in combination with the ACL

approach, an improvement of 10:8% in comparison to the UB
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approach and 8:8% above the reference value. For the EMG

signal, the SP approach leads to a maximum of 66:4%, whereby

the UB approach is outperformed by 7:2%. A slightly lower

performance was observed for the ACL approach (66:0%).

The best performing modality is the EFU signal with a

maximum of 70:0%, an improvement of 2:8% in comparison to

the UB approach. The lowest performance is observed for the

TRA signal (57:2%, SP approach).
7 Discussion

In this study, we evaluated a variety of experiments on the

classifier adaptation from phasic to tonic pain domains, based on

different pseudo-labeling approaches. To this end, we analyzed

the task of no pain vs. the highest pain intensity level. We rated

the performance of each approach by the classification accuracy

of the obtained model in the tonic domain.

Our findings show that we are able to provide valuable

knowledge to a classifier, based on the pseudo labeled segments.

Since the overall performance improves with pseudo-labeling, a

training set, constituted of phasic events and pseudo labeled

segments, should be considered.

Higher accuracy values are observed in the electric domain, in

comparison to the thermal domain, similar to (22, 23). Moreover, as

already discussed in previous studies, for instance (31, 72), the

electric elicited pain is felt instantly whereby for thermal stimulated

pain, the elevation of the temperature needs time. Analogously, the
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TABLE 6 Thermal domain SP approach: the obtained signal-specific accuracy values (Acc.) of the best parameter settings, in combination with
5 iterations.

Settings and Acc. Signal

Parameter COR TRA ZYG EMG ECG EDA EFU
d1 60 70 70 60 60 50 70

d2 40 40 30 40 30 40 20

Acc. 58:0 57:2 64:4 66:4 53:6 62:4 69:2

The results are given in %.

TABLE 7 Thermal Domain ACL approach: the obtained results of the best parameter settings, in combination with 5, 10 and 20 iterations, specific to
each signal.

Parameter Signal

cl COR TRA ZYG ECG EDA EMG EFU
5 Iterations 0:65 55:6 52:0 62:8 51:2 56:0 60:0 66:0

0:70 54:4 51:6 62:8 52:4 57:2 63:6 64:8

0:75 59:2 52:8 65:6 52:0 58:8 60:0 68:8

0:80 57:2 51:6 64:0 53:2 58:8 62:0 69:6

0:85 56:0 54:8 64:8 53:6 60:4 62:0 69:6

0:90 57:6 54:8 65:6 52:8 61:2 64:0 70:0

10 Iterations 0:65 56:8 52:0 62:0 51:6 55:2 59:2 64:0

0:70 55:6 52:8 64:4 50:0 57:2 61:2 64:8

0:75 56:4 52:8 62:0 52:8 58:8 61:6 64:8

0:80 56:0 54:4 63:2 52:4 58:0 62:4 68:0

0:85 59:2 51:2 62:0 50:4 61:2 63:2 67:2

0:90 57:6 53:2 60:8 53:2 60:0 62:8 68:8

20 Iterations 0:65 55:2 50:4 62:8 52:4 57:6 60:0 63:6

0:70 55:2 52:4 62:8 50:4 61:2 60:4 65:6

0:75 56:8 51:6 63:6 50:0 58:4 62:0 67:2

0:80 55:6 52:8 66:4 52:0 56:8 62:8 69:2

0:85 58:8 53:2 63:6 53:6 59:6 62:0 69:6

0:90 58:0 54:8 62:4 53:2 58:8 66:0 70:0

30 Iterations 0:65 56:8 50:8 60:8 53:6 56:4 58:8 63:2

0:70 56:8 52:0 62:8 50:4 61:6 60:4 62:8

0:75 57:2 51:6 63:6 49:6 57:6 60:8 65:6

0:80 55:6 53:6 65:2 54:4 56:0 62:8 68:8

0:85 58:0 53:6 64:0 51:6 58:4 62:0 67:6

0:90 58:0 53:6 62:8 50:4 61:2 65:2 68:8

The results are given in %. A bold value denotes the highest accuracy value among the evaluated approaches.

TABLE 8 Thermal domain: summary of all obtained results, specific to
each signal and approach (APPR), given in %.

APPR

Signal

COR TRA ZYG ECG EDA EMG EFU
Ref. 62:0 56:0 57:6 64:8 79:2 61:6 79:2

NAS 53:6 50:4 60:4 53:2 58:8 62:8 66:4

UB 52:4 53:2 55:6 56:4 65:2 59:2 67:2

NAP 58:4 54:4 63:6 49:6 62:8 64:4 67:2

SP 58:0 57:2 64:4 53:6 62:4 66:4 69:2

ACL 59:2 54:8 66:4 54:4 61:6 66:0 70:0

A bold value denotes the highest accuracy value among the evaluated pseudo-labeling
approaches. An underlined value denotes the highest outcome among all evaluated approaches.
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electric elicited pain stops instantly when the stimulus is removed,

which is different to thermal stimulation. Furthermore, no evaluated

approach performs equally well in both domains and on all modalities.

Due to the differences of the z-score computation (see Section 5),

with respect to the segments in the training and test sets, the
Frontiers in Pain Research 10
adaptation task might become more challenging. Based on that, a

shift between the tonic segments of these sets was implemented.

However, in a clinical scenario, the training data might not be

available due to privacy concerns. Therefore, the standardization

has to be performed only on the patient’s data. Hence, a different

approach might improve the results.

For each signal in the electric domain, we outperformed the UB

approach by at least one pseudo-labeling technique. We observed a

similar outcome in the thermal domain, except for the ECG and

EDA signals. Hence, the good adaptation of the models to the

true labeled segments might be an additional issue, whereby the

inaccurate pseudo labels led to an improved generalization, with

respect to unseen tonic segments.

Moreover, with a pseudo-labeling approach, the NAS approach

is always outperformed, except for the EDA signal in combination

with the electric domain. In Table 9, we present our highest

obtained outcomes, based on the pseudo-labeling approaches,

and previous reported classification performances, specific to the
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TABLE 9 Our results in comparison to previous studies.

Domain Approach

Signal

COR TRA ZYG ECG EDA EMG EFU
Electro (22) 54:0 68:0 54:8 56:8 54:0 67:2 60:8

(23) – – – – – – 69:2

(53) – – – – – – 65:2

Pseudo-labeling 61:6 80:8 60:8 56:8 62:8 78:4 80:4

Thermal (22) 55:2 60:0 58:8 55:2 59:6 57:6 57:6

(23) – – – – – – 67:6

(53) – – – – – – –

Pseudo-labeling 59:2 57:2 66:4 54:4 62:8 66:4 70:0

Bold marked values denote the highest classification performances. In (22, 23), tonic samples are split into segments whereby in (53) the tonic samples are used without additional segmentation.
In (22, 23, 53), the models are trained on phasic pain domain samples and evaluated in the tonic pain domain.

FIGURE 2

Electric domain: (a) Segmentation-based average accuracy EFU signal. (b) Ten most important features EFU signal. (a) EFU signal: The segment-
specific accuracy values for the UB and ACL approaches in the electric domain. (b) The determined ten most important features, specific to the
EFU signal in combination with the ACL approach, in the electric domain. A difference, among the approaches ACL and UB as well as the phasic
domain, with respect to the feature importance is observable. In Table 10, we present the names of the most important EFU features for the
electric pain domain in combination with the ACL approach.
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pain duration adaptation task. In most cases, we outperformed the

previously achieved accuracy values.
7.1 Electric pain stimulation

The highest performance was obtained with the TRA signal in

combination with the SP approach (80:8%). The highest accuracy
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values in combination with the SP approach (Table 3) were

obtained, with the maximum number of iterations set to 5. More

iterations did not lead to improved results, which was already

observed in (64) for different tasks.

We analyzed the performances of the EFU signal in

combination with the UB and ACL approaches on the signal-

segment level. The obtained performance values are depicted

in Figure 2a. We only achieved small improvements on the
frontiersin.org

https://doi.org/10.3389/fpain.2025.1562099
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


FIGURE 3

Thermal domain: (a) Segmentation-based average accuracy EFU signal. (b) Ten most important features EFU signal. (a) EFU signal: The segment-
specific accuracy values for the UB and ACL approaches in the thermal domain. (b) The determined ten most important features, specific to the
EFU signal in combination with the ACL approach, in the thermal domain. A difference, among the approaches ACL and UB as well as the phasic
domain, with respect to the feature importance is observable. The most important features for the EFU signal in combination with the ACL
approach are depicted in Table 11.
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ending segments of the tonic pain events (segments 10, 12, 13

and 14). However, these improvements in combination with

the similar outcomes on the remaining segments, in

comparison to the UB approach, lead to an increased

classification performance by 4:0%, specific to the electric EFU

signal (80:4%).

Moreover, we analyzed the ten most important features, with

respect to the EFU signal. To determine these features, we

followed the approach of Gouverneur et al. (35) for the

collection process. In each LOSO-CV iteration, we gathered

the importance score of each feature, specific to the ACL

approach. We averaged the obtained feature importance

vectors2 and selected the ten features with the highest scores.

We applied the same process on the phasic domain models

and the UB approach, to obtain the feature importance

vectors. We then picked the scores from these feature
2Based on the scikit-learn (80) function of the Random

Forest implementation.
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importance vectors, specific to the selected ACL features.

These scores are depicted in Figure 2b. For more details about

the feature computation, we kindly refer the reader to the

papers (23, 72).

As it can be seen, for each approach, the feature-specific

importance is different. Despite the imperfect pseudo labels, we

were able to create models which are shifted in direction of the

tonic domain, which is observable by the changes in the scores

and the improved classification performance.

Furthermore, we outperformed the basic approach (NAS) with

at least one pseudo-labeling technique, except for the EDA signal

(Table 5). For the EDA signal, the highest obtained outcome was

67:2% (NAS approach). We assume that a high similarity

between the data of the phasic events and the segments in

combination with the sample-specific standardization approach

exist which leads to the promising outcome. Since the obtained

results, in combination with the UB and pseudo-labeling

approaches, are below the NAS approach, we conclude that the

reflected similarity in the model was removed by the approaches

and the z-score computation of the training set segments.

Therefore, the model was not shifted in direction of the tonic

events and led to lower outcomes.
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TABLE 10 Electric domain: EFU ACL important features.

fn Feature name
f1 Trap. 2. derivative signal max

f2 Trap. 2. derivative signal var

f3 Trap. 2. derivative signal max to min peak value ratio

f4 Trap. 2. derivative signal std

f5 Trap. 2. derivative signal range

f6 Trap. 2. derivative signal rms

f7 Trap. 2. derivative signal split equal part mean

f8 Scl signal max

f9 Trap. 1. derivative signal var

f10 Scl signal range

TABLE 11 Thermal domain: EFU ACL important features.

fn Feature name
f1 Scl signal idr

f2 Scl signal zero crossing

f3 Scl signal split equal part std

f4 Scl mean absolute value second diff

f5 Scl 1: derivative signal sgm

f6 Corr. 1: derivative signal zero crossing

f7 Corr. 2: derivative signal zero crossing

f8 Scl 1: derivative signal area min max

f9 Scl 1: derivative signal mad

f10 Corr. signal zero crossing
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7.2 Thermal pain stimulation

For the COR, ZYG and EMG signals, the UB approach is

outperformed by the NAS approach (Table 8). The highest

performance was obtained with the EFU signal in combination

with the ACL approach (70:0%).

Due to the promising outcome for the EFU signal, we further

investigated the performances of the UB and ACL approaches by

analyzing the segmentation-based accuracy values, which are

depicted in Figure 3a. On average, with the ACL approach, we

obtained slightly higher accuracy values for the leading segments in

comparison to the UB approach, but lower outcomes for the

segments in the end of a tonic pain event. However, with our

approach, we are able to increase the performance on the segments

which are not at the beginning or ending of a tonic event.

Further, as performed for the electric domain, we analyzed the

ten most important features, with respect to the EFU signal. We

applied the collection process as described in Section 7.1. The

scores are depicted in Figure 3b. As it can be seen, for each

approach, the feature-specific importance is different. Similar to

the electric domain, we were able to create models which are

shifted in direction of the tonic domain, which is observable by

the changes in the scores and the good classification performance.
7.3 Pseudo-labeling in a clinical setting

In clinical settings, an APR system has to deal with various

challenges, e.g. a new unknown hospitalized patient for which no
Frontiers in Pain Research 13
labeled data is available, different types of pain such as acute or

chronic pain or individual pain intensity levels. In such scenarios, it

has to be assumed that the trained APR system is applied to

completely unknown data, which may has a different data

distribution. Therefore, the LOSO-CV testing protocol, as applied in

our study, should be used for the evaluation of models which

simulates a scenario of applying the classifier to new and unlabeled

data of an unseen individual. In our study, we focused on the

transfer task from phasic to tonic pain. Models trained on phasic

pain domain data have to be adapted to the changing scenarios in a

clinical setting since the body’s reaction might differ between phasic

and tonic pain events (see Section 1). We propose the approach of

using pseudo-labeling new unlabeled pain events, collected in a

clinical setting, which are then incorporated into the training set to

create an improved pseudo-labeling model. This leads to a classifier

with an increased performance over time. Hence, with a pseudo-

labeling approach, we are able to perform knowledge transfer from a

generalized model to a more specialized classifier or, more generally,

from one domain to another domain. For that specific task, we apply

an additional processing step, which is the integration of classifier

decisions over time into a more stable decision for tonic domain

samples. This is a type of temporal classifier fusion that allows the

recognition of pain based on varying observational lengths.

With an approach like ours, newly collected data without an

assigned pain rating can be incorporated into the training set so

that the classifier over time can be more and more transferred to

the tonic pain domain. However, with the transfer task of phasic

to tonic pain events, we are still in the beginning of this long-

term research goal.
8 Conclusion and future work

In this study, we analyzed the classification performances in

combination with various pseudo-labeling approaches, with

respect to the adaptation of pain classifiers from phasic to tonic

pain events. We evaluated the no pain vs. the highest pain

intensity level task, specific to the electric and thermal domains.

To this end, we applied a signal segmentation approach on the

tonic domain samples, as performed in (22, 23). We achieved

state-of-the-art results in combination with various signals

whereby perfect pseudo labels might lead to reduced accuracy

values. The best performing single modality in combination with

the electric domain is the TRA signal (80:8%). For the thermal

domain, the EFU modality performs best (70:0%). Moreover, we

showed that outstanding results can be obtained for the pain

duration adaptation task with hand-crafted features in

combination with the Random Forest algorithm.

In addition, pseudo-labeling fusion approaches might increase

performances as well as an adapted feature extraction for the EDA

signal, as performed in (49, 81). Further, the evaluation of deep

learning pseudo-labeling techniques have to be analyzed whereby

the small amount of tonic domain samples has to be considered.

However, our findings indicate that, based on our settings, we

are able to make the unlabeled tonic domain samples accessible for

the training phase.
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