
EDITED BY  

Robert Warren Gould,  

Wake Forest University, United States

REVIEWED BY  

Kimberly Marie Holter,  

Vanderbilt University, United States  

Dominika Burek,  

McLean Hospital, United States

*CORRESPONDENCE  

Clare M. Diester  

clare.diester@unibas.ch

RECEIVED 10 April 2025 

ACCEPTED 12 September 2025 

PUBLISHED 20 October 2025

CITATION 

Diester CM and Joo W (2025) At the 

Intersection of Pain and Sleep: a Roadmap for 

Preclinical Pain Research.  

Front. Pain Res. 6:1609524. 

doi: 10.3389/fpain.2025.1609524

COPYRIGHT 

© 2025 Diester and Joo. This is an open- 

access article distributed under the terms of 

the Creative Commons Attribution License 

(CC BY). The use, distribution or reproduction 

in other forums is permitted, provided the 

original author(s) and the copyright owner(s) 

are credited and that the original publication 

in this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

At the Intersection of Pain and 
Sleep: a Roadmap for Preclinical 
Pain Research

Clare M. Diester* and William Joo

Biozentrum, University of Basel, Basel, Switzerland

The complex relationship between pain and sleep has received increasing 

attention for its therapeutic potential. Over half of chronic pain patients suffer 

from sleep disorders, and poor sleep is a strong predictor for pain in clinical 

populations. Understanding the bidirectional relationship between pain and 

sleep is crucial for developing improved clinical treatment strategies. This 

review provides (1) a primer on preclinical methods used to measure sleep 

behaviors, (2) an overview of neural circuits at the intersection of pain and 

sleep, and (3) considerations for future pain and sleep investigations and 

treatment strategies.
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Introduction

Chronic pain affects millions of people globally and is even more prevalent than other 

chronic conditions such as diabetes and hypertension (1, 2). Impaired sleep and fatigue 

are primary complaints for most chronic pain patients (3–5). Indeed, patients suffering 

from chronic pain exhibit significant sleep disturbances such as fragmented sleep, non- 

restorative sleep, disrupted sleep architecture, difficulties initiating sleep, pain-related 

arousals from sleep, and abnormally shallow sleep (2, 3, 6). Within chronic pain 

patients, the degree of sleep disturbance is associated with pain severity (7–10). 

Conversely, application of acute noxious stimuli to healthy subjects has been shown to 

be equally disruptive across all sleep stages in controlled lab environments (11–13).

A large portion of the general population also suffers from sleep disorders, with 

insomnia being the most common (∼10%–15% of the general population) (14). 

Roughly 40% of insomnia patients also report chronic pain (6). Short sleep duration 

or disturbed sleep can increase spontaneous pain, enhance pain sensitivity, and 

amplify pain-elicited neuronal responses, in part by disrupting pain modulatory 

systems (2, 6, 8, 9, 11, 15, 16). Furthermore, sleep disturbances or sleep disorders are 

associated with chronic postsurgical pain or exacerbation of existing pain, while 

patients with poor sleep exhibit increased risk of developing chronic pain (6, 17, 18).

While sleep and pain have been extensively studied within their respective fields, the 

dynamic interplay between pain and sleep remains poorly understood. This review is 

targeted to preclinical pain researchers interested in adding sleep as a primary 

outcome variable to their studies. Below, we summarize approaches to study sleep, 

brain regions that may regulate pain and sleep, and key considerations for future 

experimental design. For more comprehensive discussions on the state of sleep 

research or the neurochemical mechanisms, in7ammatory interactions, and 
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pharmacological modulation of pain and sleep, we refer readers to 

other excellent reviews (7, 9, 19–23).

Methods to measure sleep

Sleep is a highly conserved biological phenomenon, with well- 

defined methods to evaluate different facets of sleep-wake 

behavior (19, 20, 24–27). Methods range in sensitivity, reliability 

of sleep-related interpretations, and ease of implementation 

alongside existing common pain-related behavioral measures. 

Below, we discuss experimental approaches to measure sleep- 

wake behavior, with comments on integration into pain-related 

behavioral measures.

Dependent variable

The first class of behavioral measures for preclinical sleep- 

related endpoints are non-invasive observational approaches. 

These can monitor locomotion via standard behavioral methods 

such as video tracking, beam breaks, or wheel running, along 

with techniques such as piezoelectric films that can capture 

additional features such as respiratory rate and heart rate, as 

depicted in Figure 1 (28–32). Advancements in markerless pose 

estimation tools such as DeepLabCut (DLC) and Social LEAP 

(SLEAP) can classify additional behaviors such as sleep 

preparatory behaviors and multi-animal social sleep behavior 

(33–36). Newer devices merge the non-invasive nature of home- 

cage monitoring with more refined sleep/wake analyses, such as 

sleep/wake phenotyping based on respiratory patterns (37). 

However, most of these methods cannot classify Rapid-Eye 

Movement (REM) sleep or other fine-grained properties of sleep 

(24, 37). Additionally, methods such as voluntary wheel running 

can evaluate circadian rhythms but can also change baseline 

sleep-wake behavior in the absence of other perturbations (38). 

Overall, non-invasive methods are attractive because they do not 

require surgery and can easily be integrated with existing 

behavioral paradigms. However, these techniques primarily 

measure physical activity-based correlates of sleep and wake, 

especially for locomotion-based assays. Given that rodents 

frequently enter low-mobility wake states, true “sleep” should 

not be assumed based on locomotor quiescence without 

additional measures and/or validation with EEG data. 

Accordingly, these measures have been recommended for high- 

throughput screens with secondary methods for further 

evaluation of sleep architecture (30, 31).

The second class of sleep measures requires surgical 

procedures for classical evaluation of brain electrical activity. In 

mammals, tethered recording of electroencephalography (EEG) 

and electromyography (EMG) data has been the gold-standard 

for sleep state classification in preclinical research (19, 20, 39, 

40). Surgical procedures secure EEG electrodes in the skull over 

key cortical regions, as well as EMG electrodes in the neck 

extensor muscle to capture postural tone (39, 40). These 

components are joined to an external implant on the head with 

a 7exible cable (with a rotating commutator if desired) that 

relays EEG and EMG signal.

Wireless telemetry-based methods offer a non-tethered 

alternative in which EEG and EMG electrodes connect to a 

surgically implanted transmitter, which links to a receiver under 

or near the animal cage. Telemetry allows animals to move 

more freely during experiments but can be more complex to 

build and often relies on expensive consumables. Battery life is 

another consideration when designing longitudinal experiments 

(41). Additionally, care should be taken to ensure that 

implanted transmitter devices do not impact baseline behaviors, 

as larger devices can increase surgery recovery time and 

chronically disrupt home cage behaviors (42). Recent efforts 

have focused on reducing implant size and incorporating 

multiple biopotential leads to combine EEG with additional 

physiological measures. Both tethered and telemetry-based 

approaches can be seamlessly integrated with video monitoring 

and implant-based neuroscience methods such as optogenetics, 

fiber photometry, extracellular electrophysiology, functional 

ultrasound imaging, multimodal fibers, and in vivo microscopy 

(43–47). As with any surgical manipulation, animals are 

inherently subjected to surgical pain requiring pharmacological 

treatment. Accordingly, researchers should ensure full recovery 

and stable post-surgical sleep/wake behavior before conducting 

pain-related experiments. While both involve basic surgical 

training and additional equipment such as amplifiers or 

receivers, these techniques can connect external behavioral 

readouts with concordant brain-state activity to better 

understand whole-organism behavioral states.

Sleep stage classification

Standardized methods for analyzing sleep and wake data do 

not currently exist within the preclinical sleep field. Instead, 

many labs use custom software and analysis parameters tailored 

to specific questions. Historically, EEG and EMG data have been 

visually scored by trained experts, which can produce variability 

between analysts and is extremely time consuming, often 

restricting the length of the experimental time window (24, 39). 

Continuous advances in automated sleep classification based on 

EEG and EMG data now allows easier analysis of long time 

periods (days and weeks), removes between-analyst sleep scoring 

variability, and reduces data processing time (24). However, 

these automated classifiers are not 100% accurate and are often 

paired with partial manual scoring (24). Regardless of scoring 

method, EEG and EMG data are typically divided into three 

main states: Wake, Non-REM sleep (NREM), and Rapid-Eye 

Movement sleep (REM), with further details described below.

Baseline circadian vs. sleep disruption

First proposed by Borbély in 1982, the two-process model 

proposes that sleep is regulated by two separate but interacting 

systems: A circadian system (Process C) that aligns sleep/wake 
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behaviors with day/night cycles, and a homeostatic system 

(Process S) that adjusts sleep depth and amount according to 

prior sleep/wake history (48). In general, noxious stimuli can be 

evaluated during baseline circadian behavior or in the context of 

homeostatic sleep disruption. Importantly, both noxious stimuli 

and sleep loss can be conducted acutely or chronically. Given 

that pain and sleep are both multifaceted phenomena that 

impact numerous physiological systems, their interaction 

introduces additional layers of complexity that require careful 

consideration in experimental design. Below are some 

considerations for designing experiments, divided into the 

implications of noxious stimuli applied during baseline circadian 

behavior or sleep disruption.

Baseline Circadian: Baseline behavior critically includes 

circadian regulation of biological systems, including core 

processes involved in sleep and pain regulation (49–52). 

Preclinical and clinical work both highlight the large impact of 

circadian rhythms on pain-related responses (51, 53). For 

example, Daguet and colleagues unmasked circadian rhythmicity 

in sensitivity to noxious heat stimuli in men, showing a 

sinusoidal rhythm with peak responses in the middle of the 

night and lowest responses in the afternoon (54). Circadian 

rhythmicity of acute nociception has long been demonstrated in 

rodents, including strain-based differences in peak pain 

sensitivity in mice. For instance, inbred C57BL/6 mice (one of 

the most commonly used strains in preclinical research) exhibit 

increased dark-phase sensitivity, while outbred Swiss Webster 

mice exhibit peak sensitivity during the light-phase (51, 55–57). 

Modulating circadian rhythmicity can impact pain-related 

behaviors, as exemplified by changes in mechanical allodynia 

after misaligned feeding in mice (58). Specific circadian timing 

of surgical procedures may in7uence patient outcomes. For 

example, aortic valve replacements and hip replacements have 

been associated with fewer adverse effects when surgeries were 

performed in the afternoon (59, 60). In rodents, some studies 

report enhanced wound healing following morning injuries; 

however, not all operations may have circadian sensitivity, as 

surgical timing did not affect pain outcomes in models of paw 

incision or tibial bone fracture (61–63). Moreover, time of day 

will strongly in7uence 7oor and ceiling effects given the natural 

circadian distribution of sleep/wake behavior. Accordingly, 

circadian timing should be carefully considered when assessing 

pain/sleep interactions.

Sleep Disruption: Preclinical and clinical studies have 

clearly demonstrated a bidirectional relationship between pain 

and sleep loss. For example, both acute and chronic sleep 

deprivation can alter acute pain sensitivity and exacerbate 

chronic pain, while poor sleep quality can predict following- 

day pain. In some cases, treatment of sleep disruptions 

can improve pain outcomes. Conversely, acute and chronic 

pain can alter sleep architecture, and chronic pain is a 

significant risk factor for developing sleep disorders (2, 6–9, 

11, 15, 64–69).

Preclinical studies use numerous methods to disrupt sleep. 

Manual sleep deprivation methods include novel objects 

exposure and gentle handling (70, 71). Automated methods 

include a slowly rotating bar at the bottom of the cage, shaking 

platforms, and raised surfaces above shallow water, and may be 

more feasible for longer deprivation studies (70, 72). Sleep 

disruption methods typically aim to (a) robustly decrease sleep 

over the desired period, and (b) minimize stress, particularly 

since stress has been shown to modulate both pain and sleep 

(70). Corticosterone levels are a commonly used readout of 

stress induction (70). Sleep disruption-induced stress will likely 

vary by method and laboratory setup, as exemplified by a recent 

study that found sleep deprivation with an automated sweeping 

bar significantly increased corticosterone levels while gentle 

handling did not (73).

The duration of the sleep manipulation can drastically 

impact pain-related processes. For example, 9 h and 12 h 

sleep disruption produced pain-related behaviors in mice, but 

6 h sleep disruption only produced allodynia when repeated 

for five consecutive days (74). Pain-related response 

magnitude may also change over the course of chronic sleep 

restriction. For instance, during a 26-day chronic 6hr sleep 

restriction, mechanical allodynia increased up to 12 days, 

where it remained stable until day 26 (75). Finally, timing for 

behavioral testing around sleep manipulations is important 

and will depend on the research question. Clear time 

windows for evaluation of sleep disruption-induced pain 

should be determined, especially for cases where the 

hypersensitivity naturally resolves (74). Effects of 

perioperative sleep disruption on post-surgical pain can also 

be differentially evaluated depending on whether the sleep 

disruption occurs before, after, or surrounding a surgical 

procedure (76–81).

Overview of general sleep architecture

States

EEG and EMG data are generally classified into three main 

states: (1) Wake, with high-frequency, low amplitude 

desynchronized EEG activity paired with EMG re7ecting active 

changes in muscle tone; (2) Non-REM sleep (NREM), with 

synchronized low-frequency, high-amplitude EEG activity; and 

(3) Rapid-Eye Movement sleep (REM, also called paradoxical 

sleep), with desynchronized high-frequency, low amplitude 

activity similar to that of wake, and reduced EMG signal 

re7ecting muscle atonia (19, 20, 32). In rats, NREM can be 

divided into two stages re7ecting higher or lower sleep depth 

(19). For mice and rats, wake can also be further divided into 

active or inactive wake based on EEG and EMG properties or 

secondary measures, such as video observation.

In humans, NREM sleep is divided into three stages based on 

increasing sleep depth: N1-N3 (82). Sleep and wake in humans are 

highly consolidated, with very few night awakenings and 

continuous wake during the day, as demonstrated in Figure 1. 

In contrast to humans, mice sleep more during the light phase 

and have more fragmented NREM and REM sleep cycles with 

frequent awakenings during their resting phase. Mice also have 
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less consolidated sleep than humans and sleep during their active 

phase. Despite these differences, EEG features and brain regions 

regulating sleep and wake states show remarkable conservation 

between the two species (19, 20).

Spectra

EEG oscillations span a wide range of frequencies that are 

often divided into behaviorally meaningful ranges, such as delta 

FIGURE 1 

Common methods for measuring sleep. (a), Example non-invasive methods for classifying sleep behavior in rodents and example 5-day actigraphy 

data. Rows represent consecutive days; the dashed line indicates the transition from light to dark phase. The white bar indicates light phase starting at 

zeitgeber time (ZT) 0, the black bar indicates dark phase starting at ZT12. (b), Example invasive methods for evaluating sleep/wake architecture and 

sample mouse EEG and EMG recordings during the three vigilance states: Wake, NREM, and REM. (c), Sample hypnogram data for a mouse (top) and 

human (bottom). Human data are from the Sleep-EDF database (196, 197). Mice sleep more during the light phase with frequent arousals and often 

take a “siesta” at the end of their active dark phase. Humans have three NREM phases increasing in sleep depth. Sleep and wake behavior is highly 

consolidated, with rare arousals during the night in healthy individuals.
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waves (∼0.5–4.5 Hz), theta oscillations (∼5–10 Hz), and gamma 

oscillations (∼30–150 Hz). The power distribution across these 

frequency ranges is highly characteristic of different vigilance 

states. For example, a hallmark of NREM sleep are high- 

amplitude slow delta oscillations (which is why NREM is also 

called Slow Wave Sleep), while Wake and REM EEG are 

predominantly comprised of desynchronized low-amplitude, 

high-frequency activity. EEG characteristics alongside EMG data 

result in robust and highly reliable classification of sleep and 

wake states (19, 20). Preclinical and clinical evidence indicate 

that chronic pain can alter these frequency bands; however, 

these effects may vary by pain indication and manifest as global 

or regionally specific spectral changes (83–88). Researchers are 

currently working to determine the utility of these EEG 

frequency bands for use as a diagnostic, monitoring tool, or 

treatment for chronic pain patients.

Additional features

Depending on the research question, additional EEG features 

may add important insights to pain and sleep interactions. For 

example, microarousals (3- to 15-second-long wake intrusions 

into NREM sleep) have recently been described as disrupting 

restorative and plasticity-promoting sleep (89). Preclinical 

neuropathic pain—but not in7ammatory or chemical pain— 

produced microarousals and higher sensory arousal during 

NREM sleep without changing total sleep time, offering a 

possible biomarker for spontaneous neuropathic pain in mice 

(69, 89, 90). Sleep spindles (∼10–16 Hz), which 7uctuate in 0.5– 

2.0 s oscillations during NREM sleep, are one of the most 

heritable components of EEG signatures, and likely re7ect 

properties of the underlying thalamocortical circuits (19, 91, 92). 

Recent preclinical work has demonstrated that both acute 

in7ammatory pain in mice and chronic in7ammatory pain in 

rats reduces sleep spindle density, and alleviating pain-related 

behaviors also restored sleep spindle activity, suggesting sleep 

spindles as a possible marker for acute or chronic pain (93, 94).

Neuronal circuitry implicated within 
the intersection of pain and sleep

Extensive work has independently characterized neural 

circuits of acute and chronic pain and the neural mechanisms 

regulating sleep and wake (19, 20, 95–105). As other reviews 

have described the neuroanatomy of either pain or sleep (19, 20, 

95–105), this section focuses on neuronal mechanisms directly 

linking pain and sleep regulation. Relevant anatomy is 

categorized by the following pain and sleep interactions: (1) 

Acute noxious stimuli during baseline sleep/wake, (2) Acute 

noxious stimuli with acute sleep disruption (3) Acute noxious 

stimuli with chronic sleep disruption, (4) Chronic pain during 

baseline sleep/wake, (5) Chronic pain with acute sleep 

disruption, and (6) Chronic pain with chronic sleep disruption.

Acute noxious stimuli during baseline sleep/wake: Acute 

noxious stimuli applied during wake engage the widely studied 

ascending and descending pain circuitry, which has been 

comprehensively reviewed elsewhere (51, 95–98, 104, 105). 

Application of acute noxious stimuli during sleep in both 

humans and rodents show consistent arousal-promoting activity 

in sensory regions. Noxious stimulus-induced arousal can be 

predicted by intracortical functional connectivity, and locus 

coeruleus noradrenergic activity may be an important mediator 

for such stimulus-induced arousal (106–109). Recent work has 

shown that both noxious and innocuous stimulus-induced 

activity sequentially activate the somatosensory cortex (S1) and 

anterior cingulate cortex (ACC) independent of behavioral 

response (110). Interestingly, this sequential somatosensory 

processing is conserved during uninterrupted sleep bouts. This 

suggests that somatosensory processing is preserved during sleep 

even in the absence of visible behavioral responses.

Acute noxious stimuli with acute sleep disruption (Figure 2): 

Preclinical and clinical evidence both indicate that acute sleep 

disruption alters pain-related neuronal activity in the S1 (8, 9, 

65, 74, 111, 112). In humans, acute sleep disruption amplified 

S1 pain responses, and the degree of amplification predicted 

increased painful temperature range across individual patients 

(112). Recent preclinical work has directly linked increased S1 

activity after acute sleep deprivation to increased activity in the 

locus coeruleus (LC), a region that regulates wake and REM via 

noradrenergic signaling (74). Specifically, noradrenergic 

neurons in the LC (LCNA) project to glutamatergic neurons in 

hindlimb S1 (S1HLGlut). After a 9hr acute sleep deprivation, 

LCNA neurons release more noradrenaline (NA) in the S1HL, 

leading to elevated S1HLGlut activity. Selective activation and 

inhibition demonstrated this LCNA 
→ S1HL pathway to be both 

sufficient and required for acute sleep deprivation-induced 

hypersensitivity and allodynia. A separate study evaluated the 

interactions between 24 h sleep deprivation and nitroglycerin 

(NTG)-induced migraine-like headache and found that LCNA 

neuronal activation exacerbated sleep deprivation-induced 

amplification of acute headache behaviors while inhibition could 

alleviate them (111). However, LCNA inhibition may decrease 

re7exive pain-related behaviors due to general suppression of 

arousal. Indeed, manipulation of all LCNA neurons altered 

baseline sleep, with inhibition also producing general depression 

of pain-related re7exive behaviors in the absence of noxious 

stimulus or sleep deprivation. In contrast, selectively 

manipulating LCNA 
→ S1HL projections in rested animals did 

not disrupt baseline sleep or pain-related behaviors (74). This 

suggests targeting specific circuits rather than all LCNA neurons 

may be key to alleviating symptoms without disrupting general 

behavior. Taken together, these data suggest the LC plays a 

pivotal role in multiple pain and sleep modalities through its 

arousal-promoting functions (107, 113).

Preclinical and clinical evidence also suggest that the nucleus 

accumbens (NAc) regulates the interaction between acute 

noxious stimuli and acute sleep disruption. In humans, acute 

sleep disruption blunts acute pain reactivity in the NAc, along 

with the thalamus and insular cortex (112). In rodents, acute 
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REM sleep deprivation in rats produces allodynia, an effect 

potentially mediated by adenosine and dopamine signaling 

(114). Specifically, D2 receptor agonists, adenosine A2A receptor 

antagonists, and caffeine prevented REM sleep deprivation- 

induced allodynia. Adenosine signaling in the MnPO also 

mediates pain reactivity, as adenosine A2A receptor antagonist 

microinjection prevents both sleep disruption-induced 

hyperalgesia and exacerbation of postoperative hypersensitivity 

(see chronic pain with acute sleep deprivation section) (76). 

This provides further evidence that adenosine A2A signaling 

mediates sleep deprivation-induced pain-related behaviors in 

response to multiple sleep disruption methods.

REM sleep deprivation also produced changes in brainstem 

activity, including increased cFos expression in the rostral 

FIGURE 2 

Acute noxious stimuli with acute sleep disruption. Neuroanatomical regions implicated in regulating the interaction between pain and sleep in 

rodents (left column) and humans (right column) from studies pairing acute noxious stimuli with acute sleep disruption. Detailed descriptions are 

in the corresponding text section, and references are in superscript. SD, sleep disruption; S1HL, hindlimb primary somatosensory cortex; 

Glut, glutamatergic.

Diester and Joo                                                                                                                                                      10.3389/fpain.2025.1609524 

Frontiers in Pain Research 06 frontiersin.org



ventral medulla (RVM), an important region for descending pain 

modulation (115). Microinjection of a cholecystokinin (CCK)-2 

receptor antagonist or lidocaine into the RVM decreased REM 

sleep deprivation-induced increases in mechanical 

hypersensitivity, with no effect on control rats. In contrast, 

CCK-2 receptor agonist injected into the RVM increased 

hypersensitivity only in control animals. The periaqueductal 

gray (PAG), another region critical for descending pain 

modulation, is also modified following REM-specific sleep 

deprivation. Specifically, REM sleep deprivation decreased the 

maximum antinociceptive effect of intra-PAG morphine 

injection on mechanical hypersensitivity. Taken together, these 

data suggest REM-specific acute sleep disruption increases acute 

pain-related behaviors by disrupting descending pain 

modulation, impacting general hypersensitivity, and decreasing 

the analgesic effectiveness of morphine.

Acute noxious stimuli with chronic sleep disruption 

(Figure 3): Multiple studies have examined how chronic sleep 

disruption alters responses to acute noxious stimuli (52, 75, 

116–120). Patients with chronic sleep disorders such as 

obstructive sleep apnea (OSA) exhibit increased cortical fMRI 

signal duration during cold pressor noxious stimulus application 

(116). In contrast, regions including the hippocampus, 

amygdala, insula, ventral thalamus, midbrain, pons, and medulla 

showed decreased fMRI signal in OSA patients compared to 

controls, suggesting dynamic global changes to how OSA 

patients perceive acute thermal noxious stimuli.

The opioid system may contribute to the cortical changes 

observed in patients with chronic sleep disruption. Individual 

patient sleep duration is negatively associated with mu-opioid 

receptor binding potential in cortical regions such as the frontal 

lobes and anterior cingulate cortex (ACC), offering a possible 

mechanism for the decreased opioid efficacy observed in sleep 

deprived patients (52). Preclinical pharmacological work 

provides further evidence that ACC activity partially mediates 

the pronociceptive effects of chronic sleep deprivation in male 

rats (117). More specifically, ACC dopaminergic D2 receptor, 

serotonergic 1A receptor, and adenosine A2A receptor activity 

were each required for sleep deprivation-induced hypersensitivity.

Recent work has identified the NAc, a key region for 

dopamine signaling, as an important mediator in chronic sleep 

deprivation-induced hypersensitivity (75, 117, 118). In male rats, 

the immediate early gene cFos increased in the NAc after 

chronic sleep deprivation and returned to baseline levels during 

rebound sleep. cFos expression correlated with the intensity of 

the pronociceptive effect, and excitotoxic lesioning of the NAc 

prevented chronic sleep deprivation-induced hypersensitivity 

(75, 117). A preclinical study using male mice extended this 

work by demonstrating decreased dopamine release and 

increased D1 and D2 receptor expression in the NAc following 

chronic sleep deprivation (118). Post-sleep deprivation 

hypersensitivity may require upregulation of AMPA receptors by 

the immediate early gene Homer1a, as downregulating Homer1a 

in NAc blocked chronic sleep deprivation-induced 

hypersensitivity. Adenosine, a key neuromodulator of sleep and 

wake, may also mediate chronic sleep deprivation-induced 

hypersensitivity, as blocking adenosine A2A receptor signaling in 

the NAc prevented increased re7exive-based hypersensitivity 

(117). Increased GABA signaling may also contribute, as sleep- 

restriction-induced hypersensitivity required GABAA receptor 

signaling in the ventral tegmental area (VTA), dorsal raphe 

nucleus (DRN), and locus coeruleus (LC) (117). Together, these 

data suggest that dopamine neurons in the NAc can play a 

critical role in chronic sleep disruption-induced hypersensitivity 

through Homer1a- and adenosine A2A-dependent mechanisms, 

while inhibitory neurotransmission may exhibit 

distributed changes.

The PAG, a critical component of pain modulation, has also 

been linked to increased pain-related responses following 

chronic sleep deprivation. The ventrolateral portion of the PAG 

(vlPAG) showed increased cFos expression after chronic sleep 

deprivation, as in the NAc. cFos induction correlated with the 

intensity of deprivation-induced allodynia, and excitotoxic lesion 

of the vlPAG prevented increased withdrawal re7exes (75). 

Chronic REM sleep restriction increased nitric oxide in the 

dorsolateral PAG (dlPAG), and inhibition of nitric oxide 

synthase (NOS) prevented the chronic REM sleep restriction- 

induced allodynia (119). Increased nitric oxide in the PAG may 

thus promote chronic sleep deprivation-induced hypersensitivity. 

However, additional studies must evaluate other acute noxious 

stimuli and pain-related behaviors, along with sleep disruptions 

beyond REM restriction.

In addition to central brain mechanisms, spinal cord signaling 

can also mediate chronic sleep deprivation-induced 

hypersensitivity (120). Chronic sleep restriction that produced 

hypersensitivity in male mice increased microglial infiltration 

into the spinal cord dorsal horn and increased both apoptosis 

and TNF-α expression in superior cervical ganglion (SCG) 

sympathetic neurons. Blocking TNF-α receptors prevented these 

effects as well as allodynia, suggesting sympathetic SCG neurons 

promote hypersensitivity following chronic sleep restriction 

(120). These results highlight how peripheral in7ammatory 

signaling may contribute to supraspinal hyperactivity after 

chronic sleep deprivation (7, 9, 121, 122).

Chronic pain during baseline sleep/wake (Figure 4): While 

chronic pain conditions are highly varied in their symptoms and 

co-morbidities, preclinical and clinical studies highlight several 

brain regions that may regulate the consistent negative impact 

they have on sleep (123–134). As with acute noxious stimuli, the 

cortex has been implicated as a key region in chronic pain, with 

changes in long-term activity and structure that may in7uence 

sleep quality. In humans with chronic lower back pain, 

neuroin7ammatory PET-fMRI activation was greater in lower 

back sensorimotor cortical areas (S1/M1), and was positively 

correlated with sensitivity to thermal stimuli and poor sleep 

quality (123). Changes in gray matter volume have also been 

shown. Older adults (>60 years old) with musculoskeletal pain 

exhibited decreased cortical thickness in S1, which mediated the 

association between sleep quality and self-reported pain 

intensity, but not somatosensory pain thresholds (127). 

Preclinical work has revealed possible sleep state-specific circuit 

mechanisms for chronic pain-induced changes in S1. In mice 
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FIGURE 3 

Acute noxious stimuli with chronic sleep disruption. Neuroanatomical regions implicated in regulating the interaction between pain and sleep in 

rodents (left column) and humans (right column) from studies pairing acute noxious stimuli with chronic sleep disruption. Detailed descriptions 

are in the corresponding text section, and references are in superscript. SD, sleep disruption; vlPAG, ventrolateral PAG; REM-SD, REM-specific 

sleep disruption; dlPAG, dorsolateral PAG; NOS, nitric oxide synthase; OSA, obstructive sleep apnea; MOR, mu opioid receptor.
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with spared nerve injury (SNI), S1 vasoactive intestinal 

polypeptide-expressing interneurons (S1VIP) were more active 

during NREM, leading to S1 pyramidal neuron disinhibition 

and allodynia (130). This study then rigorously described a 

circuit that can drive or alleviate SNI-induced pain-related 

behaviors with NREM specificity. More specifically, injured 

peripheral afferents increased parabrachial nucleus (PB) activity. 

PB neurons projected to basal forebrain cholinergic neurons 

(aNBAch), which directly activated S1VIP interneurons. Strikingly, 

hyperactivity of this pathway specifically during NREM sleep, 

not wake, promoted chronic SNI hypersensitivity. After SNI, 

daily inhibition of S1VIP interneurons during NREM (but not 

during wake or REM) prevented the transition from acute to 

chronic SNI-induced pain-related behaviors (130). This 

PB → aNBAch 
→ S1VIP circuit offers a possible mechanism 

linking injured peripheral tissue to the hyperactive S1 

FIGURE 4 

Chronic pain during baseline sleep/wake. Neuroanatomical regions implicated in regulating the interaction between pain and sleep in rodents and 

humans from studies evaluating chronic pain during baseline sleep and wake. Detailed descriptions are in the corresponding text section, and 

references are in superscript. SNI, spared nerve injury; VIP, vasoactive intestinal peptide-expressing; CCI, chronic constriction injury; CFA, 

Complete Freund’s adjuvant; POA, preoptic area; VTA, ventral tegmental area; KOR, kappa opioid receptor; SNL, sciatic nerve ligation; CPP, 

conditioned place preference.
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commonly observed in chronic pain manipulations. However, 

further research must elucidate how this circuit interacts with 

spinally mediated peripheral neuropathic signaling, and how it 

regulates other chronic pain models.

Additional cortical regions besides S1 likely contribute to sleep 

and chronic pain interactions. In fibromyalgia patients, both the 

prefrontal cortex (PFC) and ACC show augmented theta activity 

that correlates with measures of somatosensory tenderness and 

mean tiredness (124). Preclinical work has revealed specific 

signaling pathways that can regulate activity in either of these 

regions. Increased PFC activity may be due to increased 

noradrenaline and serotonin signaling. In male mice with sciatic 

nerve ligation (SNL), stimulation of the LC or the DRN 

respectively increased noradrenaline or serotonin release in the 

PFC compared to non-SNL controls (126, 133). Together, these 

studies suggest that key sleep regulatory regions can potentially 

modulate PFC during chronic pain. Augmented ACC activity 

may be linked to opioid signaling. CRISPR/Cas9 deletion of 

kappa opioid receptors in the ACC alleviated partial sciatic 

nerve ligation (PSNL)-induced sleep fragmentation, as well as 

the increased place preference for gabapentin (125). However, 

PSNL-induced allodynia was unaffected, suggesting that 

somatosensory processing remains intact.

Altered inhibitory neurotransmission in cortex may also 

underlie impaired sleep during chronic pain. In male SNL mice 

with decreased NREM sleep, the cingulate cortex exhibited 

increased membrane-bound GABA transporters (GATs) and 

reduced extracellular GABA following depolarization (131). 

Furthermore, targeted GAT inhibition in the cingulate cortex 

attenuated SNL-induced sleep disturbance. However, the impact 

on pain-related behaviors remains to be evaluated (131).

The NAc has also been investigated in the context of baseline 

sleep behaviors during chronic neuropathic or in7ammatory pain 

in mice. Dopaminergic neurons play an important role, as seen 

with acute noxious stimuli. A primarily dopaminergic NAc 

neuronal ensemble showed increased activity following chronic 

neuropathic pain, in7ammatory pain induced by complete 

Freund’s adjuvant, or during baseline wakefulness (132). 

Activating or inhibiting this ensemble respectively exacerbated 

or alleviated re7exive pain-related behaviors and sleep 

impairments, although these manipulations also promoted 

immediate transitions to wake or sleep. Interestingly, this NAc 

ensemble regulated pain and sleep through different target 

regions. Specifically silencing VTA-projecting neurons increased 

pain-related re7exive behaviors without impacting baseline wake 

behavior, while silencing preoptic area (POA)-projecting 

neurons decreased NREM sleep without impacting pain-related 

behaviors. Additional work must clarify how chronic pain 

regulates NAc ensemble activity, and whether projection-specific 

pain regulation applies to other pain modalities. However, this 

work provides an exciting entry point to understand key 

intersections in pain and sleep circuitry.

Finally, one study has shown that the reticular thalamic 

nucleus (RTN), a key regulator of NREM sleep oscillations, 

exhibits increased activity following neuropathic injury (134). 

Rats with SNL injury exhibited highly fragmented sleep and 

decreased total NREM time. In these animals, RTN basal tonic 

firing rates and phasic activity were both increased. However, 

additional research is needed to determine how these changes in 

RTN activity directly in7uence pain and sleep.

Chronic pain with acute sleep disruption (Figure 5): While 

clinical work has evaluated the relationship between chronic 

pain and acute sleep disruption, identification of underlying 

neuroanatomical mechanisms is based primarily on preclinical 

data. In agreement with other pain and sleep interactions, 

heightened activity within subcortical and cortical pathways may 

drive interactions between acute sleep disruptions and chronic 

pain. The hyperactivated LCNA 
→ S1HLGlut pathway described 

above (see acute noxious stimuli with acute sleep deprivation) 

may also mediate hypersensitivity in the context of chronic 

in7ammation (CFA) (74). Acute sleep deprivation five days after 

hindpaw CFA injection extended resulting hypersensitivity to at 

least 14 days post CFA injection, whereas control animals 

recovered in ∼6 days. Chemogenetically inhibiting 

LCNA 
→ S1HL neurons during the post-CFA sleep deprivation 

period attenuated the sleep deprivation-enhanced CFA 

hypersensitivity, thus shortening recovery time. Taken together, 

inhibiting the LCNA 
→ S1HL pathway may alleviate the effects of 

acute sleep deprivation on acute noxious stimuli or chronic 

in7ammatory pain. These experiments thus pinpoint key 

interactions between known sleep and pain regulatory regions 

and also provide insights into the transition from acute to 

chronic pain.

The MnPO is another key sleep regulatory region that may 

play a role in transitioning to chronic pain following acute sleep 

deprivation. Sleep deprivation prior to surgery has been 

associated with increased post-surgical pain and delayed 

recovery, and clinical work has suggested perioperative sleep as 

an important metric for monitoring chronic pain susceptibility 

(8). Preclinical work suggests adenosine A2A receptors in the 

MnPO may partially regulate the interactions between 

preoperative sleep deprivation and post-surgical pain. In rats, 

systemically administering caffeine or blocking MnPO adenosine 

A2A receptors during preoperative sleep deprivation both 

alleviated sleep disruption-enhanced surgical hypersensitivity 

and improved postoperative pain-related recovery (76). 

Postoperative sleep disruption also augmented re7exive pain- 

related behaviors, prolonged pain-related surgical recovery, and 

altered the basal forebrain (BF), a key sleep-wake regulatory 

region (77). Post-surgical sleep disruption reduced GDNF 

expression and increased apoptosis in the BF. Virally delivering 

GDNF to the BF alleviated the effects of postoperative sleep 

deprivation, with reduced surgical recovery time, allodynia, and 

BF apoptosis. Thus, postoperative sleep deprivation may prolong 

hypersensitivity by decreasing GDNF signaling in the BF.

Prolongation of surgical pain due to perioperative sleep 

disruption has also been studied in REM-specific paradigms. 

Postoperative REM-specific sleep deprivation in mice prolonged 

surgical pain-related recovery and increased the activity of 

CaMKIIα neurons in the medial paraventricular thalamus 

(mPVTCaMKIIα) (78). These neurons were both necessary and 

sufficient for the prolonged post-surgical recovery after REM 
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FIGURE 5 

Chronic pain with acute or chronic sleep disruption. Neuroanatomical regions implicated in regulating the interaction between pain and sleep in 

rodents and humans from studies evaluating chronic pain paired with acute sleep disruption (left column) or chronic sleep disruption (right 

column). Detailed descriptions are in the corresponding text sections, and references are in superscript. SD, sleep disruption; CCK2, 

cholecystokinin 2; REM SD, REM-specific sleep disruption; NA, noradrenergic; CFA, Complete Freund’s adjuvant; S1HL, hindlimb primary 

somatosensory cortex.
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deprivation: mPVTCaMKIIα neuronal inhibition shorted post- 

operative pain-related recovery, while activation prolonged 

recovery and produced anxiety-like behaviors. Cumulatively, 

these data highlight how perioperative sleep disruption can 

exacerbate pain-related recovery. Future work should determine 

how descending pain-modulatory regions (see section on acute 

noxious stimuli and acute sleep disruption section) regulate the 

interactions between perioperative sleep disruption and 

chronic pain.

Chronic pain with chronic sleep disruption (Figure 5): A large 

patient population suffers from comorbid chronic pain and 

chronic sleep impairment. Accordingly, a mechanistic 

understanding of chronic sleep and pain interactions is sorely 

needed (2, 6–9, 65). Consistent with previous pain and sleep 

subclasses, clinical studies suggest the cortex may play an 

important role in this bidirectional relationship. In adults with 

comorbid chronic pain and insomnia, individuals with the 

lowest arousal levels and the longest sleep onset latencies 

exhibited reduced ACC volume compared to healthy controls 

(135). This study also found that patients with shorter sleep 

times and higher arousal levels were associated with lower 

hippocampus volumes. These results suggest that distinct arousal 

and sleep parameters may differentially affect ACC and 

hippocampal structure in chronic pain patients.

Cortical alterations during comorbid chronic pain and chronic 

sleep disruption have been linked to the LC, a well-characterized 

regulator of sleep-wake states and a region repeatedly implicated 

across multiple pain and sleep subclasses. Neuroimaging studies 

in patients with comorbid migraine and insomnia revealed 

altered LC functional connectivity with PFC, with distinct PFC 

subdivisions showing specific pain and sleep associations (136). 

Lower LC → dorsolateral PFC functional connectivity of was 

associated with greater insomnia severity, while higher 

LC → dorsomedial PFC functional connectivity was linked to 

longer migraine attack duration, but only in migraine patients 

without insomnia. Based on the preclinical data linking LC to 

the PFC (see the chronic pain during baseline sleep/wake 

section), future studies should examine how chronic sleep 

deprivation modulates this NA signaling in different chronic 

pain models.

Beyond these cortical changes, subcortical areas, particularly 

the NAc, may play an important role in modulating concurrent 

chronic pain and chronic sleep deprivation. NAc dopaminergic 

neurons regulate sleep and pain through distinct projections (see 

chronic pain during baseline sleep/wake section). Recent 

preclinical work has extended these findings by testing how the 

NAc changes following chronic sleep disruption in a 

neuropathic pain model of chronic constriction injury (CCI) 

(118). Mice with CCI exhibited numerous changes in the NAc 

after 14 days of 18 h/day sleep disruption, including decreased 

dopamine release upon noxious stimulus application, increased 

Homer1a expression, increased D1 receptor expression, and 

increased D2 receptor expression. Downregulating Homer1a in 

the NAc alleviated the chronic sleep disruption-enhanced CCI 

hypersensitivity. Taken together, this suggests increased NAc 

Homer1a expression thus regulates both acute and chronic pain 

during extended sleep disruption. Collectively, these findings 

highlight the NAc as an important node between chronic pain 

and chronic sleep disruption. Future work can further dissect 

the relevant circuit mechanisms and their therapeutic relevance 

to other pain modalities.

Alongside central brain mechanisms, population-based and 

preclinical studies indicate that chronic sleep disruption can 

enhance chronic pain through spinal and peripheral 

in7ammatory processes. A longitudinal prospective study 

monitoring >8,500 people for over ∼22 years (HUNT study) 

showed that individuals with short sleep or self-reported 

insomnia for >10 years were at higher risk of developing 

recurrent spinal pain, and improved sleep was associated with 

improved favorable prognosis (137). Chronic sleep disruption in 

CCI mice also affected the spinal cord, with greater microglial 

infiltration into the spinal cord dorsal horn than CCI alone, 

with concurrently increased apoptosis, TNF-α expression, and 

increased SCG cFos expression (120). As with acute noxious 

stimuli, inhibiting TNF-α in the SCG or ablating SCG 

sympathetic neurons attenuated chronic sleep deprivation- 

enhanced CCI mechanical hypersensitivity and microglial 

infiltration into the spinal cord. TNF-α inhibition also 

ameliorated chronic sleep deprivation increases in CCI-induced 

SCG cFos expression and apoptosis. Together, these findings 

show that TNF-α inhibition in the SCG is effective at alleviating 

impacts from chronic sleep disruption for both acute noxious 

stimuli and chronic neuropathic pain.

In addition to the spinal cord, brainstem sensory regions also 

appear to be vulnerable to microglial changes in chronic pain 

subjects with chronic sleep disruption. In particular, the cuneate 

nucleus (CN), which processes somatosensory input from the 

periphery, shows marked microglial activation in response to 

sleep deprivation. In male rats, chronic sleep disruption prior to 

CCI surgery led to greater microglial activation in the CN 

compared to CCI alone (138). Administering melatonin during 

chronic sleep deprivation attenuated both the CN microglial 

activation and allodynia, and also decreased proin7ammatory 

cytokines expression in the CN. However, the impact of these 

melatonin doses to sleep behavior and behavioral depression 

remain to be tested.

In summary, pain and sleep interactions do not converge on 

the same circuits, but instead broadly engage multiple signaling 

pathways. While certain hubs such as S1, LC, and NAc 

contribute in multiple pain contexts, major gaps remain in our 

understanding of how these regions integrate information from 

cross-modal circuitry, and how their functions differ between 

the subclasses of pain and sleep interactions.

Additional covariate considerations for 
treatment and biomarker 
development

Despite ongoing efforts to characterize neural circuits that 

mediate pain and sleep interactions, translation to the clinic for 

treating this bidirectional relationship remains limited. Including 
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sleep in preclinical pain research provides a particularly promising 

opportunity for development of biomarkers and analgesic 

treatments. Primary sleep endpoints can be measured objectively 

and reproducibly across preclinical and clinical subjects. They 

also show well-established preclinical-to-clinical physiological 

concordance, and recent clinical work suggests they may be 

more effective for both treatment and prediction of chronic 

pain. Realizing this potential requires carefully designed studies 

that account for key covariates, which are abundant given the 

broad physiological impacts of pain and sleep. Accordingly, 

preclinical work can guide clinical studies by meticulously 

isolating variables and pinpointing key interdependencies. 

Below, we detail burgeoning work on variables such as sex, age, 

environmental context, stress, drug interactions, and choice of 

dependent measures, each of which can each profoundly impact 

pain and sleep outcomes. Accounting for these factors is 

therefore essential both for mechanistic insight and for 

improving the translational potential of preclinical models.

Sex differences: Responses to noxious stimuli differ between 

sexes, and mechanisms for processing peripheral nerve damage 

show striking differences (99, 139–141). Clinically, women show 

greater susceptibility to sleep disturbance and increased risk for 

developing pain conditions (142, 143). Additionally, prolonged 

experimental sleep disturbances may differentially affect pain 

processing in men and women (144, 145). Preclinical research has 

increasingly included female subjects, largely due to an NIH 

mandate for inclusion of sex as a biological variable. However, 

studies aiming to directly link pain and sleep have predominantly 

evaluated only male mice, as evidenced in the neural circuitry 

section above (146, 147). Accordingly, integrating sex as a core 

variable in preclinical studies will be crucial to refining 

mechanistic models of pain and sleep interactions and 

strengthening the translational validity of emerging biomarkers.

Age: Both pain and sleep show considerable changes across 

lifespan (148–150), and their interactions manifest at all ages with 

likely distinct mechanisms and health implications (151–159). In 

children and adolescents, sleep disruption and fatigue can predict 

next-day pain scores in subjects with pain and for healthy controls, 

mediate increased pain and sleep disturbances, and connect to 

multiple pain indications (152–154, 157). In addition, adolescent 

chronotype may predict future development of pain, with later 

chronotypes showing a higher risk for new-onset pain than earlier 

chronotypes (155). Older adult and elderly populations also show a 

clear link between pain and sleep disruption. Sleep quality and 

pain scores can predict care dependency in long-term care 

facilities, and sleep difficulty can mediate the relationship of daily 

activities and pain scores in middle-aged and older adults (156, 

159). Data from adult populations suggest that insomnia treatment 

may be more efficacious for treating co-morbid pain and sleep 

disruptions that treating pain alone. However, further work must 

evaluate whether these findings also apply to young and elderly 

populations. Collectively, these findings highlight age as an 

important factor that should be included when establishing optimal 

strategies for reducing co-morbid pain and sleep disruptions.

Environment—Social Interaction: Social context can 

profoundly in7uence pain and sleep. Both preclinical and 

clinical evidence have shown noxious stimuli applied to one 

subject can elicit pain-related changes in the observer, also 

referred to as “emotional contagion” of pain (160–164). This 

includes increased pain responses, avoidance of behaviors paired 

with delivery of a noxious stimulus to a second subject, and 

increases in stress-response hormones that can even match those 

of the stressed subject (160, 162–164). Social familiarity can 

modulate these responses, as observation of pain in strangers 

elicits reduced or no empathetic physiological or behavioral 

pain-related changes. Similarly, social context can impact sleep 

behavior and sleep quality in humans and rodents. Positive 

social relationships strongly correlate with good sleep quality, 

while aversive social ties reliably predict poor sleep quality 

(164). For most mammals, sharing sleeping spaces contain 

intricate trade-offs. Group-living and shared sleeping 

environment produces behavioral synchronization in humans, 

rodents, and primates. However, it can also increase NREM 

fragmentation, decrease total NREM, or change REM and 

NREM bout length (33, 165–169). Specific shared sleeping 

environments like hospitals and military barracks are also 

associated with poorer sleep quality and additional adverse 

outcomes such as impaired recovery and wound healing 

(hospitals) or decreased quality of life (barracks) when 

compared to private rooms (167–172). Careful consideration of 

social environment in both study design and retrospective data 

analyses will be needed to better understand pain-sleep 

interactions and to develop effective clinical biomarkers.

Environment—Stress: Stress can independently in7uence 

either pain or sleep, and accumulating evidence suggests it may 

also mediate their bidirectional relationship (173–175). 

Clinically, sleep difficulties and stress can predict future chronic 

pain, and when combined confer heightened risk in adults and 

children (173, 174). Experimentally, stress is often divided into 

acute and chronic subcategories. Acute noxious stimuli 

commonly trigger acute stress, and acute stressors can in turn 

modulate responses to acute noxious stimuli (176–178). Both 

acute and chronic stressors can reliably exacerbate pain-related 

outcomes in subjects with a wide range of chronic pain 

conditions (176–178). Preoperative stress, like preoperative sleep, 

has been shown to predict development of postoperative chronic 

pain (6, 17, 18, 179). Stress can further impair sleep quality 

across species, with acute and chronic stressors reducing sleep 

both preclinically and clinically (70, 180, 181). While most sleep 

deprivation paradigms are not designed to induce stress, some 

have been shown to increase stress responses (70, 73). Given 

that sleep disruption and stress are inherently intertwined, 

particularly with prolonged or repeated sleep loss, disentangling 

their individual contributions remains a significant challenge. 

Preclinical studies will be critical to systematically isolate the 

effects of stress on pain-sleep interactions and guide the 

development of targeted clinical treatments.

Drug-drug interactions: Pharmacological interactions 

represent another covariate layer that can significantly in7uence 

pain and sleep outcomes. Analgesics such as opioids have been 

shown to impact sleep in undisturbed control settings, and 

drug-induced sleep disruptions can be detrimental for optimal 
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sleep restoration, diminish pain-relief, and impair improvements in 

additional clinical outcome measures (53, 182). Accordingly, co- 

administration of drugs designed to individually treat either pain 

or sleep should be evaluated for unintended interactions, as 

treatment of one symptom can exacerbate the other (e.g., an 

analgesic with sedative effects further impairing sleep quality). 

Advancing research on the intersecting mechanisms underlying 

pain and sleep interactions will be essential in shaping 

pharmacological development, with the goal of enabling targeted 

therapeutic strategies and reducing reliance on complex 

polypharmacy approaches with mixed adverse effects (9, 21, 53, 67).

Interpreting preclinical dependent variables in pain and sleep: 

The clinical gold-standard for sleep evaluation is 

polysomnography, which measures EEG, EMG, eye movements 

(EOG), heart rhythm (ECG), pulse oximetry, air7ow, and 

respiratory effort, which can all be measured preclinically (183). 

In contrast, the clinical gold-standard dependent variable for 

measuring pain is verbal reporting, which cannot be modeled in 

preclinical setups. Re7ex-based assays of pain-related behaviors 

remain amongst the most widely used dependent variables in 

preclinical pain research, particularly for chronic pain 

manipulations. However, these assays are highly susceptible to 

false positives due to general behavioral depression. To improve 

clinical translation, extensive efforts have been made to 

supplement traditional re7exive pain-stimulated behaviors with 

spontaneous pain-related behaviors and pain-depressed 

behaviors in animal models (160, 184–186). In this context, 

leveraging directly translatable and well-characterized EEG and 

EMG analyses offer a uniquely promising preclinical-to-clinical 

avenue to identify pain-related biomarkers, with recent work in 

preclinical chronic pain models supporting their biomarker 

potential (69, 93). Pharmacological agents can affect normal 

sleep as an unintended side effect, with many classes of 

analgesics producing altered sleep architecture in the absence of 

any perturbations (21, 53, 67). Accordingly, restoration of 

normal sleep should be incorporated as a goal in preclinical 

analgesic testing. This will undoubtedly be more difficult than 

focusing solely on increasing or decreasing individual pain- 

related behaviors such as paw withdrawal, but may help focus 

research paths to more impactful pharmaceutical development. 

In addition, pharmacological investigations should evaluate 

changes to the spectral properties of sleep, particularly given 

ongoing clinical efforts evaluating distinct EEG frequency bands 

as candidate biomarkers for chronic pain (83–88). Together, 

these direct and translatable measures provide a framework in 

which efficacy of candidate analgesics will not only depend 

upon successful alleviation of pain-related behaviors but also on 

restoration of normal sleep architecture and spectral features.

Treatment goals: Clinical treatment goals for pain in 

relationship to sleep are primarily to improve quality of life, and 

future preclinical and clinical research will be essential to 

identify which approaches are most effective across different 

pain and sleep disorders. For conditions with known pain 

mechanisms, sleep provides a possible treatment for preventing 

chronification of acute pain. For example, both preclinical and 

clinical studies have shown that evaluating sleep before and after 

surgery can improve postoperative pain, recovery rate, and 

analgesic consumption (76–81, 187–189). For nociplastic pain 

conditions—defined as pain that arises despite no clear evidence 

of tissue injury or damage to the somatosensory system—sleep 

disturbances are a common co-morbidity (6, 65, 123, 190–192). 

Recent evidence from clinical studies indicates that treating 

insomnia with cognitive behavioral therapy for insomnia (CBT- 

I) can improve nociplastic pain outcome measures, and in some 

cases even out-perform CBT for pain (CBT-P) or combined 

CBT for insomnia and pain (CBT-IP) (6, 193–195). However, 

additional studies across diverse pain and sleep disorders are 

needed to confirm the broad implications of these findings and 

to evaluate the potential of insomnia treatment as a primary 

therapeutic strategy for comorbid chronic pain and sleep. 

Collectively, current pain and sleep studies underscore the 

importance of developing treatment goals that explicitly target 

both pain and sleep outcomes to maximize clinical benefit.

Summary: Positioning sleep as a core component of preclinical 

pain research holds promising potential for identifying robust 

biomarkers and therapeutic strategies with strong clinical 

translation. Advancing pain research through the lens of sleep 

will provide a preclinical roadmap to break the exacerbating 

cycles linking pain and sleep disturbances, and ultimately 

improve quality of life for patients worldwide.
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