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Introduction: This study examines the interdependencies among different

chronic pain locations and their relationships with age and gender, critical for

effective clinical strategies.

Methods: A Bayesian network approach was applied to 2,400 adult participants

(18+ years; 50% male, 50% female) from the Qatar Biobank (QBB). Participants

were categorized into young (18–35 years, 40.9%), middle-aged (36–60 years,

50.6%), and seniors (61+ years, 8.5%).

Results: The model identified direct and indirect associations among pain

locations and demographic factors, quantified by odds ratios (ORs). Younger

females had the highest probability of headaches or migraines (48.6%)

compared to younger males (31.2%), with probabilities decreasing across

age (OR 1.917; 95% CI 1.609–2.284). Hand pain strongly correlated with hip

pain (OR 8.691; 95% CI 6.074–12.434) and neck or shoulder pain (OR

4.451; 95% CI 3.302–6.000). Back pain was a key predictor of systemic pain,

with a 37.9% probability of generalized pain when combined with hand

pain (OR 7.682; 95% CI 5.293–11.149), dropping to 6.6% for back pain alone.

Age, back pain, and foot pain collectively influenced knee pain, which

reached 72.7% in older individuals with foot and back pain (OR 4.759; 95% CI

3.704–6.114).

Discussion: These Bayesian network parameters explicitly reveal probabilistic

interdependencies among pain locations, suggesting that targeted

interventions for key anatomical regions could effectively mitigate broader

chronic pain networks. The model also elucidates how demographic

predispositions influence downstream pain patterns, providing a clear and

actionable framework for personalized chronic pain management strategies.
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1 Introduction

Chronic pain is a global health challenge, affecting over 30% of the population and

significantly impacting quality of life, healthcare systems, and economies Cohen et al.

(1). Unlike acute pain, chronic pain persists beyond its initial cause, often becoming a

disease itself, necessitating a nuanced approach to diagnosing and managing pain that

integrates biological, psychological, and social factors.
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Innovative platforms like the Qatar Biobank (QBB) are pivotal in

addressing regional health challenges. Established in 2012, QBB is a

prospective, population-based cohort study exploring health

trajectories among Qataris and long-term residents. By 2019, 17,065

participants (28% of the target population) were enrolled,

contributing over 2 million biological samples and clinical data,

forming a robust foundation for precision medicine Al Thani et al. (2).

Despite its recognized global impact—roughly 30% of adults

experience chronic pain—its true overall burden in the Gulf

Cooperation Council (GCC) and North Africa remains

incompletely characterized. Condition-specific surveys report painful

diabetic neuropathy in Saudi Arabia (3%–4%) Garoushi et al. (3),

osteoarthritis in Niger (7%) Assadeck et al. (4), and diabetic

neuropathy in Oman (2.5%–4.5%) Al-Zadjali et al. (5). However, a

meta-analysis aggregating all musculoskeletal and systemic pain

syndromes estimates that 30%–40% of Middle Eastern adults suffer

chronic musculoskeletal pain—rates on par with global figures.

Moreover, these regional studies have relied almost exclusively on

descriptive analyses, leaving the interdependencies among pain sites

and their demographic drivers unexplored. In particular, research

applying Bayesian networks to uncover probabilistic dependencies

across anatomical pain locations and demographic variables

remains scarce in the GCC and North Africa.

Traditional pain management approaches often fail to account for

the complexity and interdependence of chronic pain locations.

Bayesian Networks (BNs), by contrast, enable the modeling of

conditional dependencies and directional relationships among

multiple variables, making them well-suited for uncovering hidden

structures within chronic pain data. This study addresses existing

research gaps by applying Bayesian networks to model probabilistic

and potential causal interconnections among chronic pain locations

and demographic factors in Qatar. This modeling approach offers

actionable insights to support targeted healthcare strategies, including

early identification of individuals at risk for developing chronic pain,

personalized pain management interventions, and resource allocation

to effectively manage and prevent chronic pain in specific population

groups. This preliminary exploration lays the groundwork for future

integration of physiological, psychological, and treatment-response

data (Figure 1). Such an approach aligns with recent advancements

using Bayesian networks to model heterogeneity in populations,

enabling personalized interventions based on demographic

characteristics. Marchant et al. (6) recently showed that modeling a

mixture of Bayesian networks—where the probability of each

network component depends on individual covariates—uncovers

distinct dependency structures across subpopulations and improves

predictive accuracy. In the same spirit, our BN analysis of chronic

pain demonstrates how demographic covariates (age, gender) not

only influence marginal pain probabilities but also reshape the

structure of inter-pain dependencies, thereby informing more

personalized intervention strategies.

Bayesian Networks (BNs) are probabilistic graphical models

that capture conditional dependencies among variable through a

directed-acyclic graph, making them well suited to reveal how

different chronic-pain sites interact across age and gender in our

Qatar Biobank sample of binary pain indicators. Their

transparent structure produces interpretable outputs—conditional

probabilities, odds ratios, and easily visualized pathways—that

can inform early, targeted interventions. Still, BN inferences are

sensitive to data quality, variable selection, and the validity of

assumed independencies; these factors must be considered when

interpreting results derived from self-reported pain data and a

relatively small senior subgroup.

Although previous studies have extensively described chronic

pain prevalence and demographic associations, they often overlook

the complex probabilistic interdependencies among pain locations.

Utilizing a Bayesian network framework, this study explicitly

identifies these interconnections, revealing how specific anatomical

pain regions can influence broader pain networks. By mapping

these relationships alongside demographic factors such as age and

gender, our analysis offers a clear, actionable framework that can

guide targeted diagnostic and therapeutic interventions, potentially

disrupting chronic pain progression pathways at early stages.

2 Methods

2.1 Data collection

The dataset used in this study was sourced from the Qatar

Biobank (QBB), a comprehensive resource established to advance

research on health and disease within Qatar’s population Al

Thani et al. (2). It comprises data from 2,400 participants, evenly

distributed by gender (50% female and 50% male), providing a

balanced foundation for analysis. It’s stratified by age: 40.9%

young adults (18–35 years), 50.6% middle-aged (36–60 years),

and 8.5% seniors (61+ years). Participants reported pain lasting

more than three months via a structured question, with options

including headache, back pain, and knee pain. Selecting “None of

the above” precluded other choices, ensuring data integrity.

The dataset includes a diverse array of demographic and pain-

related variables. Among these are 12 categorical variables

representing distinct types of pain, which include headache or

migraine, generalized body pain, facial pain, neck or shoulder pain,

back pain, abdominal pain, hip pain, knee pain, hand pain, and

foot pain.

Summary prevalence estimates for each pain location are

provided in Section 3.1 (Table 1). These variations in pain

prevalence underscore the importance of understanding the

demographic and clinical contexts that may influence pain reporting.

Ethical considerations were rigorously maintained throughout the

study. Data access and handling adhered to the ethical framework and

regulations stipulated by the Qatar Biobank (QBB). The study

protocol was approved by the Qatar Precision Health Institute

Institutional Review Board (IRB) under project reference number

QF-QBB-RES-ACC-00281, ensuring compliance with human

subjects’ research protections and confidentiality standards.

2.2 Analytical framework

The exploratory phase focused on conducting univariate

analyses to understand the distributions of individual variables
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within the dataset. Bar plots were used extensively to summarize

the prevalence and distribution of pain locations across various

demographic categories. For instance, the prevalence of different

pain locations was visualized by gender to highlight potential

disparities, while age group distributions—classified as Young

Adult, Middle-Aged, and Senior—were examined to identify

demographic patterns in the data. Additionally, the gender

distribution within age groups was analyzed to capture any

notable trends. These visualizations, created using R software

(version 4.4.2) and the ggplot2 and sjPlot packages, provided a

FIGURE 1

Conceptual overview of the study and its future extensions. In the Current Study, we combine self-reported chronic pain locations (≥3 months) with

demographic covariates (age, gender) to perform Bayesian structural learning, yielding a directed pain-location network and associated conditional

probabilities and odds ratios (ORs). In Future Directions, this foundational network will be augmented with biomarker and psychological data to predict

treatment outcomes and guide personalized clinical strategies.
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clear and comprehensive understanding of the dataset, serving as a

foundation for subsequent analyses, including the development of

Bayesian networks.

2.3 Bayesian network development

To model the probabilistic relationships between pain locations

and demographic factors, we applied a Bayesian Network (BN)

methodology. Bayesian Networks are represented as Directed

Acyclic Graphs (DAGs), where arrows indicate conditional

dependencies between variables. The structure of the network was

learned using a score-based approach, specifically the Hill-Climbing

(HC) algorithm, with the Bayesian Information Criterion (BIC) as

the scoring function Gámez et al. (7). To maintain logical and

medical consistency, we introduced constraints ensuring that

demographic variables (age and gender) do not receive arrows

from other variables, nor do arrows exist between these two

demographic variables. This prevents any interpretation suggesting

that factors like pain could alter a participant’s age or gender,

which is neither logically nor medically valid.

Following the structure learning phase, Maximum Likelihood

Estimation (MLE) was utilized to estimate the parameters of the

Bayesian Network. This process produced Conditional Probability

Tables (CPTs) for each node based on its parent nodes, enabling a

detailed quantification of probabilistic relationships. To further

explore the relationships identified in the Bayesian Network, we

calculated Odds Ratios (ORs) and their 95% Confidence Intervals

(CIs). The Odds Ratio was defined as:

OR ¼
P (EventjEvidence)

P (No EventjEvidence)
4

P (EventjNoEvidence)

P (NoEventjNoEvidence)
(1)

where P (EventjEvidence) represents the probability of the event

(e.g., back pain) occurring given a specific evidence (e.g., age

group: senior). The 95% CI for the OR was calculated using the

formula for the standard error of the ln (OR):

SEln (OR) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

a
þ
1

b
þ
1

c
þ

1

d

r

(2)

where a, b, c, d are the counts in a 2 × 2 contingency table.

Specifically:

• a: Number of events with the evidence present,

• b: Number of no events with the evidence present,

• c: Number of events with the evidence absent,

• d: Number of no events with the evidence absent.

The confidence interval was then derived as:

95% CI ¼ exp (ln(OR+ 1:96 � SEln (OR))) (3)

Equations (1–3) together provide the basis for quantifying and

interpreting the probabilistic relationships revealed by the

Bayesian Network.

This approach allowed a comprehensive evaluation of the

strength and direction of associations both among different pain

locations and between these pain locations and demographic

variables. The analysis, visualization, and computation of Odds

Ratios (ORs) and their Confidence Intervals (CIs) were

performed using the bnlearn package (version 5.01) in R.

Log-scale plots of ORs with CIs were generated to visually

convey the magnitude and uncertainty of these associations,

while graphical representations of the Bayesian Network

highlighted the probabilistic dependencies among variables. This

comprehensive approach provided a nuanced understanding of

the interrelationships between pain locations and demographic

factors. Furthermore, the methodology and findings are

consistent with established research in Bayesian modeling applied

to pain analysis Eckert et al. (8); Gamez et al. (7); Arias et al.

(9), reinforcing the validity and relevance of this framework for

exploring complex data relationships.

Our findings align broadly with existing Bayesian modeling

approaches applied in chronic pain research Eckert et al. (8),

highlighting the potential of Bayesian methods to identify

probabilistic and conditional relationships among pain variables.

While Eckert et al. utilized more complex physiological variables,

our analysis demonstrates that even basic demographic and

clinical variables (sex, age, pain locations) can yield valuable

predictive insights. Additionally, the methodological framework

of structural Bayesian network learning employed here follows

established hill-climbing algorithms, previously validated for

balancing efficiency and accuracy in general structural learning

contexts Gamez et al. (7); Arias et al. (9).

3 Results

3.1 Descriptive statistics

The study includes 2,400 participants selected by sex-stratified

sampling, resulting in 1,200 females and 1,200 males. Table 1 lists

pain-location prevalences lasting ¿3 months: back (34.8%), neck

(34.3%), headache (31.1%), knee (24.9%), stomach (21.8%), foot

(12.5%), hip (6.7%), all-body (6.1%), and facial (2.9%).

TABLE 1 Summary of pain distribution across body regions
with prevalence.

Body region Pain present Prevalence

Yes No %

Headache 747 1,653 31.1

All Body 146 2,254 6.1

Face 69 2,331 2.9

Neck 824 1,576 34.3

Back 836 1,564 34.8

Stomach 523 1,877 21.8

Hip 160 2,240 6.7

Knee 597 1,803 24.9

Hand 214 2,186 8.9

Foot 301 2,099 12.5
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Figure 2 shows that females report most pain sites more often

than males, especially hand pain (70.1% vs. 29.9%) and generalized

body pain (71.9% vs. 28.1%). These disparities may relate to

hormonal, autoimmune, or stress-linked factors.

Age densities indicate slightly more young males (30–40 years)

and a marginally higher male mean age. Both tails (<20 and >60

years) are thin; seniors (≥61 years) represent only 8.5% of the

sample, limiting inferences for older adults.

Figure 3 complements Table 1, visualizing the distribution

across body regions. The dominance of back and neck pain,

contrasted with rarer facial and hip pain, underlines

heterogeneous burden and sets the context for subsequent

network analyses linking pain locations to demographics.

3.2 Pain location by gender

Figure 4 compares the prevalence of various pain locations

between males and females. Females consistently report higher

proportions for most pain locations, notably hand pain (70.1%

females vs. 29.9% males) and generalized body pain (71.9%

females vs. 28.1% males).

Knee pain prevalence was 62.8% among females vs. 37.2% among

males. Hip pain was reported by 57.5% of females and 42.5% of

males. Finally, 64.5% of males and 35.5% of females selected

“None of the above” (no chronic pain) on the survey. This result

could reflect gender differences in lifestyle, occupational hazards,

physical activity, or injury-related factors that disproportionately

affect men. Additionally, males are significantly more likely to

report experiencing no pain (categorized as “None of the above”),

with 64.5% of males reporting no significant pain compared to

only 35.5% of females. This finding suggests that males generally

experience a lower prevalence of reported pain or may underreport

pain due to cultural or psychological factors related to pain

perception and reporting.

Figure 5 further emphasizes the gender differences observed in

specific pain locations, particularly facial pain and stomach or

abdominal pain. Females report a higher prevalence of facial pain

(3.5%) compared to males (2.2%). While the overall proportions of

facial pain remain low in both groups, the difference is still

noteworthy. Facial pain can often be associated with conditions like

migraines, temporomandibular disorders (TMD), or sinus-related

issues, all of which are more commonly reported in females. This

disparity may highlight underlying physiological, hormonal, or

stress-related factors that disproportionately affect women. In

contrast, some studies suggest that males may underreport pain

due to sociocultural norms and gendered expectations around

stoicism and emotional expression, which could contribute to lower

observed rates of pain reporting in men Wade et al. (10); Keogh (11).

A more substantial difference is observed in stomach or

abdominal pain, where the prevalence in females reaches 25.5%

compared to 18.1% in males. The higher proportion in females

may be related to conditions such as irritable bowel syndrome

(IBS), menstrual pain, or other gastrointestinal issues, all of

which are more prevalent among women. Hormonal changes,

particularly during the menstrual cycle or menopause, could

further contribute to these differences, underscoring the need for

gender-specific clinical attention to abdominal and

gastrointestinal complaints.

These findings, in conjunction with Figure 4, reinforce the

overall trend that females experience and report pain across

more body regions compared to males. While descriptive

FIGURE 2

Age distribution by gender: blue for females, yellow for males, with dashed lines marking mean ages. Both genders show similar distributions,

concentrated between ages 20 and 60.
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FIGURE 3

Distribution of counts across categories by variable: the plot shows the breakdown of counts for various health-related categories (e.g., headache,

neck pain) and demographics (e.g., gender, age groups) across subcategories. Data are presented in facets for clarity, with counts annotated on

the bars.

FIGURE 4

Proportion of reported pain locations by gender.
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statistics highlight these disparities effectively, they remain

limited in understanding the conditional dependencies

between different types of pain. For example, it is unclear

whether females reporting stomach pain are more likely to

experience generalized pain or whether facial pain is linked to

headaches or migraines.

3.3 Pain by age

Figure 6 highlights the variation in pain prevalence across

different age categories. Young adults report the highest

prevalence of headaches or migraines (51.8%) and stomach or

abdominal pain (50.5%). These findings suggest a greater burden

FIGURE 5

Percentage distribution of reported pain locations by gender.

FIGURE 6

Proportion of reported pain locations by age group (young adults, middle-aged, and seniors).
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of systemic and stress-related conditions in this age group.

Headaches and migraines are often associated with lifestyle stress,

hormonal influences, and increased exposure to screen time or

irregular sleep patterns Alotaibi (12); Seng et al. (13). Similarly,

stomach or abdominal pain in younger adults could be linked to

conditions like irritable bowel syndrome (IBS), dietary habits, or

stress-induced gastrointestinal issues, all of which are common in

younger populations.

An interesting trend is observed in the “None of the above”

category (see Figure 7), where 27.5% of seniors report no

significant pain, compared to 25.2% of middle-aged individuals

and 29.0% of younger adults. This could suggest that while

seniors experience more localized and musculoskeletal pain, the

absence of systemic pain locations might contribute to an overall

perception of better pain management.

The progression of pain locations across age groups reveals a

clear trend: systemic pain (e.g., headaches, stomach pain)

dominates in younger adults, while localized musculoskeletal

pain (e.g., back pain, knee pain, and foot pain) becomes

increasingly prevalent in middle-aged and senior populations.

This transition aligns with known patterns of age-related

degeneration, changes in physical activity, and lifestyle factors.

The descriptive analysis of pain locations across gender and age

groups reveals important trends, such as the higher prevalence of

systemic pain (e.g., headaches and abdominal pain) among

younger adults and females, and the increased occurrence of

localized musculoskeletal pain (e.g., back, knee, and hip pain) in

middle-aged and senior populations. However, these observations

remain isolated and fail to uncover the underlying conditional

relationships between different types of pain. For instance, it is

unclear whether hand pain influences the likelihood of back

pain, or if neck pain acts as a precursor to systemic pain such as

generalized body pain. Similarly, the role of demographic

variables like gender and age in mediating these dependencies

cannot be fully explained through descriptive statistics alone.

To address these gaps, a Bayesian Network was constructed to

model the probabilistic relationships between pain locations and

demographic factors. This network provides a graphical

representation of conditional dependencies, allowing us to

identify the pathways through which certain pains are connected

and influenced by demographic variables. The following section

presents the structure and findings of the Bayesian Network,

highlighting key relationships and their clinical implications.

3.4 Probabilistic analysis of pain patterns
with a Bayesian network

To understand the probabilistic relationships among age,

gender, and pain occurrence in various body regions, we

employed a Bayesian Network (BN) analysis. The BN provides

an intuitive graphical representation of these associations,

supported by Odds Ratios (ORs) to quantify the strength of each

relationship. Two versions of the BN were developed: one

displaying the structural connections without ORs (Figure 8) and

another enriched with annotated OR values (Figure 9).

Figure 8 offers a structural overview of the dependencies

among age, gender, and pain occurrence across different body

regions. The network reveals directional relationships, such as the

pathways from demographic factors (e.g., “Age” and “Gender”)

to specific pain locations (e.g., “Headache” and “Knee pain”),

and subsequent connections between pain regions (e.g.,

FIGURE 7

Percentage distribution of reported pain locations by age group (young adults, middle-aged, and seniors).
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“Headache” influencing “Neck” and “Back”). These pathways

highlight the cascading effects of demographic factors on the

propagation of pain through interconnected regions. For example,

“Age” and “Gender” not only directly influence primary pain

locations but also indirectly affect secondary regions such as the

“Back” and “Stomach” through intermediary nodes like

“Headache” or “Neck”. This structure underscores the probabilistic

interdependence of pain locations, suggesting that interventions

targeting specific regions may mitigate broader discomfort

networks. By mapping these relationships, the network provides a

clear framework for understanding how demographic

predispositions set the stage for downstream symptom patterns,

forming a cohesive and actionable probabilistic framework.

Figure 9 provides a detailed visualization of structural

relationships, emphasizing the strength of associations between

various pain locations as represented by annotated odds

ratios (ORs). These ORs quantitatively measure the likelihood of co-

occurrence between conditions, offering insights into key patterns.

For instance, headaches emerge as a pivotal node in the pain

network. The odds ratio (OR) of 2.87 linking headaches to neck

pain underscores a nearly threefold increase in the likelihood of

co-occurrence. Similarly, the associations with hip pain

(OR = 2.23) and stomach pain (OR = 2.97) highlight the systemic

nature of headache impact. The calculation of OR = 2.87 is based

on the probabilities:

P (Neck Pain j Headache Pain) ¼ 0:51138 and

P (Neck Pain j NoHeadache Pain ¼ 0:26739

(from Table 2), using the standard formula for odds ratios (see

Equation 1).

OR ¼
0:51138

1� 0:51138
4

0:26739

1� 0:26739
� 2:87

FIGURE 8

Bayesian network structure illustrating conditional dependencies among pain locations, age, and gender. Arrows represent the direction of conditional

dependence; specifically, an arrow from variable A to variable B indicates that B is conditionally dependent on A. This structure captures the

probabilistic relationships identified in the dataset using a score-based structure learning algorithm.
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This precise computation highlights the strong relationship

between headaches and neck pain as observed in the data.

Table 2 provides detailed demographic probabilities

highlighting meaningful age and gender differences in headache,

hand, and neck pain.

Gender-based differences also show pronounced disparities.

Among females, 37.83% report headaches, a stark contrast to the

24.42% in males, reflecting their greater predisposition. Similarly,

females demonstrate elevated probabilities of reporting hand pain

(11.95%) compared to males (5.16%). This pattern is echoed in

neck pain, where 29.47% of females report the condition,

compared to 16.92% of males, suggesting nearly one-third of

females are affected.

Inter-symptom relationships further clarify the

interconnected nature of pain locations. For example, among

those with headaches, 50.067% also report back pain, compared

to 27.95% of those without headaches. This suggests that more

than half of headache sufferers experience back pain. Similarly,

28.03% of individuals with headaches report stomach pain,

compared to only 10.78% of those without. This indicates that

over one-quarter of headache sufferers are burdened with

stomach pain, pointing to systemic implications. Facial pain is

particularly striking, with 5.65% of individuals with headaches

reporting it, a stark contrast to just 0.52% of those

without headaches.

Finally, pain in specific regions reveals predictive patterns.

Among individuals with hip pain, 19.09% report hand pain, far

exceeding the 2.38% seen in those without hip pain. Similarly,

hand pain is reported by 28.65% of individuals with foot pain,

compared to only 4.22% in those without. This demonstrates that

over one-quarter of individuals with foot pain concurrently

experience hand pain, emphasizing the interconnectedness of

pain locations across regions. These probabilities underscore the

pervasive and overlapping nature of pain syndromes, reinforcing

the necessity of targeted interventions tailored to specific

demographic and symptom profiles.

Figure 10 illustrates the odds ratios (ORs) and 95%

confidence intervals (CIs) for various demographic and inter-

FIGURE 9

Bayesian network of pain relationships: this graph shows probabilistic links between age group, gender, and reported pain in various body regions,

highlighting directional dependencies and associated odds ratios (ORs). Arrows represent the direction of conditional dependence; an arrow from

variable A to variable B indicates that B is conditionally dependent on A. Solid black arrows denote statistically significant relationships (OR > 1 with

95% CI not crossing 1), while dotted blue arrows represent inverse or non-significant associations. The numerical values adjacent to the arrows

are the corresponding ORs derived from the conditional probability Table 2.
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FIGURE 10

Confidence intervals for odds ratios (OR) of pain relationships, showing significant positive (right of OR = 1) and negative (left of OR = 1) associations,

ordered by OR magnitude on a log scale.

FIGURE 11

Probabilities of pain locations: green shows reported pain (“Yes”), red shows no pain (“No”), highlighting demographic trends and interconnections

between pain locations.
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symptom relationships related to pain locations. It highlights

notable patterns, such as the higher likelihood of younger

individuals experiencing headaches (OR > 1), while middle-

aged and senior groups have lower odds, reflecting an age-

related protective trend. Gender-based disparities are evident,

with females showing increased odds for headaches, neck pain,

and hand pain compared to males. Strong inter-symptom

connections emerge, such as the significant association

between headaches and back pain, stomach pain, and facial

pain, with consistently elevated ORs. Similarly, hip pain is

closely linked to hand pain, while foot pain is strongly

associated with knee and hand pain. ORs above 1 (with CIs

not crossing 1) confirm these positive associations, while ORs

below 1 reveal inverse relationships, such as the reduced

likelihood of headaches in seniors. This graph underscores the

interconnected nature of pain locations and demographic

vulnerabilities, providing a visual representation of the

systemic patterns observed in Table 2.

Figure 11, also based on the data in Table 2, visualizes the

probabilities of individuals reporting specific pain locations

(“Yes”) vs. not reporting them (“No”) for different demographic

and inter-symptom relationships. The horizontal bars represent

the percentage probabilities, with green dots indicating positive

responses (“Yes”) and red dots indicating negative responses

(“No”). Key patterns emerge, such as the high probability of

individuals with hand pain also reporting neck pain, back pain,

or systemic pain (as seen in the larger green segments for these

categories). Similarly, headache shows strong associations with

neck pain, back pain, and stomach pain, reflecting interconnected

pain locations.

4 Discussion

Our Bayesian network analysis revealed a complex web of

probabilistic dependencies among chronic pain locations and

demographic factors, underscoring the overlapping nature of pain

syndromes and the need for targeted, personalized interventions.

By quantifying these interconnections via odds ratios (ORs), we

highlight key “hub” sites—particularly hand and facial pain—and

demographic modifiers that may serve as early indicators of

more widespread pain.

4.1 Gender-specific biopsychosocial
pathways

We observed pronounced gender disparities across systemic

pain conditions. Females represented 70% of those reporting

generalized body pain and hand pain, and exhibited elevated

odds for headache (OR = 1.88), neck pain (OR = 1.93), and

hand pain (OR = 2.54). Beyond hormonal fluctuations (e.g.,

estrogen’s modulation of nociceptive pathways), autoimmune

disorders (which disproportionately affect women) and stress-

related HPA-axis dysregulation likely contribute to these

patterns Nijs et al. (14); Ji et al. (15). Central sensitization—a

process of amplified CNS signaling—and nociplastic

mechanisms further explain the co-occurrence of distinct

pain sites in females, aligning with the chronic overlapping

pain conditions framework Maixner et al. (16). Clinically,

this suggests that women presenting with hand or facial pain

warrant early assessment for systemic sensitization.

4.2 Key network hubs: hand and facial pain

Hand pain emerged as a potent trigger site, with ORs of 8.41

for facial pain, 8.25 for foot pain, and 7.68 for generalized pain.

Its dense peripheral innervation and frequent overuse may

amplify central nociceptive gain, precipitating multisite

sensitization Tracey and Mantyh (17). Facial pain, in turn, was

highly dependent on headache and hand pain (OR = 11.30),

reflecting shared trigeminal and brainstem circuitry Cook and

Chastain (18); Schwedt et al. (19). These hubs underscore

strategic intervention targets: for example, early physiotherapy for

TABLE 2 Summary of probabilistic relationships, their corresponding
percentages of “Yes” and “No” outcomes, odds ratios (OR), and 95%
confidence intervals (CI) derived from the Bayesian network analysis.

Relationship Yes
(%)

No
(%)

Odds
Ratio

95% CI

Lower Upper

Age:Young →

Headache

39.450 25.370 1.917 1.609 2.284

Age:Middle →

Headache

27.737 34.599 0.726 0.610 0.863

Age:Senior →

Headache

11.275 32.969 0.258 0.166 0.402

Age:Young → Knee 17.839 29.739 0.513 0.420 0.626

Age:Middle → Knee 27.901 21.772 1.390 1.154 1.675

Age:Senior → Knee 40.686 23.406 2.245 1.669 3.019

Gender:Female →

Headache

37.833 24.417 1.884 1.580 2.246

Gender:Female →

Hand

12.500 5.333 2.536 1.870 3.438

Gender:Female→ Neck 41.667 27.000 1.931 1.627 2.293

Headache → Neck 51.138 26.739 2.867 2.395 3.433

Headache → Hip 10.442 4.961 2.234 1.617 3.085

Headache → Stomach 35.475 15.608 2.973 2.433 3.632

Headache → Face 7.631 0.726 11.297 6.024 21.186

Headache → Back 50.067 27.949 2.585 2.161 3.092

Hip → Hand 38.750 6.786 8.691 6.074 12.434

Hand → Face 13.551 1.830 8.410 5.096 13.880

Hand → Foot 45.794 9.286 8.253 6.082 11.199

Hand → All Body 25.234 4.209 7.682 5.293 11.149

Hand → Back 65.421 31.839 4.050 3.013 5.444

Hand → Neck 66.822 31.153 4.451 3.302 6.000

Neck → Back 56.675 23.414 4.279 3.572 5.125

Neck → Foot 23.301 6.916 4.089 3.175 5.265

Neck → Stomach 34.830 14.975 3.035 2.486 3.704

Back → Stomach 33.493 15.537 2.738 2.245 3.338

Back → Knee 40.311 16.624 3.387 2.796 4.104

Back → All Body 11.842 3.005 4.336 3.030 6.203

Foot → Knee 55.150 20.534 4.759 3.704 6.114
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FIGURE 12

Analytic pipeline for Bayesian network modeling. We begin with Inputs—demographic covariates (age, gender) and self-reported pain-location data—

fed into the Structure Learning phase (hill-climbing with BIC) to uncover the DAG of conditional dependencies. Next, Parameter Learning (MLE)

estimates conditional probability tables (CPTs). From these, we compute Odds Ratios (ORs), which quantify the strength and direction of

relationships (OR > 1 indicates increased likelihood; OR < 1 indicates decreased likelihood). The highest ORs identify Pain Hubs & Dependencies

(e.g., hand pain, facial pain), which then inform Personalized Intervention Insights by highlighting key targets for early, tailored clinical strategies.

Al-Khinji and Malouche 10.3389/fpain.2025.1573465

Frontiers in Pain Research 13 frontiersin.org

https://doi.org/10.3389/fpain.2025.1573465
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


hand pain or multimodal migraine management may disrupt

downstream pain propagation.

4.3 Age-related shifts and demographic
considerations

We confirmed an age-dependent transition from systemic to

localized musculoskeletal pain. Younger adults reported higher

rates of headache (39.4%) and abdominal pain (26.9%), likely

linked to lifestyle stressors, screen use, and IBS Lovell and Ford

(20). Middle-aged individuals exhibited peaks in back (50.2%),

neck/shoulder (55.8%), and knee pain (56.8%), consistent with

cumulative mechanical strain and early osteoarthritis Zhang and

Jordan (21); Coté et al. (22). We deliberately defined “seniors” as

≥61 years (to preserve sufficient sample size), finding elevated

knee (40.7%) and foot pain (16.2%), but markedly lower systemic

pain. While this cutoff ensured robust estimates, it differs from

the common ≥65 year threshold, which should be considered

when comparing to other cohorts.

4.4 Clinical implications and personalized
strategies

Our analytic pipeline (Figure 12)—from demographic and pain

inputs through BN structure and parameter learning—yields

conditional probabilities and ORs that pinpoint critical nodes for

intervention. Targeted approaches, such as hormonal modulation

in women with recurrent headaches or tailored hand

rehabilitation, could preempt central sensitization and mitigate

multisite pain. Embedding these probabilistic insights into

clinical decision support tools may optimize resource allocation

and patient outcomes. Our analytic pipeline (Figure 12)—from

demographic and pain inputs through BN structure and

parameter learning—yields conditional probabilities and ORs that

pinpoint critical nodes for intervention. Targeted approaches,

such as hormonal modulation in women with recurrent

headaches or tailored hand rehabilitation, could preempt central

sensitization and mitigate multisite pain. Embedding these

probabilistic insights into clinical decision support tools may

optimize resource allocation and patient outcomes.

4.5 Limitations and future directions

This study has several limitations:

1) Age cutoff and sample size. We defined “seniors” as ≥61 years

to maintain adequate sample size; however, this differs from

the more common≥ 65 year standard and may affect

comparability with other studies.

2) Self-report bias and lack of severity grading. Pain locations and

duration (¿3 months) are self-reported without clinical

validation or intensity scales, which may introduce recall and

reporting biases.

3) Cross-sectional design and BN sensitivity. While BNs uncover

conditional dependencies, they cannot establish causality or

temporal directionality. Structure learning is data-driven and

sensitive to sample size and variable discretization.

4) Generalizability. Our findings derive from a Qatari cohort and

require replication in diverse populations.

Future research should integrate longitudinal data, biomarker

and imaging measures, and quantitative sensory testing to refine

network structures and validate risk patterns against treatment

outcomes. Such efforts will advance precision pain medicine by

linking mechanistic biomarkers with probabilistic modeling.

5 Conclusion

The results of this study provide a comprehensive

understanding of chronic pain dynamics through a Bayesian

Network (BN) model. While barplot visualizations initially

suggested that all pain variables were uniformly linked to the

gender variable, the BN analysis revealed a more intricate

interplay. Specifically, gender influenced certain pain variables

such as neck or shoulder pain and headache or migraine,

showing stronger associations in females compared to males,

particularly when combined with hand pain. These findings

underscore the sophistication of BN analysis, which allows for a

deeper exploration of conditional dependencies and interactions.

Moreover, the study sheds light on the significant role of

demographic factors like age and gender in chronic pain

pathways. For instance, the model demonstrated that younger

individuals had a higher likelihood of reporting headaches

compared to older cohorts, with seniors showing markedly

reduced probabilities. Similarly, the analysis revealed that females

are disproportionately affected by certain pain locations, such as

neck or shoulder pain, a trend that is amplified in the presence

of co-occurring conditions like hand pain or headaches. These

insights emphasize the importance of tailoring pain management

strategies to demographic characteristics, ensuring interventions

are both gender-sensitive and age-appropriate.

Additionally, the BN model illustrated how specific pain

locations, such as back pain, act as central nodes influencing the

broader pain network. For example, back pain showed strong

conditional dependencies with both neck pain and widespread

body pain, highlighting the interconnectedness of musculoskeletal

and systemic pain syndromes. This underscores the necessity of

addressing primary pain sources to mitigate cascading effects

throughout the pain network.

By leveraging the BN framework, this study provides a robust

methodological approach for disentangling complex relationships

in chronic pain. It offers actionable insights into how

demographic factors and localized pain locations interact to

propagate or mitigate overall pain experiences. The model’s

ability to elucidate these intricate pathways can guide the

development of more effective, personalized interventions aimed

at reducing the burden of chronic pain. This nuanced approach
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offers a promising framework for advancing both the

understanding and management of chronic pain.
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