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Pain kept under wraps of myelin
sheath
Veronica I. Shubayev1,2*
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The myelin sheath serves both as insulator and metabolic powerhouse for large-
diameter dorsal root ganglia (DRG) neurons—some of the longest cells in the
body—transmitting sensory impulses from the periphery to the spinal cord.
When myelin is damaged, bioactive fragments of myelin basic protein (MBP)
are released, playing a pivotal role in pathological pain. MBP-derived peptides
(MBPd) emerge as a ubiquitous yet sex-specific mediator of pain. In females,
MBPd triggers a widespread transcriptional response across the peripheral
nerve, DRG, and spinal cord, leading to persistent, treatment-resistant tactile
allodynia—pain from normally innocuous touch. In contrast, males exhibit only
a localized transcriptional response, confined to the nerve, which does not
extend to the DRG or spinal cord or induce pain. The sex difference is driven
by MBPd’s interaction with lipids and regulation of nuclear receptor
transcription factors, including the estrogen receptor (ESR) and the liver
X receptor (LXR)/retinoid × receptor (RXR) complex—key regulators of lipid and
cholesterol metabolisms mounting sex-dependent immunity. By unraveling
these fundamental mechanisms of myelin remodeling, this work opens the
door to innovative, non-addictive, personalized therapeutics and diagnostics
for chronic pain.
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Pain, immunity, and biological sex

Pain caused by injury or disease of the nervous system (i.e., neuropathic pain), including

treatment-refractory pain arising from normally painless tactile stimulus, such as from

wearing clothing (mechanical allodynia), is among the leading causes of long-term

disability (1–3). Compared to men, women are disproportionally affected both by chronic

pain (4–9) and autoimmune (10) conditions, raising a question of common mechanisms.

Indeed, pro-nociceptive effects of immunoglobulin (Ig)M/IgG autoantibodies contribute

to persistent pain in arthritis (11), fibromyalgia (12), and complex regional pain

syndrome (CRPS) (13)—all female-prevalent conditions. Although neuropathic pain in

principle (e.g., caused by PNS trauma) is not inherently more prevalent in females, we

have argued that autoimmune mechanisms selectively contribute to certain neuropathic

pain phenotypes, at least in females. Why?

Rodent models of PNS trauma have revealed sex-dimorphic immune mechanisms

maintaining mechanical allodynia, with innate immune cells (microglia, macrophages)

prominent in males, and adaptive immune cells (B/T lymphocytes) — in females

(14, 15, 31, 33). PNS trauma initiates Wallerian degeneration, a systematic process of

axonal demyelination and degeneration, subsequent removal of cell and myelin debris,

and eventually axonal regeneration and remyelination, first described by Augustus

Waller in 1850. This process involves sequentially recruited hematogenous immune
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cells, including neutrophils (within hours), macrophages (days to

weeks) and B/T lymphocytes (week(s) post-injury) (16–18).

Previous insights into the immune regulation of pain, including

pro-nociceptive mechanisms (e.g., T helper (Th)1/17 cells) and

anti-nociceptive mechanisms (e.g., Th2/Treg cells), primarily

derived from studies on male rodents, are now being refined

through research involving both sexes. Our 2010 mass

spectrometry analysis of female rat sciatic nerves identified

Antigen Presentation, CD28 Signaling in T-helper Cells, and

similarity to Pathogenesis of Multiple Sclerosis after sciatic nerve

chronic constriction injury (CCI) (19). Because this type of PNS

trauma represents “sterile” (i.e., pathogen-free) inflammation, we

implicated myelin autoantigenic epitopes we had observed

released in PNS trauma (20) in the development of neuropathic

pain, as detailed below.
Myelin autoantigens in pain

Myelin sheath enables rapid, saltatory propagation of touch,

pressure, position, movement, and vibration afferent traffic to

DRG thence the spinal cord (21). PNS injury induces loss of the

structural and molecular integrity of myelin on Aβ/δ-type-

afferent neurons, leading to neuropathic pain states. There are at

least three distinct mechanisms of myelin involvement in

neuropathic pain: (a) ectopic insertion of voltage gated ion (Nav)

channel, which is typically segregated by myelin into the nodes

of Ranvier (22–24); (b) release of pro-nociceptive lipid

metabolites from myelin, a metabolic warehouse of lipids;

and (c) release of immunodominant autoantigenic epitopes,

including myelin basic protein (MBP) α-helix 87-VVHFF-

91 region.

The immunodominant MBP87-91 epitope contributes to

multiple sclerosis (MS), an autoimmune demyelinating disorder

(25, 26). Peptides comprising MBP87-91 (MBPd) induce MS/

experimental autoimmune encephalomyelitis (EAE) after
FIGURE 1

MBP-induced autoimmune mechanisms of neuropathic pain in female PN
mechanosensory Aβ/d-afferents. Peripheral nerve injury causes myelin de
derived epitopes (MBPd) normally sheltered from immunosurveillance. Exp
at the injury site and the segmental DRG and spinal cord. Unmyelinated the
MBPd into an intact sciatic nerve induces T cell-dependent mechanical allo
B cell activation in the nerves of both sexes. However, in females, T/B c
cord, whereas in males it remains localized to the nerves.

Frontiers in Pain Research 02
systemic (subcutaneous), adjuvant-assisted immunization (19, 20,

27–31). After PNS trauma, the same epitope is proteolytically

released and presented to T cells via major histocompatibility

complex (MHC)II-expressing Schwann cells and macrophages

(20, 29). Local (intraneural), adjuvant-free injection of MBPd

into an intact sciatic nerve (IN-MBPd) is sufficient to induce a

robust, T cell-dependent mechanical allodynia sustained for

several weeks, with no thermal/heat sensitivity or motor deficits

(19, 20, 27–31). We have implicated selective autoimmune

remodeling increasing A-afferents (e.g., tactile) input while

sparing unmyelinated C-nociceptors (e.g., heat) (32) (Figure 1A).

MBPd effects in the PNS are sexually dimorphic. After equal

dose IN injection in sciatic nerves of both sexes, MBPd induced

pain-like behavior in female, not in male, mice (33). This finding

correlated to prominent T cell activity in nerves of both sexes,

albeit female-specific interleukin (IL)-22 and CD137 (41BB)

activation, yet a striking difference in ipsilateral DRG and spinal

cord, where B/T lymphocytes signaling was entirely female-

specific (33) (Figure 1B). Further, MBPd is released in nerves of

both sexes after PNS trauma (e.g., CCI) (19, 20, 27–31), anti-

MBPd autoantibody is detected exclusively in serum of female,

not male, rats with CCI (31). This female-specific engagement of

IgM autoantibodies corresponds to female prevalence of B cell

action post-CCI (31, 34). Serum anti-MBP autoantibody in

female CCI rats (31) correlates with female-specific DRG and

spinal cord B/T cell activity and IgM-related genes after IN

MBPd (33) and suggests potentially sex-dependent anti-MBPd

IgM immune complex deposition on the damaged myelinated

afferent neurons.
MBP, membrane phospholipids and
ER-stress

During myelin compaction, the cationic MBP (isoelectric

point of >11) binds apposing membranes via electrostatic
S. (A) Myelin autoantigens drive autoimmune remodeling of myelinated
gradation and the release of pro-nociceptive, immunodominant MBP-
osure to MBPd induces IL-6 expression, ER-stress, and T cell activation
rmal/pain C-nociceptors are spared. As a result, intraneural injection of
dynia, without a change in thermal sensitivity. (B) IN MBPd triggers T/
ell-related signaling progresses from the nerve to the DRG and spinal
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FIGURE 2

MBP-induced pain by regulation of lipid and cholesterol metabolism.
(A) The release of MBPd drives sex-specific metabolism of the PIP2
phospholipid in peripheral nerves. In females, PIP2 is broken down
into IP3 by phospholipase C (PLC), activating IP3R mediated ER
stress and calcium-dependent pain signaling. Estrogen/ESR1 co-
activates IP3R-dependent nociception. Mechanical allodynia in
females caused by IN MBPd is reversed by IP3R blockade. In
males, PIP2 is converted into PIP3 through phosphatidylinositol
3-kinase (PI3K) activity, without activation of IP3R-induced ER
stress or pain-like behaviors. The PI3K and PLC/IP3R activity
respectively persist to male and female spinal cord after IN MBPd.
(B) Upon release, MBPd inhibits cholesterol efflux by suppressing
LXR/RXR expression. By Ncoa1 binding and sequestration, MBPd
also prevents transcriptional activity of LXR/RXR. MBPd promotes
cholesterol synthesis by activation of a cholesterol reductase
DHCR7. LXR stimulation suppresses Estrogen/ESR1-induced IL-6
activation in DRG neurons and attenuates IN MBPd-induced
mechanical allodynia.
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interactions with anionic lipids, such as phosphatidylinositol

4,5–bisphosphate (PIP2) (25, 35). Thus, IN MBPd stimulated

PIP2 metabolism in sciatic nerve, yet with intriguing sex

differences (Figure 2A): PIP2 hydrolysis to inositol triphosphate

(IP3) via phospholipase C (PLC) induction was selectively

observed in female nerves. Male nerves exposed to IN

MBPd displayed preferential PIP2 phosphorylation to

phosphatidylinositol 3,4,5–bisphosphate (PIP3) by stimulation of

phosphoinositide 3–kinase (PI3K) activity (33). The mechanism

also advanced to DRGs and spinal cords in a sex-dependent

manner. In females after IN MBPd, IP3 receptor (IP3R)

induction on endoplasmic reticulum (ER), along with ESR1, were

predicted to activate Ca2+-mediated ER-stress, voltage-gated Ca
Frontiers in Pain Research 03
(Cacna)2d1 and mechanical allodynia, mitigated by IT

administration of IP3R inhibitor (33).
MBP, cholesterol and nuclear
receptors

Lipid energy expenditure in cells of the PNS is regulated via a

hierarchical nuclear receptor (NR) transcription factor network

that includes estrogen receptor (ESR), androgen receptor (AR),

liver × receptor (LXR), retinoid × receptor (RXR), vitamin

D receptor (VDR), thyroid hormone (TH) receptor, progesterone

receptor (PR) and peroxisome proliferator-activated receptor

(PPAR) subfamilies. Pro- and anti-nociceptive action of NRs may

relate to sex differences in ligand levels, including sex hormones

(e.g., estrogen, testosterone) and per our recent findings,

cholesterol precursors (desmosterol and 7-dehydrocholesterol,

7-DHC) and metabolites (e.g., oxidized cholesterol (oxysterol)

25-OHC) (19, 36).

According to our transcriptomic-based prediction, the pro-

nociceptive effect of IN MBPd related to female-specific

cholesterol accumulation in the nerve (33) via three mechanisms:

(a) control of NR expression. Like known exogenous toxins (37),

MBPd activates ESR1/Ca2+-dependent ER-stress in female DRG

and spinal cord (24). MBPd also downregulates LXRa and RXRa,

which act as obligate heterodimers activated by oxysterols to

induce ATP binding cassette (Abc)-mediated cholesterol efflux

and repress IL-6-mediated neuroinflammation and mechanical

allodynia, reversed by IT administration of LXR agonist or IL-6

inhibitor (24); (b) control of NR ligand synthesis; e.g., by female-

selective induction of 7-dehydro cholesterol reductase (DHCR7),

MBPd is expected to convert 7-DHC to cholesterol selectively in

female nerve (19, 36); (c) control of NR co-activators and co-

repressor activity; by binding, and presumably sequestering

nuclear receptor co-activator (Ncoa)1, also known as steroid

receptor coactivator (Src)1 in injured nerves of both sexes (24),

MBPd may regulate several Ncoa1/Src1-dependent transcription

factors, including ESR, AR, LXR, RXR, VDR, PPAR, as well as

C-Fos, C-jun, cyclin D1, and STAT3 (38, 39). That MBPd’s

effects on Ncoa1 binding, LXRa/RXRa expression are comparable

between sexes suggests that a complex co-regulation is at play

(Figure 2B). In female and male DRG neurons, LXR activation

repressed ESR1-stimulated IL-6 (24). Given comparable ESR1

levels in male and female DRGs (36), high circulating estrogen

levels in females, local synthesis of estrogens, sex-dependent

control of NR ligands, noted above, and trans-regulation of NR

systems, such as partial antagonism of ESR1 by 25H7 oxysterol

(40), contribute to sex-dimorphic mechanisms of pain.
Other MBP functions in the PNS

MBP is an intrinsically unstructured protein with multiple

binding partners, such as tubulin, actin, Ca-calmodulin (25, 35).

In addition to Ncoa1 (36), we observed sex-dependent

interaction with Cacna, kinases and phosphatases. In females
frontiersin.org
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exposed to IN MBPd, higher vesicular formation in the nerve

associated with pain phenotype (33). MBPd promotes nuclear

translocation of cyclin-dependent ATPase-kinase (CDK) family

members, expressed sex-specifically in the PNS (25, 26, 33).

MBPd mutagenesis at H89G stimulates ATPase activity of CDK5

(28). In DRG neurons, MBPd binds ATP synthase and voltage-

dependent anion-selective channel-1 (VDAC-1) and a functional

anchor to cytoskeletal proteins. It is important to note that

MBPd lacks the ability of the full-length MBP to interact with

α-tubulin or cell-surface scavenger receptor low-density

lipoprotein receptor related protein 1 (LRP1/CD99), thus

escaping LRP-1-mediated endocytosis (41).
MBP in molecular mimicry

The invariant 87-VVHFF-91 motif of MBPd is evolutionarily

conserved (homologous across mammals, amphibians, fish). Its

structural similarity with T cell epitopes of Influenza A and

Epstein Bar Virus (EBV), the most common human virus, has

led us to suggest that MBPd-based molecular mimicry

contributes to neuropathic pain associated with viral

neuropathies and idiopathic neuropathic pain states (41). Our

findings of structural similarity between this MBPd motif and the

p65-like protein of common cold human coronavirus (HCoV)

OC43 suggests a related mechanism of neuropathic pain (42). In

addition to viral polypeptides, we have reported structural

homology of this MBPd motif with muscarinic acetylcholine

(Ach) M2 receptor (cytosolic motif), an inhibitory G-protein-

coupled receptor on sensory neuron and a key epitope in CRPS

(43). MBPd may exert its effects, at least partially, by

counteracting the pain-inhibitory downstream signaling

associated with Ach M2 receptor activity.
Clinical implications

More than 600 million people worldwide suffer from chronic

pain, making it the leading reason patients seek medical care. Just

in the U.S. alone, the impact is significant, with an estimated

annual economic cost of $650 billion and an increasing number of

opioid overdose deaths (1–3). In response to this staggering

impact, about seven years ago (April of 2018), the National

Institutes of Health (NIH) developed the Helping to End

Addiction Long-term (HEAL) Initiative aiming to provide

scientific solutions to the opioid crisis and discovery of both

reliable biomarkers and novel, non-addictive alternatives to treat

and prevent pain. The pioneering efforts of my team to

characterize MBPd as a mediator of pain has been supported since

2012, by a preceding initiative, NIH R01 Blueprint Grand

Challenge on Chronic Pain, put forth by 25 NIH institutes and

centers to “recognize innovative research to identify novel targetable

mechanisms of pain”. Our work has brought both conceptional

innovation to our understanding of treatment-refractory

neuropathic pain states, and opportunities for novel biomarker

developments and non-addictive therapeutic alternatives.
Frontiers in Pain Research 04
Our findings suggest that myelin remodeling and subsequent

MBPd release drive persistent pain associated with various

pathological conditions, including:

(a) Peripheral nerve injuries caused by trauma, metabolic

diseases like diabetes, drugs, and toxins.

(b) Painful autoimmune demyelinating disorders, such as

multiple sclerosis, Guillain-Barré syndrome, and chronic

inflammatory demyelinating polyneuropathy, which

release MBPd.

(c) CRPS and other pain syndromes involving molecular

mimicry between MBPd and the Ach M2 receptor.

(d) Idiopathic neuropathic pain potentially triggered by

viruses like common cold HCoV-OC43 through

molecular mimicry with MBPd.

Both MBPd and MBPd-reactive autoantibodies show promise

as biomarkers (31), which we have begun investigating clinically

in MS pain, fibromyalgia, and low back radiculopathy (20, 44).

The targeted release of MBPd in nerves—both before

demyelination and after myelin repair (19, 31)—supports its role

in idiopathic pain without clear neuropathological findings.

Therapeutically, a cyclized head-to-tail altered peptide ligand

(APL) double Ala 91,96 mutant of MBP87-99 presents a low-

cost, non-addictive immunomodulatory neurotherapy, effective in

treating experimental paralytic EAE disease, spinal cord trauma

(45–50), and neuropathic pain (51). MBPd-dependent pain

responds to systemic gabapentin and intrathecal interventions

targeting neuroinflammation and ER-stress—such as IL-6

neutralization, IP3R blockade, and LXR stimulation—whereas

lidocaine, ketorolac, and NMDA receptor antagonist have shown

no efficacy (27, 33, 36).
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