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Machine learning predicting
acute pain and opioid dose in
radiation treated oropharyngeal
cancer patients
Vivian Salama1,2*, Laia Humbert-Vidan1, Brandon Godinich1,3,
Kareem A. Wahid1,4, Dina M. ElHabashy1, Mohamed A. Naser1,
Renjie He1, Abdallah S. R. Mohamed1, Ariana J. Sahli5,
Katherine A. Hutcheson5, Gary Brandon Gunn1,
David I. Rosenthal1, Clifton D. Fuller1 and Amy C. Moreno1*
1Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston,
TX, United States, 2Department of Medical Oncology and Radiation Oncology, West Virginia University
Cancer Institute, Morgantown, WV, United States, 3Department of Medical Education, Paul L. Foster
School of Medicine, Texas Tech Health Sciences Center, El Paso, TX, United States, 4Department of
Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,
5Department of Head and Neck Surgery, The University of Texas, MD Anderson Cancer Center,
Houston, TX, United States
Introduction: Acute pain is common among oral cavity/oropharyngeal cancer
(OCC/OPC) patients undergoing radiation therapy (RT). This study aimed to
predict acute pain severity and opioid doses during RT using machine learning
(ML), facilitating risk-stratification models for clinical trials.
Methods: A retrospective study examined 900 OCC/OPC patients treated with
RT during 2017–2023. Pain intensity was assessed using NRS (0-none, 10-
worst) and total opioid doses were calculated using morphine equivalent daily
dose (MEDD) conversion factors. Analgesics efficacy was assessed using
combined pain intensity and total MEDD. ML predictive models were
developed and validated, including Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM).
Model performance was evaluated using discrimination and calibration
metrics, while feature importance was investigated using bootstrapping.
Results: For predicting pain intensity, the GBM demonstrated superior
discrimination performance (AUROC 0.71, recall 0.39, and F1 score 0.48). For
predicting the total MEDD, LR model outperformed other models (AUROC
0.67). For predicting analgesics efficacy, the SVM achieved the highest
specificity (0.97), while the RF and GBM models achieved the highest AUROC
(0.68). RF model emerged as the best calibrated model with an ECE of 0.02
and 0.05 for pain intensity and MEDD prediction, respectively. Baseline pain
scores and vital signs demonstrated the most contributing features.
Conclusion: ML models showed promise in predicting end-of-treatment pain
intensity, opioid requirements and analgesics efficacy in OCC/OPC patients.
Baseline pain score and vital signs are crucial predictors. Their implementation
in clinical practice could facilitate early risk stratification and personalized
pain management.
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Introduction

Acute pain is one of the most common debilitating

symptoms that develops during Radiation Therapy (RT), in

oral cavity and oropharyngeal (OCC/OPC) cancers (1–7).

Despite advancements in RT techniques improving patient

outcomes, various acute adverse symptoms persist, impacting

patients’ quality of life (QoL) (2). These adverse symptoms

have a negative impact on the patients’ quality of life (QoL)

(3, 8, 9). Nearly one-third of head and neck cancer (HNC)

patients experience severe, uncontrolled pain (1, 10, 11). Over

90% of OCC/OPC patients report acute mouth/throat pain,

with up to 80% needing opioid prescriptions for pain

management (12, 13).

Managing pain in head and neck cancer (HNC) patients

undergoing RT is challenging despite the World Health

Organization’s (WHO) analgesic ladder guidelines. The

complexity of pain, its multifactorial etiology, and varying

individual responses to treatment contribute to this challenge

(2, 14). Opioids are commonly prescribed during RT for HNC

(1, 13, 15), but their escalated doses heighten morbidity and

raise concerns about side effects and substance abuse (16).

These challenges in pain management not only complicate

care but also have a detrimental impact on the QoL for the

survivors within this cancer population. Approximately 45% of

long-term HNC survivors report chronic pain, with more

than 10% exhibiting severe chronic pain with chronic opioid

usage (17). The long-term opioid usage raises the risks of

opioid dependence and drug addiction which may lead to

patient death (18–20). Overuse of opioids during RT

exacerbates patient care complexity and risks overall health

outcomes (21).

Artificial Intelligence and machine learning (AI/ML) models

are being studied for risk stratification in pain medicine and

opioid use (22). These models aim to optimize pain

management and assist in personalized treatments through

risk stratification and decision-making (22). For example,

Chao et al. used ML algorithms to identify chest wall pain

induced by RT in non-small cell lung cancer (NSCLC)

patients treated with Stereotactic Body Radiation Therapy (23)

and Olling et al. generated ML predictive models for

predicting pain while swallowing (odynophagia) during RT in

NSCLC (24). While approximately 44 studies have explored

ML models to predict cancer pain, no studies have investigated

the role of ML models in pain prediction in HNC and how

they can aid in guiding decisions related to the use of opioids

in these individuals (25).

The primary objective of the present study is to address this

gap in knowledge by (a) comparing the performance of various

ML algorithms as predictive models for predicting acute pain

levels, (b) projecting opioid doses at the end of RT in OCC/

OPC patients and (c) identifying the importance of relevant

clinical predictors in classifying acute pain and predicting the

required opioid dosages.
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Materials and methods

Patient data

A retrospective study was conducted using a cohort of oral

cavity cancer, oropharyngeal cancer and unknown primary

cancer patients treated with RT at our institution from 2017

to 2023. Since most unknown primary cancers end up being

oropharyngeal cancer (OPC) or oral cavity cancer (OCC),

they were included in our study. The study has been approved

by The University of Texas MD Anderson Cancer Center

(MDACC) Institutional Review Board (IRB) (2024-0002).

Patients selected for this study met the following

inclusion criteria: (1) age ≥18 years, (2) a pathologic diagnosis

of squamous cell carcinoma (SCC) of the oral cavity,

oropharynx, or unknown primary, (3) treatment with RT or

chemoradiation therapy (CRT) for curative intent, and

(4) RT modalities included photons [intensity-modulated

radiotherapy (IMRT) and volumetric modulated arc therapy

(VMAT)] and proton therapy (IMPT). Patients were excluded

if had any of the following criteria: (1) no patient reported

pain scores available, (2) received stereotactic RT, (3) had

fewer than three weekly see visits (WSVs) during RT, or (4)

did not report pain scores at the end of RT. In the

development of the ML models, patients with any missing data

were excluded. Flow chart of the study design is illustrated

in Figure 1.
Predictors

Clinical data extracted from the electronic health record system

included patient demographics, social history (smoking, alcohol,

drug abuse), tumor and staging characteristics, cancer therapy

details (systemic therapy, surgery, RT), vital signs (weight and

heart rate), medications, and baseline and last on-treatment visit

(i.e., weekly see visit, WSV) acute pain scores. Delta changes in

weight were calculated as follows: [(last WSV weight—baseline

weight)/baseline weight]*100.
Outcomes

Our ML models aimed to predict three endpoints: end-of-RT

pain intensity, opioid usage and status of analgesic efficacy at the

end of RT.

Pain intensity, rated on a scale of 0–10 during nursing visits,

was categorized into non-severe (0–6) and severe (7–10) based

on established literature (2, 26, 27) and clinical thresholds where

a score of 7 or higher indicates heightened risk for uncontrolled

pain (28, 29).

Opioid usage was measured as the total morphine equivalent

daily dose (MEDD). Total MEDD at the last visit was

determined according to the Centers for Disease Control and
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FIGURE 1

Flowchart of study population.
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Prevention (CDC) guidelines (30–33). The total MEDD was

calculated as follows: the unit dose of all opioids (i.e.,

tramadol, hydrocodone, oxycodone, morphine, methadone,

transdermal fentanyl) prescribed during the last WSV

were collected and multiplied by the prescribed

frequency and their CDC-based MEDD conversion factors

[hydrocodone = 1, hydromorphone = 4, morphine = 1, oxycodone =

1.5, tramadol = 0.1, transdermal fentanyl = 2.4 and methadone

according to the dose (1–20 mg/day = 4, 21–40 mg/day = 8,
Frontiers in Pain Research 03
41–60 mg/day = 10 and ≥61–80 mg/day = 12)] (30–32). For analysis,

MEDD was dichotomized into low (<50 mg/day) vs. high

(≥50 mg/day) categories, with 50 mg/day chosen based on our

cohort’s mean MEDD and CDC guidance (30, 33).

Analgesic efficacy at the end of RT was dichotomized into two

classes: analgesic efficacy (non-severe pain and low MEDD) and

analgesic inefficacy (severe pain and high MEDD). Identifying

analgesic efficacy preemptively in HNC patients undergoing RT can

facilitate better patient management and outcomes (18, 19, 29, 34, 35).
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Descriptive statistics

Differences in patient characteristics between pain classes

and total MEDD were compared using the Chi-square test

for categorical variables and Wilcoxon test for numeric variables. A

2-sided P-value less than 0.05 was considered statistically significant.
Classification models

The full dataset was randomly split with stratification, into

training dataset (70%) and test dataset (30%). Categorical

variables elements were converted into numerical values. Patients

with any missing variables and variables with a percentage of

missing data more than 10% were excluded. Normalization of

numeric variables, done for the training and test datasets

separately, was performed using the robust scaler method (36).
Model training
Four classification models were trained in Python using ML

algorithms including Logistic Regression (LR), Support Vector

Machine (SVM), Random Forest (RF), and Gradient Boosting

Machine (GBM). All models were initialized with default settings

with hyper-parameter optimization performed on the LR, RF and

GBM models following a manual grid search approach. The pain

intensity prediction models were trained as follows: the LR model

was trained with the sklearn.linear_model.LogisticRegression

function (penalty = “l2”, C = 1.0, solver = “lbfgs”, max_iter = 100,

fit_intercept = True, random_state = None). the RF model was

trained with the sklearn.ensemble.RandomForestClassifier function

(n_estimators = 100, random_state = 10) and the GBM model

was trained with the sklearn.ensemble.GradientBoostingClassifier

(n_estimators = 100, learning_rate = 0.1, max_depth = 2, random_

state = 12) function. For the MEDD prediction models, the same

hyperparameters were used for LR and SVM prediction models.

The RF (n_estimators = 100, random_state = 10, max_depth = 3,

min_samples_leaf = 3) and GB (n_estimators = 100, learning_

rate = 0.1, max_depth = 2, random_state = 12, min_samples_

split = 3) models were trained with slightly different

hyperparameters to ones in the corresponding pain intensity models.
Model evaluation
Model validation was conducted using a ten-fold cross-

validation (CV) approach. Model performance was assessed on

the test dataset in terms of discrimination performance and

model calibration. The discriminative ability was measured using

the following metrics: area under the receiver operating curve

(AUROC), recall, precision, and F1 score. Statistical significance

of the observed differences in AUROC scores between models

was assessed with the DeLong test using the R pROc package

(37, 38). Calibration performance was assessed with the reliability

curve and the Expected Calibration Error (ECE) (39, 40). ECE

was calculated as the mean absolute difference between the

observed and predicted probabilities across predefined bins

(39, 40). A lower ECE value indicates better calibration (39).
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Feature importance
The determination of feature importance for the highest

performing model (i.e., the highest AUROC) was computed to

elucidate the individual contributions of each predictor variable

to the model’s overall performance. For the GBM and RF

models, feature importance was calculated through bootstrapped

resampling and the calculation of both mean and standard

deviation across 100 runs. For the LR and the SVM classifiers,

evaluation of feature importance was conducted through the

application of permutation feature importance analysis. The

resulting feature importance values were then sorted and

visualized using a boxplot, providing a comprehensive view of

the distribution of feature importance.
Decision curve analysis (DCA)
Decision Curve Analysis was created for the highest

performance models. After training the model, predicted

probabilities for the test set were extracted. The net benefit at

different threshold probabilities were computed after computes

the true positives (TP) and false positives (FP), using the

following formula (Equation 1) (41).

Net Benefit ¼ TP
N

FP
N

� threshold
1� threshold

� �
(1)

We used 50 evenly spaced thresholds from 0.01 to 0.5. Baseline

comparisons used: “Treat All” assumes everyone gets treatment

(Net Benefit = prevalence). “Treat None” assumes no one gets

treatment (Net Benefit = 0). Decision Curve Analysis (DCA)

graphs were plotted and net benefit values for different

thresholds were calculated (41).

Scikit-learn packages were used for ML modeling, validation,

and evaluation. All statistical analyses were performed using

Python 3.12, JMP PRO 15 and R studio version 4.0.5.
Results

Patients characteristics

A total of 900 patients with OCC (n = 100, 11%), OPC

(n = 772, 86%) or unknown primary (n = 28, 3%) were included

in our study. Data for a total of fifteen variables were collected.

Table 1 provides a summary of the cohort characteristics and the

results of the Chi-square and Wilcoxon tests.
Model performance

Models for predicting acute pain intensity at the
end of RT in OCC/OPC

After exclusion of patients with missing data, data from a total

of 838 patients with non-severe pain 60% (n = 502) and severe pain

40% (n = 336) was used to train the pain intensity prediction

models. Table 2 summarizes the model discrimination
frontiersin.org
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TABLE 1 Patients characteristics stratified by acute pain intensity and total MEDD.

Variable n SD/% None-severe pain Severe pain P-value Low MEDD High MEDD P-value
Total 900

Age (SD) 60.65 9.8 0.0004* 0.008*

Sex (%)
Males 766 (85%) 459 (51%) 307 (34%) 0.27 416 (46%) 350 (39%) 0.009*

Females 134 (15%) 87 (10%) 47 (5%) 89 (10%) 45 (5%)

Race (%)
White or Caucasian 814 (90%) 497 (55%) 317 (35%) 0.3 459 (51%) 355 (39%) 0.9

Black or African American 25 (3%) 10 (1%) 15 (2%) 15 (2%) 10 (1%)

Asian 16 (2%) 12 (1.3%) 4 (0.7%) 8 (1%) 8 (1%)

American Indian or Alaskan Native 4 (0.4%) 2 (0.2%) 2 (0.2%) 2 (0.2%) 2 (0.2%)

Other/unknown 41 (4.6%) 25 (2.7%) 16 (1.3%) 21 (2.3%) 20 (2.3%)

Smoking (%)
Current smoker 76 (8.4%) 46 (5.1%) 30 (3.3%) 0.95 41 (4.6%) 35 (3.8%) 0.17

Former smoker 352 (39.2%) 216 (24.1%) 136 (15.1%) 185 (20.6%) 167 (18.6%)

Never smoker 471 (52.3%) 284 (31.5%) 187 (20.8%) 278 (30.9%) 193 (21.4%)

NA 1 (0.1)

Alcohol (%)
Yes 618 (69.4%) 371 (41.6%) 247 (27.7%) 0.67 354 (39.8%) 264 (29.6%) 0.175

No 273 (30.6%) 168 (18.9%) 105 (11.8%) 143 (16%) 130 (14.6%)

NA 9 (1%)

Drug abuse (%)
Yes 204 (22.7%) 93 (10.3%) 111 (12.4%) <0.0001* 97 (10.7%) 107 (12%) 0.007*

No 686 (76.2%) 445 (49.9%) 241 (27.1%) 400 (44.2%) 286 (32%)

NA 10 (1.1%)

Clinical-T stage (%)
Tx 10 (1%) 10 (1%) 0 (0%) 0.111 7 (0.7%) 3 (0.3%) 0.319

T0 53 (6%) 33 (4%) 20 (2%) 34 (4%) 19 (2%)

T1 279 (31%) 170 (19%) 109 (12%) 164 (18%) 115 (13%)

T2 297 (33%) 176 (19.6%) 121 (13.4%) 166 (18%) 131 (15%)

T3 147 (16%) 89 (10%) 58 (6%) 72 (8%) 75 (8%)

T4 113 (13%) 68 (8%) 45 (5%) 61 (7%) 52 (6%)

Clinical-N stage (%)
NX 4 (0.4%) 2 (0.2%) 2 (0.2%) 0.63 2 (0.2%) 2 (0.2%) 0.663

N0 134 (15%) 85 (10%) 49 (5%) 83 (9%) 51 (6%)

N1 445 (49.4%) 259 (28.8%) 189 (20.6%) 246 (27.2%) 199 (22.2%)

N2 286 (32%) 181 (20%) 105 (12%) 158 (18%) 128 (14%)

N3 31 (3.2%) 19 (2.1%) 12 (1.1%) 16 (1.6%) 15 (1.6%)

Primary tumor type (%)
Oral cavity 100 (11%) 70 (7.7%) 30 (3.3%) 0.049* 63 (7%) 37 (4%) 0.328

Oropharynx 772 (86%) 456 (51%) 35%) 427 (47%) 345 (39%)

Unknown primary 28 (3%) 20 (2.2%) 8 (0.8%) 15 (1.6%) 13 (1.4%)

Chemotherapy (%)
Yes 641 (71%) 374 (41.6%) 267 (29.4%) 0.024* 355 (39%) 286 (32%) 0.481

No 259 (29%) 172 (19%) 87 (10%) 150 (17%) 109 (12%

Surgery (%)
Yes 283 (31%) 196 (21%) 87 (10%) 0.0003* 180 (20%) 103 (11%) 0.002*

No 617 (69%) 350 (39%) 267 (30%) 325 (36%) 292 (32%)

Proton therapy (%)
Yes 143 (16%) 81 (9%) 62 (7%) 0.28 74 (8%) 69 (8%) 1.3

No 757 (84%) 465 (52%) 292 (32%) 431 (48%) 326 (36%)

Pre-RT pain (mean, SD) 2.2 2.8 <0.0001* <0.0001*

Change in weight (mean%, SD) −6.6 5.8 0.13 0.002*

Change in pulse (mean, SD) 13.8 17.3 0.001* 0.29

Total MEDD (mean, SD) 52 46 <0.0001*

Last week Pain score (mean, SD) 5.3 2.7 <0.0001*

n, number; SD, standard deviation.
*Significant difference <0.05.

Salama et al. 10.3389/fpain.2025.1567632
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TABLE 2 Discrimination metrics and the performance of the models
predicting acute pain intensity by the end of RT.

Model AUC Recall Precision F1 score
Logistic regression (LR) 0.6442 0.3366 0.7881 0.4072

Random forest (RF) 0.6895 0.3762 0.8411 0.4663

Gradient boosting (GB) 0.7085 0.3861 0.8609 0.4845

Support vector machine (SVM) 0.6536 0.2277 0.9470 0.3485

Salama et al. 10.3389/fpain.2025.1567632
performance results. The results of the four ML models for

predicting pain intensity by the end of RT showed that GBM

had the highest AUROC (0.71), while the AUROC of the RF,

SVM and LR models were 0.69, 0.65 and 0.64, respectively

(Figure 2a). However, no statistically significant differences were

detected in AUROC scores between different models (DeLong

test results are summarized in Supplementary Table S1). The

SVM classifier demonstrated the highest precision (0.95) but falls

behind in sensitivity (0.23) and overall F1 Score (0.35).

With regards to model calibration, the RF model showed the

best performance (ECE 0.0228), followed closely by the SVM

(ECE 0.0342), LR (ECE 0.0436) and GBM (ECE 0.0589). Thus,

the RF model provided the most reliable, well-calibrated

probability estimates compared to the other models tested.

Reliability plots are shown in Figure 2b.

Feature importance analysis from the GBM classifier,

demonstrated in Figure 3, revealed key factors influencing the

prediction of pain intensity by the end of RT. Baseline pre-RT

pain score and changes in weight emerged as the most crucial

contributors, emphasizing the significance of the initial pain

levels and weight alterations in predicting acute pain by the end
FIGURE 2

Comparison of the four prediction models [logistic regression, random fores
pain intensity prediction. (a) Receiver operating curve area under the curve
curve to compare the mean predicted probability and the fraction of positiv
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of RT (mean importance: 0.244 ± 0.038 and 0.214 ± 0.031,

respectively). Additionally, changes in heart rate (i.e., pulse)

(mean 0.147 ± 0.028), age (mean 0.123 ± 0.026), and drug abuse

(mean 0.055 ± 0.018), exhibited considerable importance.
Models for predicting total MEDD at the end of RT
in OCC/OPC

Data from a total of 838 patients with low MEDD (n = 458,

55%) and high MEDD (n = 380, 45%) were used to train the

MEDD prediction models. Model discrimination performance

results are summarized in Table 3. The LR model outperformed

the other models (AUROC 0.67), indicating its effectiveness in

the discrimination performance for predicting the total MEDD

at the end of RT (Figure 4a). RF showed AUC score of (0.63).

GBM showed a better balance between precision (0.52) and

recall (0.42) while the lowest AUC (0.58). The SVM model

achieved the highest precision (0.73) but lower recall (0.19)

(Table 3). Statistically differences in AUROC scores were found

between the LR and GBM models (P = 0.007, 95% CI 0.02–

0.128), SVM and GBM models (P = 0.02, 95% CI −0.126 to

−0.011) and RF and GBM models (P = 0.019, 95% CI −0.09 to

−0.008). DeLong test results are summarized in Supplementary

Table S2.

The calibration analysis of the models revealed that the RF

model emerged as the top-performing model with the lowest

ECE of 0.0569; the GBM model followed closely with an ECE of

0.0790 while the SVM model exhibits a higher ECE of 0.1588.

These findings emphasized that RF is a particularly reliable

model in providing well-calibrated probability estimates for the
t, gradient boosting machine and support victor machine (SVM)] for acute
(AUROC) values for the four models on the test dataset. (b) Calibration
es for the four models.
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FIGURE 3

The box plot visually summarizes the distribution of feature importance obtained from a GBM. Pre-RT_painscore: pre-RT pain score; changewt:
change in weight; changepulse: change in pulse (HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type (OC, OPC or
unknown primary); Chemo Plan Y/N: chemotherapy plan Yes/No; T value: clinical T stage, N value: clinical N stage, Y/N: Yes or No.

TABLE 3 Discrimination metrics and the performance of the models
predicting total MEDD by the end of RT.

Model AUC Recall Precision F1 score
Logistic regression 0.6693 0.5000 0.6196 0.5534

Random forest 0.6295 0.2456 0.6512 0.3567

Gradient boosting 0.5847 0.4211 0.5217 0.4660

Support vector machine 0.6066 0.1930 0.7333 0.3056

Salama et al. 10.3389/fpain.2025.1567632
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classification task of low MEDD vs. high MEDD. Calibration plots

of the four models are illustrated in Figure 4b.

Feature importance results from the LR model permutation

analysis, demonstrated in Figure 5, revealed that the most

influential features include the “baseline pre-RT pain score”

(mean 0.066 ± 0.021), clinical T stage (0.01 ± 0.013) and sex

(0.009 ± 0.01). Conversely, features like drug abuse
frontiersin.org
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FIGURE 4

Comparison of the four prediction models [logistic regression, random forest, gradient boosting and support victor machine (SVM)] for the total MEDD
prediction. (a) Receiver operating curve, area under the curve (AUC) values for the four models in testing dataset. (b) Calibration curve to compare the
mean predicted probability and the fraction of positives for the four models.

FIGURE 5

The box plot visually summarizes the distribution of LR permutation feature importance. Pre-RT_painscore: pre-RT pain score; changewt: change in
weight; changepulse: change in pulse (HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type (OC, OPC or unknown primary);
Chemo Plan Y/N: chemotherapy plan Yes/No; T value: clinical T stage, N value: clinical N stage, Y/N: Yes or No.

Salama et al. 10.3389/fpain.2025.1567632
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TABLE 4 Discrimination metrics and the performance of the models
predicting analgesic efficacy by the end of RT.

Model AUC Sensitivity Specificity F1 score
Logistic regression 0.6658 0.3594 0.8317 0.4423

Random forest 0.6832 0.4531 0.8317 0.5273

Gradient boosting 0.6802 0.4375 0.8515 0.5234

SVM 0.6581 0.3125 0.9703 0.4598
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(−0.009 ± 0.011), alcohol (−0.005 ± 0.01) and age (−0.004 ± 0.014)

had low contributions.
Models for predicting analgesic efficacy at the end
of RT in OC/OPC

Data from a total of 548 patients with analgesic efficacy

(n = 335, 61%) and analgesic inefficacy (n = 213, 39%) were

included in the analgesic efficacy prediction models. Model

discrimination performance results are summarized in Table 4

and Figure 6a. All four models resulted in very similar AUROC

values (RF 0.68, GBM 0.68, LR 0.67 and SVM 0.66) with no

statistically significant differences (DeLong test results in

Supplementary Table S3). Similarly, all four models showed a

good calibration with ECE values of 0.0636 (SVM), 0.0684

(GBM), 0.0715 (LR) and 0.0756 (RF) (Figure 6b).

Feature importance analysis results for the RF model,

demonstrated in Figure 7, revealed that the top features that

influenced the model include baseline pre-RT pain score

(0.1696 ± 0.017), change in weight (0.1686 ± 0.01), and change in

pulse (0.1565 ± 0.01), indicating their significant impact on the

model’s predictions. Other notable features include age
FIGURE 6

Comparison of the four prediction models (logistic regression, random fo
analgesic efficacy status. (a) Receiver operating curve area under the curve
curve to compare the mean predicted probability and the fraction of positiv
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(0.1439 ± 0.008), T stage (0.0665 ± 0.005), and N stage

(0.0545 ± 0.005). On the other hand, features like the primary

cancer type (0.0169 ± 0.003), sex (0.0175 ± 0.003), and race

(0.0193 ± 0.003) exhibited lower importance.
Decision curve analysis (DCA) and clinical
decision optimization

For pain intensity prediction models, the DCA results for the

GBM, demonstrated the model’s clinical utility in identifying

high-risk patients who may require proactive pain management

interventions (Figure 8a). At lower threshold probabilities

(e.g., 0.01–0.16), the net benefit remains relatively high (0.5084–

0.4152), indicating that the model is effective in early

identification of patients at risk of severe pain. This suggests that

even at a low probability threshold, using the model to guide

clinical decisions would result in a meaningful net benefit

compared to treating all patients or treating none. As the

threshold increases (e.g., 0.21–0.31), the net benefit gradually

declines (0.3742–0.2860) (Figure 8b). This reflects the model’s

increasing specificity; it prioritizes patients with a higher

predicted probability of severe pain while reducing unnecessary

interventions for those at lower risk. Beyond a 0.36 threshold,

the net benefit continues to decrease (0.2296–0.0457 at 0.46),

suggesting that while the model still outperforms the “Treat

None” strategy, its advantage over “Treat All” diminishes at

higher thresholds. This could imply that at very high

probabilities, fewer patients are classified as high-risk, potentially
rest, gradient boosting machine and support victor machine) for the
(AUROC) values for the four models on the test dataset. (b) Calibration
es for the four models.
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FIGURE 7

The box plot visually summarizes the distribution of RF feature importance. Pre-RT_painscore: pre-RT pain score; changewt: change in weight;
changepulse: change in pulse (HR), Drugs (drug abuse history), primaryCancer_Type: primary cancer type (OC, OPC or unknown primary); Chemo
Plan Y/N: chemotherapy plan Yes/No; T value: clinical T stage, N value: clinical N stage, Y/N: Yes or No.

Salama et al. 10.3389/fpain.2025.1567632
leading to under-treatment of some patients who may still develop

severe pain.

For models predicting MEDD, the DCA of the LR model for

predicting MEDD provided valuable insights into its clinical

utility (Figure 8c). The net benefit values, calculated across

different threshold probabilities, highlighted the model’s

performance in distinguishing between high and low MEDD

predictions. At lower thresholds (e.g., 0.01), the model yields a

higher net benefit, suggesting that it is more favorable for

identifying patients who may require higher pain management
Frontiers in Pain Research 10
(high MEDD). As the threshold increases, the net benefit

gradually decreases (0.4124 at 0.46) (Figure 8d), indicating that

the model may become less effective at predicting MEDD and

may result in more false positives.

Models predicting analgesic efficacy, the DCA for the RF model

illustrated how net benefits vary with different threshold

probabilities when predicting analgesic efficacy for patients

undergoing RT (Figure 8e). At lower thresholds (e.g., 0.01), the

model shows a higher net benefit of 0.3817, suggesting that it is

more effective at identifying patients who will respond well to
frontiersin.org
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FIGURE 8

Decision curve analysis (DCA) and net benefits values of ML models. (a) DCA of GBM predicting pain severity. (b) Net benefit values at different
threshold of DCA of GBM predicting pain intensity. (c) DCA of LR predicting MEDD. (d) Net benefit values at different threshold of DCA of LR
predicting MEDD. (e) DCA of RF model predicting analgesic efficacy. (f) Net benefit values at different threshold of DCA of RF predicting
analgesic efficacy.

Salama et al. 10.3389/fpain.2025.1567632
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increased pain management interventions. However, as the

threshold increases, the net benefit decreases, reaching its lowest

point of 0.0813 at a threshold of 0.46 (Figure 8f). This decline

indicates that the model becomes less effective at accurately

predicting analgesic efficacy as the threshold increases, potentially

leading to false positives and unnecessary interventions.
Discussion

Acute pain in OCC/OPC patients during RT is challenging due

to radiation-induced toxicities (e.g., oral mucositis, dermatitis,

dysphagia), its multifactorial nature, and the absence of data-

driven tools for pain management. This exploratory study fills

this gap by using ML to predict pain and opioid use during RT

in this cancer population.

GBM emerged as the best model for pain intensity prediction

while LR outperformed other models in predicting total MEDD

and RF performed best in predicting analgesic efficacy. Although

model calibration is vital for reliable clinical ML models (42, 43),

few studies focused on evaluation of the calibration of the

classification models investigated in the clinical settings (25, 39,

42). Our results showed good calibration of all developed models

for predicting acute pain intensity, MEDD, and analgesic efficacy

in OCC/OPC patients undergoing RT. These results highlight the

potential of ML, especially the GBM and RF algorithms, in

improving outcomes for OCC/OPC patients undergoing RT

through early risk stratification and personalized pain

management (25, 39, 42, 43).

Chao et al. (2028) used Decision Trees and RF models to

predict chest wall pain induced by RT in NSCLC patients,

showing predictive accuracy (23). Olling et al. (2018) applied LR,

SVM, and Generalized Linear Models to predict swallowing pain

during RT in lung cancer patients, illustrating ML effectiveness

(24). Our study further supports ML efficacy in predicting

acute pain, opioid dosage, and analgesic efficacy in OC/OPC

patients post-RT.

Baseline pain intensity and vital signs were identified as high-risk

predictors for cancer-related pain (1, 44). In a previous study, we

established a correlation between vital signs, baseline pain scores,

and the pain intensity during RT in OCC/OPC patients (1).

Uncontrolled pain not only contributes to challenges in chewing

and swallowing, leading to weight loss, but also exerts a broader

impact on patients’ physiological functions. Elevated pain levels are

associated with increased heart rates and changes in blood

pressure (1). Bendall et al., demonstrated an association between

vital signs and acute pain (45) and Moscato et al. developed an

automatic pain assessment tool based on physiological signals

recorded by wearable devices (46). Reyes-Gibby et al. identified the

presence of pre-treatment pain as an independent predictor of

OCC/OPC 5-year survival (47). According to features importance

results, our study highlighted the importance of baseline pre-

treatment pain score and vital signs (e.g., weight and heart rate)

for contribution in predicting pain intensity, analgesic efficacy, and

the total MEDD by GBM and RF models, which is consistent with

previous studies (1, 44, 46).
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From a clinical decision-making perspective, our study

demonstrated that the GBM predicting pain severity at the end

of RT provides the highest net benefit at lower to moderate

thresholds (0.01–0.31), making it most effective for early

identification of high-risk patients who may require preemptive

pain management. Clinicians should consider using lower

thresholds to guide pain management decisions, ensuring that

patients at risk of severe pain receive appropriate interventions

before escalation. Additionally, the LR model can help stratify

patients based on pain management needs, optimizing decisions

regarding intensifying treatment and reducing unnecessary opioid

use. By selecting an optimal threshold, clinicians can personalize

care, improve patient outcomes, and avoid overtreatment, as

higher thresholds may lead to over-prescribing analgesics. The

RF model, when predicting analgesic efficacy, performs well at

lower thresholds, identifying patients who may benefit from

increased pain management while minimizing unnecessary

treatments. This approach enhances evidence-based pain

management in clinical settings, ensuring effective and

individualized treatment.

The clinical importance of early identification of severe pain in

HNC cannot be overstated. So far, it is extremely challenging for

clinicians to predict pain severity and identify high risk patients

depending on their empirical knowledge. Most clinicians

prescribe opioids to OCC/OPC patients during therapy according

to the pain intensity reported by patients the day of examination,

and up to 40% of patients will continue to be dependent on

opioids chronically for several months post-therapy (15, 48). Pain

control during RT in these cancer populations is still challenging

and needs further investigations. This study not only

demonstrated the predictive capabilities of ML models but also

highlighted their potential clinical applications. These models can

aid in risk stratification, allowing for personalized pain

management plans based on individual patient characteristics.

The use of these ML models in clinical settings could

significantly revolutionize pain management strategies for HNC

patients undergoing RT, optimizing opioid use and minimizing

unnecessary treatments. Our study shows that models like the

GBM and RF are particularly valuable in predicting pain severity

at the end of RT, offering high net benefits at lower to moderate

thresholds. These models can help clinicians identify high-risk

patients early, ensuring that those at risk for severe pain receive

preemptive pain management before escalation. By utilizing the

LR model for MEDD stratification, clinicians can make more

informed decisions about the intensity of pain management

required, thereby reducing the potential for opioid

overprescription. These predictive capabilities also enable

clinicians to personalize care, tailoring opioid dosages to

individual patient needs and minimizing the risk of chronic

opioid dependence post-treatment. With the ability to forecast

pain severity and opioid requirements more accurately, ML

models offer an opportunity to intervene proactively, improving

pain control during RT and potentially reducing the long-term

consequences of opioid misuse. The integration of AI and ML in

clinical practice can therefore enhance treatment outcomes,

optimize pain management protocols, and ultimately improve the
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QoL for OC/OPC patients, ensuring both more effective and

individualized pain relief strategies.
Limitations

Despite promising findings, this study has limitations. Its

retrospective, single-institutional design and reliance on

electronic health records introduce biases. To enhance the

generalizability of our findings, future studies should focus on

validating these ML models using multicentric and prospective

cohorts. Additionally, prospective validation would enable real-

time assessment of model performance in clinical practice,

ensuring that predictions remain accurate and clinically relevant.

Patient drop-off due to missing data reduced the final cohort

size, necessitating a larger, multicentric cohort for validation.

Future work will address external validation of the models on

independent datasets, which is crucial to assess model

generalizability and robustness. Prospective studies and additional

clinical variables may refine predictive performance. Outcome

assessment relied on patient-reported pain scores and

prescription notes in electronic health records; objective pain

assessment methods and data on opioid usage are needed.

Acknowledging these limitations is vital for responsible AI/ML

implementation in clinical settings.
Conclusion

This study demonstrates that ML models like GBM, RF, SVM,

and LR show promise in risk stratification and predicting acute

pain intensity, total MEDD, and analgesic efficacy post-RT. Key

predictors include baseline pain intensity and vital sign changes,

highlighting the need for early high-risk patient identification for

personalized pain management.
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