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Annually, millions of humans and animals suffer from chronic and acute pain,

creating welfare and quality of life concerns for both humans and animals

who suffer this pain. In developing new therapeutic approaches, the challenge

is to accurately measure this pain to ascertain the efficacy of novel

therapeutics. Additionally, there is a need to develop new and effective

analgesic options that may offer alternatives to using opioids that contribute to

the opioid epidemic. The Pain in Animals Workshop (PAW) meetings are held

every other year in partnership with the National Institutes of Health (NIH),

bringing key stakeholders together to understand pain in humans and animals

better. The 2023 workshop focused on presenting and discussing updates on

validated approaches to measuring pain, highlighting opportunity areas for

additional outcome measure development. It also discussed study design and

analytic approaches to the use of outcome measures in clinical trials,

including the important concepts of success-failure approaches and the

application of multiple endpoints in evaluating analgesic therapies. The

workshop also introduced the concept of the biopsychosocial model of pain,

broadening the conversation around the impact of pain and thus opportunities

to modulate the pain experience. The application of artificial intelligence to

the measurement of pain was introduced. The workshop brought together

academia, government, and industry experts in human and animal pain

assessment and analgesic intervention development. Given the topic’s

importance and the meeting’s uniqueness, capturing the thoughts and ideas

presented and discussed is critical. This narrative is one product from that

meeting, summarizing several presentations from the workshop.
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Introduction

The 2-day Pain in Animals Workshop was held on September

26 and 27 2023, at the National Institutes of Health campus,

Bethesda, Maryland. The full agenda can be found in

Supplementary File S1. On the first day, the morning covered the

topic of “Updates on validated approaches to measuring pain”,

focusing on new information available since the 2017 and 2019

PAW meeting. The day began with the first annual Michele

Sharkey Memorial Lecture (narrative summary submitted for

publication), followed by discussions on the measurement

properties of pain scoring instruments in farm animals, pain

biomarkers, and the application of artificial intelligence/machine

learning to large animal pain assessment. The afternoon focused

on “Opportunity Areas (Biopsychosocial) for Additional

Outcome Measure Development”, with presentations covering

the biopsychosocial model of pain and discussions on the

domains impacted by acute and chronic pain. The second day

focused on study design and analytic approaches to using

outcome measures in clinical trials, including defining clinically

meaningful changes and success/failure criteria for outcome

measures, as well as using composite endpoints and adaptive

study designs. This narrative contains summaries from speakers

who were able to contribute extended abstracts to this document,

and the remaining presentation abstracts can be found in the

meeting proceedings (Supplementary File S2). This narrative is

complementary to the recordings of the workshop, which are

archived at the NIH and are available at:

Day 1, https://videocast.nih.gov/watch=52472;

Day 2, https://videocast.nih.gov/watch=52508

Updates on validated approaches to
measuring pain

The morning session of the first day was devoted to discussing

recent updates to current approaches to measuring pain, and then

extending the discussion by focusing on where the field is moving.

The Plenary Lecture by Dottie Brown “Outcome Assessment in

Veterinary Pain Studies: The Yellow Brick Road Continues”

provided historical background to, and the current status of, the

use of owner completed questionnaires to assess the impact of

chronic osteoarthritis pain in dogs (1). This also provided a

reflection on how the PAW forums have been integral to the

most recent wave of knowledge gain and awareness. Here, two

other presentations highlighting the future direction of research

are summarized: the application of biomarkers, and

artificial intelligence.

Biomarker update: what progress have
we made?

In this presentation, Daniel Barratt discussed the past, present,

and future of the discovery and development of blood-based pain

biomarkers in livestock, with circulating miRNAs as the

current focus.

Contexts of use for objective biomarkers of
pain in livestock

Several main contexts of use currently motivate and guide

efforts to discover, develop, and validate objective blood-based

pain biomarkers in livestock. Primarily, there is a need for tools

to objectively measure pain within clinical research and trial

settings to demonstrate analgesic efficacy in support of drug

development and approvals in livestock species (2, 3). Within

this context, it is expected that convergent evidence from

multiple endpoints will be required to demonstrate the efficacy of

a pain mitigation intervention. Therefore, whilst there is

aspiration toward surrogate endpoint status, novel objective

measures will likely be employed as supportive diagnostic or

monitoring biomarkers in a multidimensional assessment (2–6).

Psychoneuroimmunological basis for
blood-based pain biomarkers

Increased understanding of the immune system’s role in pain

and the bidirectional communication between central and

peripheral neuronal and immune systems has prompted the

exploration of novel blood-based transcriptomic biomarkers of

pain and analgesia (7–9). Examples of the potential for blood-

based biomarkers of pain are the work identifying blood

transcriptome changes that correlate strongly with variability in

graded chronic constriction injury-induced pain in rats (10), as

well as human research showing blood cell immune phenotyping

can differentiate between painful patients and healthy controls

(11), and also blood transcriptome changes that could

differentiate between high and low pain states within an

individual, as well as between painful patients and healthy

controls (12).

Circulating miRNAs as potential pain
biomarkers

MicroRNAs are small, non-coding RNA molecules that

regulate gene expression within and between cells through release

into the extracellular environment (e.g., within exosomes).

Circulating microRNAs can be quantified in blood plasma and

serum and have shown potential as biomarkers for various

pathological conditions (including neurological disorders) (13,

14). Thus, circulating microRNAs have attracted interest as

possible pain biomarkers in veterinary species. Lecchi and

colleagues identified candidate microRNAs differentially

expressed between sham versus tail docked and castrated piglets,

between horses with acute laminitis vs. controls, and between

pre- vs. post-surgery in pond sliders (15–17).
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What progress have we made?

Promising results have been seen in a Kansas State University

and University of Adelaide collaboration to identify candidate

microRNA biomarkers of pain and analgesia utilizing existing

behavioral data and small RNA sequencing of serum exosomes

from analgesic trials. In male Holstein calves undergoing sham

procedure, or dehorning and castration with or without analgesia

(meloxicam ± lidocaine), repeated measures differential gene

expression analysis was combined with binomial and linear

regression approaches, applying the principles of matching

analysis method to the context of use, and harnessing the

power of repeated measures and variability within animals and

treatment groups. This approach successfully identified serum

exosome miRNAs with temporal expression profiles closely

matching those of behavioral pain scores, as well as “rapid” (6 h

post-procedure) and “delayed” (96+ hours post-procedure)

response miRNAs. Lead candidates, such as bta-miR-30a-5p,

−122, −143 and −885, demonstrated “outstanding” to “perfect”

performance (areas under receiver operating characteristic curves

(AUROC) >0.9) in distinguishing sham from dehorned and

castrated calves, exceeding other measures reported previously

(6), as well as indicating “reversal” with meloxicam treatment (to

which other trial measures were insensitive). Similar promising

results from a trial of firocoxib and ethyl chloride in piglets

undergoing tail docking (and castration for males) were also

presented. However, caution was advised due to the absence of a

sham control (no docking/castration) in the piglet trial.

Next steps and key challenges

Currently, at the discovery stage of biomarker development,

these findings need to be replicated with appropriate controls.

Two key limitations of work to date and challenges to moving

forward for qualifying transcriptomic blood-based biomarkers for

pain were discussed. Firstly, variations in sample type (e.g., whole

blood, plasma, serum, exosomes) and processing, sequencing

methodology, and bioinformatic and analysis decisions post-

sequencing create challenges for assessing reproducibility and,

thus, candidate prioritization across multiple studies. Secondly,

trials employing standard husbandry procedures and veterinary-

relevant analgesic approaches (albeit with uncertain analgesic

efficacy) have high ecological validity. Still, they are ill-suited for

distinguishing pain biomarkers per se from tissue damage and

wound healing biomarkers. Bioinformatic (e.g., gene set/pathway

enrichment) analyses, when implemented appropriately (18) may

provide tenuous support for a mechanistic link to pain. However,

suppose blood-based pain biomarkers are to achieve surrogate

endpoint status. In that case, complementary studies using

injury-free pain models and/or analgesic (or even anesthetic)

approaches of more certain efficacy may be required to

demonstrate specificity.

Future research should integrate these promising biomarker

approaches alongside end-of-life brain and spinal cord histology

and protein analyses to build an integrated picture of the short-

and long-term molecular, cellular, systems, and behavioral

consequences of pain associated with procedures, paving the way

for significant improvements in the diagnosis and treatment of

pain in livestock.

Artificial intelligence applied to
measuring pain

Parminder Basran gave an overview of artificial intelligence

(AI) in veterinary medicine and touched on the more recent

application of AI to pain measurement.

Artificial intelligence (AI) is revolutionizing the way we live

and work. The reach of AI systems seems ubiquitous, including

search tools, recommender systems, personal assistants, fraud

detection, and automated systems. The impact of AI in

veterinary medicine is similarly growing, and it has the potential

to become an essential tool for companion animal health,

livestock health, and population medicine (19). With the advent

of AI, veterinarians will have access to powerful algorithms and

machine-learning tools that may help them make timely and

potentially more accurate diagnoses (20). AI can also analyze

large volumes of data, including medical records, diagnostic tests,

and imaging studies, to identify patterns and trends, which may

enable veterinarians to provide more personalized and effective

treatment plans for their patients (21). By collecting and

analyzing data from multiple sources, including animal health

records, environmental data, and social media; AI can help

identify disease outbreaks and inform public health policies (22).

This can be especially helpful in managing zoonotic disease

outbreaks that can spread from animals to humans and vice

versa (23). AI is also transforming agricultural practices where

farmers can monitor the health and well-being of their livestock,

identify potential health issues early on, and optimize feeding

and breeding practices (24). This can improve animal welfare

and increase productivity, benefiting farmers and consumers.

AI may be broadly categorized as computer vision, natural

language processing, and speech recognition tasks (25).

Applications of these forms of AI have only recently emerged in

animal behavior and pain assessments (26–28). While all AI

applications are exciting and can potentially improve animal

health and welfare, they also raise ethical concerns about data

privacy, transparency challenges, and bias. In the context of pain

assessment, some additional issues to address include:

1. Clarity and transparency of AI features and decisions: The

ability to understand the features learned by AI methods and

the comprehensibility of their decision-making processes are

pivotal for these systems to be practical and accepted in

clinical settings as supportive tools for pain diagnosis and

monitoring. This is particularly important in veterinary

medicine, where there is heavy reliance on signalment and

visual assessments of animals to deduce states of pain.

A significant hurdle to overcome in applying any form of AI

to assist with the identification of pain is ensuring the
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“ground truth” of the data the algorithm is trained on is the

best it can be.

2. Leveraging multiple data sources for enhanced performance:

Incorporating a wide range of pain-related data, alongside

integrating additional functions such as detecting head pose,

motion, and facial features, can enhance the resilience and

effectiveness of automatic pain detection systems. Acquiring

multiple data sources and integrating them for analysis poses

challenges in the veterinary setting, given the often less than

optimal environmental conditions.

3. Addressing challenges through interdisciplinary collaboration:

Tackling the difficulties in developing a reliable automatic

pain detection system requires collaborative efforts across

various disciplines. The success of AI adoption heavily

depends on the spectrum of disciplines involved in its

development and adoption (29). Collaboration amongst

veterinarians, basic biologists, data scientists, and other

specialties will ensure that AI models applied to pain

assessment are adaptable and adoptable.

4. Incorporating temporal aspects and medication effects:

Considering the time-based attributes of pain episodes and

the influence of pain medication can be a valuable approach

for reducing false alarms and enhancing the precision of

pain detection.

5. Exploring generalizability across diverse cohorts: Investigating

the capacity of automatic pain detection systems to perform

consistently across different groups with varying diagnostic

statuses should be a subject of future research. When faced

with significant genotype and phenotype variations,

generalizability becomes a sharper challenge for animals.

Models must be characterized with a “Range of Usefulness”

based on breeds, sex, and other potential covariates.

6. Address ethical considerations: AI models rely on reliable and

reproducible datasets for training. The generation of data for

training AI models that classify behavior or quantify pain in

animals should be done ethically and responsibly. Animal

owners and caregivers may also be integral participants in

data collection and utilization.

These considerations underline a need for transparent and

responsible data management practices and emphasize an

imperative to improve the AI competencies of researchers and

practitioners engaged in pain research. The application of AI

technologies should not be perceived as an all-encompassing

solution for pain evaluation and assessment but instead as a

collection of tools that can offer decision support for

healthcare professionals.

Overview of the domains impacted by
pain

As an introduction to the afternoon session on “Opportunity

Areas (Biopsychosocial) for Additional Outcome Measure

Development”, Duncan Lascelles provided an overview of the

domains/dimensions impacted by pain. The presentation aimed

to broaden the perspective on the potential changes that could be

measured as a surrogate estimation of the impact of pain in

different species.

The backbone of pain assessment in humans is self-report. In

non-verbal humans and animals, self-report is not an option,

and thus, one might consider the measurement of pain to be an

uphill struggle, especially when one considers that we cannot

measure pain in an animal or human who does not self-report—

pain is what the individual says it is and describes it as. Indeed,

without the option of self-report of pain, the measurement of

pain in any species is difficult. Still, on the positive side, pain

affects individuals in a multidimensional manner, resulting in

many different ways in which the impact of pain can be

measured. Measuring the impact of pain allows us to estimate

pain. Pain has both neurophysiologic and affective components,

which means that a variety of aspects (or domains) of feeling,

behavior, function, and social interactions are affected. This

multidimensional impact on people includes cognitive, affective,

behavioral, functional, physiological, sensory, and socio-cultural

dimensions or domains (30). The multi-dimensionality of pain

offers a multitude of opportunities to measure the impact of pain

and hence estimate the burden of “pain” itself.

There is no “gold standard” consensus on describing the

domains impacted by acute or persistent (chronic) pain.

Descriptions of the domains impacted by pain vary depending

on the pain condition and the context in which they are being

discussed (31). There is further variation depending on whether

domains that contribute to quality of life/health are being

described (in reference to the impact pain has on health), or

whether the focus is more directly on what behaviors that pain

impacts. Further, the descriptions of domains impacted by pain

can be viewed from the perspective of the available measurement

tools. Regardless of the way in which one describes “domains” in

relation to pain, the fact is that pain has widespread and varied

impacts across all aspects of an animal’s life. This provides an

opportunity to develop multiple measurement tools and, by

extension, is the chance to gain a more holistic view of the

negative impact of pain or the utility of an analgesic intervention.

A starting point for consideration of the broad

multidimensional impact of pain might be to consider the

following domains:

– Movement and mobility

– Ability to perform the activities of daily living

– Cognitive function

– Affective states (fear, anxiety)

– Interactions with conspecifics, other animals and humans

(social)

– Physiological function

– Sensory processing

– Sleep

Such a list can be used to explore varied and new ways to approach

the measurement of the impact of pain. For example, in canine

osteoarthritis (OA), there has been an emphasis on the

measurement of limb use and function (32). However, assessing

other domains, such as cognitive function and sleep quality, may

provide meaningful insight into the impact of pain.
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When one considers the domains that are impacted by pain, it

is important to understand that within each domain are many

varying aspects that can be affected—and so opportunities for

measurement. For example, canine osteoarthritis pain clearly

impacts the domain of “movement and mobility”. But within

this, it is understood that there are multiple components that can

be differentially impacted by joint pain:

• Limb use

• Overall activity

• Smoothness or quality of motion

• Power of movement

• Resting body weight distribution

• Speed of motion

• Willingness to move

Even within each of these are multiple measures—for example,

with “limb use”, one can measure vertical force, vertical impulse,

propulsion and braking forces, and static loading. Each of these

can be further broken down into summary values (e.g., vertical

force can be summarized as “peak vertical force”, or described as

a force/time curve. It is also important to remember that within

one domain, pain can differentially impact components. Think,

for example, of a dog with significant OA pain in one joint; the

use of that limb would likely be dramatically negatively affected.

Still, overall mobility (effected by using the other 3 limbs) may

not be greatly affected much.

A comprehensive understanding of the domains and their

components that are impacted by different pain states and

conditions will lead to the development of new measurement

approaches and tools. A challenge will be to understand how

pain impacts different individuals within a pain condition and,

therefore, the importance of measuring one domain, or one

aspect of a particular domain, in both individual and groups of

animals. A further challenge will be to understand what impacts

are meaningful to the individual animal and what a clinically

important change in the measured parameter is. There has been

discussion in the veterinary literature about what degree of

change in a measured parameter is unlikely to be seen by

chance, and so, by extension, what degree of change may be

meaningful (e.g., peak vertical force 32), but only recently have

focused attempts have been made to start to define “minimal

clinically important differences” for the measurement tools

currently in use (33).

The biospychosocial model of pain

Mark Hutchinson elucidated the complexities of pain as a

biopsychosocial phenomenon, using livestock as the example.

The presentation underscored the interplay between biological

processes and environmental factors, positing pain not merely as

a physical sensation but as a complex puzzle that requires

multidimensional analysis and innovative methodologies to be

fully understood.

Pain as a complex biopsychosocial puzzle

Pain in animals should be redefined as a complex

biopsychosocial puzzle. This perspective recognizes pain as more

than a simple response to physical stimuli; it involves a

dynamic interaction among biological, psychological, and social

factors. Traditional models, which predominantly focus on the

physiological aspects of pain, fail to capture the nuanced realities

experienced by animals. This broader framework necessitates a

shift from a unidimensional to a holistic approach, where pain

assessment incorporates behavioral changes, environmental

contexts, and psychosocial dynamics (8).

Focusing on psychoneuroimmunology

Psychoneuroimmunology explores how the nervous and

immune systems interact within the context of pain. Stress and

disease can modify immune responses, which, in turn, impact

neurological states, affecting an animal’s pain perception and

behavior. Studies have revealed that by understanding these

interactions, particularly how they manifest in chronic pain

states, new therapeutic strategies can be devised that are more

aligned with the underlying psychobiological mechanisms of pain

rather than merely addressing its symptoms (9).

Window into biopsychosocial pain

Advanced analytical technologies can be used to provide a

window into the biopsychosocial aspects of pain. The use

of biophotonics in this context is pivotal, offering real-time

insights into the physiological changes occurring within an

animal subjected to various stressors. These insights may lead

to the development of timely, precise, and context-specific

interventions, ultimately leading to improved animal welfare and

management practices (34, 35). Using spectral domain analysis,

early work shows how features in the central nervous system

of animals change proportionally with their pain states, providing

a vivid illustration of how pain impacts neurological

functions (34–36).

Assuming advances are to be made in the field. In that case, it

has to be understood that significant shortcomings are associated

with viewing pain as a digital signal (37) — a binary state of

“pain” or “no pain” — which oversimplifies the true nature of

pain processes. By treating pain as an analogue signal,

researchers and clinicians can capture a continuum of pain

intensities and complexities, enhancing the accuracy of pain

assessments and the effectiveness of interventions. Further,

pain should be explored from the perspective of measurements

of real-time relevance, utilizing techniques that provide

immediate, actionable data on an animal’s pain state. This

approach is critical in understanding and managing pain as it

unfolds, rather than relying solely on retrospective or less timely

data. It shifts the focus from static to dynamic pain assessment,
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facilitating interventions that are responsive to the immediate

needs of the animal. Or even better, prevent the conversion of

acute to chronic pain states. To achieve all of this, understanding

and measuring changes in the foundational neurobiological

substrate of nociceptive processing is essential for developing

validated, evidence-based practices in pain management (9). The

future of successful pain research lies in its ability to harness

cutting-edge or innovative technologies to observe, in real-time,

how pain modifies the central nervous system’s activity and to

develop interventions that directly address these changes.

The translation of research findings into practice is a

cornerstone of the future of the work in the field. There must be

an emphasis on the importance of convergence in research

practices—integrating insights from various disciplines to ensure

that scientific advancements have practical and translational

relevance (7).

Future research will see the formation of large convergence

science teams that operate beyond the sum of their parts.

The evolving geopolitical landscape, such as the AUKUS

agreement (trilateral security partnership between Australia, U.K.

and U.S. (AUKUS)) agreement and the associated Pillar II

activities, promises unprecedented multinational information

sharing. In this context, the Safeguarding Australia through

Biotechnology Response and Engagement (SABRE) Alliance

aims to foster collaborative efforts that leverage biotechnology

for dual purposes, including animal pain management. This

initiative uses collaborative, cross-disciplinary efforts to address

complex challenges like animal pain, which are crucial for both

ethical and practical dimensions of animal welfare and

agricultural productivity.

Application of success-failure to pain
outcome measures: the canine brief
pain inventory”

In the session “Analytic approaches to utilize outcome

measures in clinical trials’, Dottie Brown discussed the

development of success-failure criteria for the Canine Brief Pain

Inventory assessment of osteoarthritis pain in dogs.

The Canine Brief Pain Inventory (CBPI) is a publicly available

owner-completed questionnaire designed to quantify the severity of

chronic pain and its impact on routine activities in companion

dogs. The instrument includes four questions about pain severity

that are averaged to generate the Pain Severity Score (PSS) and

six questions about the degree to which pain interferes with the

dog’s routine activities, which are averaged to generate the Pain

Interference Score (PIS) (38, 39).

Rather than comparing the overall mean or median differences

in scores between groups of animals, it can be important to assess

whether the treatment has a measurable effect for individual

animals. Particularly in the context of clinical studies for drug

development, the criteria for successful treatment of an

individual animal are predefined so that the success or failure of

the treatment in each animal can be determined at study

completion. The number of treatment successes and failures in

each group (often animals that receive an active agent vs. those

administered a placebo) can then be compared. This method can

minimize the impact of outliers in response to treatment,

particularly when sample sizes are relatively small.

The practice of pooling data from two or more independent

data sets generated through identical study designs was used

(40–42). The pooled data included 150 dogs from double-blind

(owner and investigator/study staff), randomized, placebo-

controlled clinical studies, where carprofen was used as a positive

control (43). All dogs were >8 kg with a medical history, clinical

signs, physical examination findings, and radiographic findings

consistent with osteoarthritis. Only dogs with newly diagnosed

osteoarthritis or those that had received no previous treatment

for osteoarthritis were included. The CBPI was completed by the

same owner for each dog at screening (Day-14 to Day -7),

baseline (Day 0), and after two weeks of treatment with placebo

or carprofen (Day 14).

The statistical analysis performed on this data set explored the

power of defining treatment success as a reduction of 1, 2, or 3 in

either or both the PSS and PIS, as well as how setting the inclusion

criteria at baseline to a PSS and PIS 1, 2, or 3 affected the power of

the statistical analysis to detect differences between the placebo and

carprofen treatment. The treatment group summarized the number

and percentage of treatment successes and failures. Possible

differences between treatment groups were evaluated with the X2

test. For each definition of success within each population, power

was calculated by means of a continuity-corrected 2-sided z test,

with a = 0.05. Based on the pooled placebo & carprofen data, a

study protocol to evaluate treatment effects in dogs with

osteoarthritis will be most useful if:

• The inclusion criteria at baseline (Day 0) are predefined as a PSS

and PIS each ≥2 and

• Success for each patient is predefined as a decrease ≥1 in PSS

and a decrease ≥2 in PIS.

Although this kind of analysis requires more animals to be enrolled

in each arm of a study, compared with an evaluation of median

change in scores between groups, it allows for the determination

of response at the individual dog level as opposed to the

group level, which may be key to the pivotal evaluation of

intervention efficacy.

There are several scientific approaches to applying success-

failure criteria to health assessment instruments, each with its

own strengths and limitations (44–46).

• Threshold-Based Criteria: Establishing specific thresholds for

what constitutes a successful outcome. Limitations: Thresholds

may not capture clinically meaningful changes for all patients.

• Responder Analysis: Classifying patients as responders or non-

responders based on predefined criteria. Limitations: This

approach may oversimplify the complexity of patient

responses and ignore partial improvements.

• Minimal Clinically Important Difference (MCID): Determining

the smallest change in an outcome measure that patients

perceive as beneficial. Limitations: MCID can vary between
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populations and conditions, making it challenging

to standardize.

• Composite Endpoints: Combining multiple individual outcomes

into a single measure of success. Limitations: Composite

endpoints can be complex to interpret and may dilute the

impact of individual outcomes.

These approaches highlight the importance of selecting appropriate

criteria based on the specific context and goals of the health

outcome assessment.

Validated scales for assessing acute
pain in ruminants and pigs: approaches
to defining success-failure and what is
next?

Continuing the discussion around the interpretation of pain

scales, Stelio Luna discussed the attributes of the current pain

scales used in production animals.

Success in pain assessment is achieved by correctly identifying

animals suffering pain (true positives) from those that do not suffer

pain (true negatives). The “successful” pain scale is the one with the

highest sensitivity and specificity. Other attributes that guarantee

success in pain assessment are intra (repeatability) and inter-rater

reliability (reproducibility).

One of the best approaches to assess the methodological quality

of studies and to investigate whether an instrument is validated and

reliable is the COnsensus Based Standards for the Selection of Health

Measurement INstruments (COSMIN) (47, 48) and GRADE

(Grading of Recommendations, Assessment, Development, and

Evaluations), implemented by the World Health Organization

(49). According to a recent systematic review using these criteria

(50) the only three behavior-based instruments that scored highly

for the strength of evidence were the Unesp-Botucatu Composite

Acute Pain Scales for assessing postoperative pain in cattle

(UCAPS) (51), sheep (USAPS) (52), and pigs (UPAPS) (53). Since

this review, the Unesp-Botucatu Goat Acute Pain Scale (UGAPS)

has also been published following COSMIN guidelines (54). These

scales are based only on observation and require a short time for

assessment (<4 min). The scale cut-off points for indicating

intervention analgesia, based on the area under the Receiver

Operating Characteristic curve, increase the accuracy for decision-

making on whether to treat pain, therefore minimizing

oligoanalgesia and improving welfare (Figure 1). Such cut-off

points can be used to define success-failure criteria.

Because validation is an ongoing process, the instruments

described above still require clinical validation and further work

to fill any gaps. The original pig scale was developed in weaned

38-day-old pigs, and the validity of the scale may change when

used in pigs of other ages. Two recent studies clinically validated

the pig scale in 5-day-old piglets (55, 56) with similar results to

the weaned pigs (53) suggesting broad application to pigs of

various ages for the assessment of acute pain.

The original cattle scale was validated only in Bos indicus

under field conditions (51). However, recently, the UCAPS was

clinically validated in Bos taurus and indicus and in the hospital

environment with cows restrained in stocks (57).

The Vetpain application, created by a group of researchers

headed up by Dr. Stelio Luna, is a useful tool to facilitate the use

of these instruments. It is available for both IOS (https://apps.

apple.com/ca/app/vetpain/id6462712970) and Android (https://

play.google.com/store/apps/details?id=com.vetpain.app) and

contains four steps: (1) videos that demonstrate the behaviors

related to each item on the scales, for prior learning by the user,

in order to improve their accuracy, repeatability, and

reproducibility of the results; (2) videos for training, where the

user can check their learning on the answer key before actually

FIGURE 1

Two-graph ROC curve of the USAPS. The diagnostic uncertainty zone of the cut-off point based on the Youden index was estimated by the 95%

confidence interval, calculated from 1,001 replications, and by sensitivity and specificity values >0.90. The diagnostic uncertainty zone was 4 to 5;

therefore ≤3 indicates pain-free sheep (true negative), and ≥5 indicates sheep suffering pain (true positive). A score ≥4 is representative of the

cut-off point for the indication of rescue analgesia. This figure was previously published in (52).
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using the scales, (3) evaluation of pain in their animal (for owners

and caregivers), or in patients under the care of Veterinarians or

Technicians, or even for research where the score is automatically

calculated, and (4) a defined score for each scale that indicates the

decision to provide analgesia (success-failure criteria).

Ongoing research has shown that untrained studentsmay use these

instruments to detect intense pain in animals with a similar accuracy to

an expert. Recent studies using artificial intelligence algorithms have

distinguished the most relevant pain behaviors in sheep (58), pigs

(59), and cattle (60), suggesting that future work may result in a

simplification of these current scales, improving usability.

Some limitations and confounding factors in pain detection

involved with the use of behavioral-based pain scales in large

animals are, in acute pain studies, the residual effects of anesthesia

leading to false positive results (61), the effects of time of day on

behavior (54, 61), the period animals take to adapt to the hospital

environment (61, 62) and, one of the most important, the observers

presence which tends to underestimate pain leading to false

negative results (63), suggesting that remote evaluation of pain

should be preferable. Also, importantly, reliability improved when

experienced observers assessed pain in horses and piglets compared

to veterinary students or less experienced observers respectively (64).

Statistical considerations when using
multiple or composite endpoints

Multiple or composite endpoints may be of more relevance to

the holistic assessment of the impact of pain. However, the use of

multiple endpoints requires appropriate statistical approaches.

Claire Ruberman discussed this topic.

Pain studies often utilize more than one outcome to evaluate a

drug or intervention’s effect(s). These outcomes may be evaluated

separately as multiple endpoints, either as multiple primary

endpoints or co-primary endpoints, or combined into a composite

endpoint. Statistical considerations when choosing an appropriate

endpoint or endpoints include the following aspects: (1) how to

balance Type I (rejecting the null hypothesis when the null is

true) and Type II errors (failing to reject the null hypothesis when

the alternative is true) while controlling the Type I error; (2) what

statistical methods are used to analyze different types of endpoints;

(3) how potential sources of missing data such as early

withdrawals are handled; and (4) how to interpret the results.

When multiple endpoints are analyzed in a single clinical trial,

there is a risk of increasing the likelihood of making a false

conclusion about the effectiveness of a drug if there are no

appropriate adjustments for multiple endpoints and analyses

(referred to as a multiplicity problem). This can be quantified as

the family-wise-error rate (FWER), which is the probability of

making one or more Type I errors among all hypotheses tested (65).

One method for addressing multiplicity is by defining co-

primary endpoints, in which the success of the study depends on

a positive outcome in all endpoints. This may be appropriate

when the demonstration of treatment effect on 2 or more distinct

endpoints is critical to establish clinical benefit; however, utilizing

co-primary endpoints has the disadvantage of reducing power.

Additionally, if multiple primary endpoints are defined such that a

demonstration of a treatment effect on at least one of several

primary endpoints is sufficient to establish study success, then

statistical methods for controlling the FWER may be utilized, such

as the Bonferroni Method or Holm or Hochberg procedures

(66, 67). There are numerous different methods for controlling the

FWER depending on the type of data and assumptions made

about the distribution of the data; an important commonality

among these methods is that they should be prespecified.

A concept similar to the FWER commonly utilized in exploratory

studies is the false discovery rate (FDR), which defines the

expected proportion of false positive findings among all rejected

hypotheses (68, 69). Similar to the FWER, there are a number of

different methods for controlling the FDR, which may be

appropriate when testing a large number of hypotheses (i.e.,

exploratory studies with a large number of endpoints of interest)

when controlling the FWER may be overly conservative.

A fourth method for addressing multiplicity is defining a

composite endpoint, wherein multiple distinct component endpoints

are combined into a single endpoint. Composite endpoints have the

advantage of avoiding choosing a primary endpoint or adjusting for

multiple testing. However, they may be less beneficial in an

exploratory setting if the objective is to identify which components

may be impacted by the treatment. Additionally, when defining a

composite endpoint, it is important to consider the clinical

relevance and interpretability of both the composite endpoint and

its individual components. Such considerations should include the

magnitude of the response, the associated clinical benefit, and the

consistency with which the clinical effect can be demonstrated, and

tools such as weighting may be utilized to address the clinical

importance as well as the scale and directionality of different

components (70, 71). Additionally, the results of a statistical analysis

of the composite endpoint apply only to the composite endpoint

itself and not to its individual components, and if one is interested

in conducting statistical testing on the individual components as

well, then multiplicity adjustments should be considered.

Examples of use of multiple or
composite endpoints in veterinary
species: food animals

Hans Coetzee highlighted two examples of using multiple and

composite endpoints in veterinary studies involving food animals.

The first example centered on the effectiveness studies for flunixin

transdermal solution (Banamine® Transdermal), a drug approved by

the FDA for the control of pain associated with foot rot in cattle.

This study was conducted at two sites with 30 Holstein steers each.

The study design employed a multi-faceted approach to evaluate

drug efficacy. The trial design involved the experimental induction of

footrot followed by a treatment evaluation phase. Multiple endpoints

were used to provide a comprehensive assessment of pain control.

This included traditional lameness scoring but also incorporated

advanced real-time gait analysis. This technology measured specific

parameters such as maximum total force and contact area on the

affected limb, offering objective data to complement subjective
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scoring. The effectiveness criteria specified that each study site

demonstrated both a statistically significant difference in the percent

of animals with clinically improved lameness scores (classified as

“treatment success”) and measurable and clinically relevant

improvements in gait parameters in the treated group at six

hours post-treatment.

The increasing prevalence of composite endpoints in veterinary

behavioral studies was also discussed. This approach involves scoring

various behavioral categories—such as social interactions, activity

levels, posture, and feeding behaviors—on simple numerical

scales. These individual scores are then aggregated to create a

comprehensive behavioral score, typically out of 10 points. This

method has been described in cattle and pig studies, offering a

nuanced way to quantify complex behavioral patterns. These

examples illustrate a growing trend in veterinary clinical research

towards more holistic and multidimensional assessment methods.

By employing multiple and composite endpoints, researchers can

capture a more complete picture of an animal’s response to

treatment or environmental factors. This approach not only

enhances the robustness of clinical trials but also paves the way

for more targeted and effective interventions in veterinary

medicine. As the field continues to advance, such sophisticated

methodologies are likely to become increasingly common, further

bridging the gap between veterinary and human clinical research

practices. This evolution promises to yield more precise and

actionable insights, ultimately benefiting animal health and welfare.

Adaptive and other innovative pain
measurement study designs

Adaptive clinical trial designs have been commonly applied to

cancer studies in humans and have increasingly been considered in

veterinary clinical trials. Still, they have been slow to be applied to

veterinary pain studies. Qiao Zhang discussed adaptive and other

innovative study designs and how they may be applied to

veterinary pain research.

Adaptive designs and enrichment designs are increasingly

being proposed for use in animal clinical trials to evaluate the

effectiveness of an animal drug. CVM published a relevant

Guidance for Industry (GFI) 268 “Adaptive and Other Innovative

Designs for Effectiveness Studies of New Animal Drugs” in 2021.

According to the guidance, adaptive design refers to a clinical

effectiveness study design that allows for prospectively planned

modifications, which may affect sample size, study duration,

endpoint selection, or other design features. Enrichment design

refers to the prospective use of any characteristic to select a study

population in which it is more likely to detect a treatment effect

than in an unselected population. The guidance provides

recommendations to enhance the validity and interpretability of

confirmatory studies; particularly, it points out that the designs

should be prospective, with the protocol pre-specifying the type

(s) of adaptation or enrichment strategy.

In a typical adaptive design, all the important study features

should be pre-specified in the planning stage, including the

hypothesis, number and timing of interim analyses, the statistical

analysis methods, the adaptation, and the criteria for triggering

the adaptation, and the specific algorithm governing adaptation

decisions, etc. Possible adaptations include increasing the sample

size, stopping the study early for futility, stopping the study early

for convincing efficacy, or other appropriate modifications by

design. Because multiple tests may be performed, the proper

control of Family Wise Error Rate (FWER) is a critical

consideration to be addressed in adaptive design studies, along

with strategies for controlling operational bias. The following

discussions are on 2 commonly used adaptive designs:

(1) Sample size re-estimation, or SSR, allows the increase of the

final sample size based on interim analysis results.

Conditional power is a well-established method for

performing SSR. Several publications provide details on the

methods to control FWER based on conditional power

(72–74). While SSR can help avoid under-powering a study,

we should be careful not to “over-power” a study, i.e., to

choose a sample size that can power a test to detect an effect

size so small that it is no longer clinically relevant. This

concern may be addressed by specifying a clinically relevant

treatment effect or minimal clinically important difference

(MCID). Adaptation should not be conducted too early,

when the results may be misguided by the highly variable

interim data and unreliable estimates, or too late, when there

is a limited window to adapt the study. Currently established

methods of SSR may not be directly applicable to animal

studies due to the differences in study design (mainly in the

randomization schemes) between human and animal clinical

trials, and the corresponding statistical analysis methods.

(2) Group sequential design allows for one or more prospectively

planned interim analyses with the possibility to stop the trial

early for convincing effectiveness. The level of significance for

each test should be adjusted to properly control FWER. The

timing of tests should be selected such that the interim

analysis includes a sufficient sample size needed to

generalize the effectiveness of the results to the target

population, obtain independent substantiation of evidence,

and provide reliable safety evaluation.

A placebo lead-in design is one example of an enrichment design that

aims to mitigate placebo effects. There is no requirement for alpha

adjustment in this design. However, a meta-analysis of 101 studies

(75) of depression showed that the typical placebo lead-in design

did not lower the placebo response rate, nor did it increase the

drug-placebo differences. Updated versions of the placebo lead-in

design have been proposed with better blinding strategies. One

main concern about the enrichment design is the generalizability of

the effectiveness of the results to the target population.

Adaptive and enrichment methods show benefits over a fixed

sample design; however, to maintain the study’s validity and

integrity, any adaptation or enrichment should be pre-specified

at the design stage. Appropriate statistical methods should be

applied to account for the adaptations, including the control of

the FWER. When interpreting and generalizing the results to the

target population, the design should be carefully considered.
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Future directions

As veterinary and comparative medicine embraces the

“biopsychosocial” model of pain we are going to see expanded

opportunities to develop measurement approaches in multiple new

areas across species, such as cognitive, affective and social aspects.

The social effects of, and influences on, pain have been explored in

rodent studies (76, 77). Other species offer exciting translational

opportunities—for example, dogs have relevant emotions, cognitive

responses, and established social relationships with humans that

frequently mirror those between human family members. Indeed,

even compared to non-human primates, dogs’ performance on

many cognitive tasks is more human-like than our closest primate

relatives (78, 79).

Artificial Intelligence, in its many forms, offers exciting

opportunities to improve the measurement of pain across species.

Simplistically, near future advances will fall into two broad

buckets—(1) automating processes that can already be performed

—such as automation of facial grimace detection in mice (80).

(2) Development of novel approaches to the measurement of the

impact of pain, for example through assessment of high

frequency inertial movement unit data in animals with chronic

musculoskeletal pain. Thus we will see advances in efficiency as

well as novel approaches to measure pain. In some respects, the

opportunities for the application of AI to the varied impacts of

pain may be greater in non-human species where the lack of

verbal self-report has forced consideration of other measures, and

because AI is already embraced in many sectors, such as farming.

However, just as in human medicine, determining “ground truth”

is absolutely critical to the development of algorithms (81).

With advances in the measurement of pain, and our ability to

classify pain states across species, coupled with improved

annotation of genomes across species and the accessibility of

“omics” technology, we are likely to see the development of

useful biomarkers of pain states.

Summary

The ability to measure the impact of pain in animals is

fundamental to any advances in the development of novel pain

therapeutic approaches. The 2023 PAW meeting brought together

researchers and clinicians from academia, government, practice,

and industry, all of whom had interest and expertise in human

and/or animal pain assessment, to discuss the current and future

status of pain assessment. Such multidisciplinary forums for

discussion are critical in order to bridge the “silos” we all work in

and to enrich the power of translational research. The 2023

meeting provided updates and insights into the current status of

the measurement of pain. Additionally, it facilitated discussions

on expanded opportunities to develop novel and clinically

meaningful outcome measures. A key concept presented was

the biopsychosocial model of pain which considers the pain

experience across the biological, psychological and social domains.

This model provides both opportunities for novel measurement

methods as well as novel interventions. In recognition of the

increasing application of artificial or augmented intelligence (AI)

and machine learning to all aspects of life, including in biomedical

research, the discussion of the application of AI to facilitate the

measurement of pain was timely and forward thinking. The 2025

PAW meeting (https://www.PAW-2025.com) will continue to

explore the theme of application of AI to pain measurement.

Collaborative discussions, such as those fostered by the PAW

meeting are critical to the advancement of comparative and

translational pain assessment and management, and will help shape

future approaches to translational preclinical data analysis with a

focus on meaningful changes that have relevance to human

drug development.
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