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Chronic musculoskeletal (MSK) pain can be characterized by its temporal
variability and evolution, affecting both pain management and treatment
outcomes. While pain variability is traditionally studied over long timescales
(e.g. days or weeks), few studies have explored short-term fluctuations (e.g.
minutes to seconds) and their clinical relevance. This study investigated the
short-term variability of chronic musculoskeletal pain across consecutive
days, examining whether these fluctuations are stable, exhibit consistent
temporal patterns, and relate to clinical severity. We also explored whether
individuals with chronic MSK pain could predict their pain intensity on the
following day, suggesting an ability to learn about their pain’s levels. Eighty-
one participants with chronic MSK pain to the back, neck, leg or arm (22—
65years, 72% females, 28% males) rated their pain continuously over two
days, using a smartphone-based app. Results indicated that pain ratings were
stable and exhibited consistent temporal patterns across days, with a
temporally correlated structure. High mean pain levels were associated with
lower variability, possibly reflecting a stabilized pain state. Short-term pain
variability negatively correlated with clinical severity, indicating that greater
variability is linked to milder pain. These findings highlight the importance of
short-term variability as a distinct and clinically relevant feature of chronic
MSK pain, with implications for personalized pain management strategies.
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1 Introduction

A key clinical feature of chronic ongoing pain is its temporal variability and dynamic
evolution, which can complicate pain management and influence treatment decisions (1).
For example, the ability to anticipate how pain will change over time can inform
medication timing, pacing of activity, and psychological coping strategies (2-4).
Despite its relevance, most studies have investigated pain dynamics on longer time
scales, spanning days or weeks (1, 4-6). In contrast, short-term fluctuations—on the
order of minutes or seconds—have received comparatively little attention, despite their
potential to reveal important mechanisms of peripheral variability and endogenous
pain regulation.
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The transmission of endogenous noxious signals to the brain
is known to follow a volatile and auto-correlated temporal
structure (7-9). Continuous self-reports of spontaneous pain
exhibit
relationship  between

fractal properties, characterized by a power-law

variability and the timescale of
measurement. These properties vary not only between types of
chronic pain (e.g., back pain vs. post-herpetic neuropathy) but
also between real and imagined pain, or between spontaneous
and evoked pain (8). People with chronic pain also exhibit
greater variability in their ratings of experimental pain, relative
to healthy controls, and such variability seems to be associated
with pain catastrophizing (9).

Importantly, short-range temporal variability may reflect the
functional status of pain regulatory systems. For instance,
moment-to-moment pain fluctuations have been linked to
with
), suggesting that temporal instability may

activity in the brainstem in individuals chronic
neuropathic pain (
be a marker of dysregulated endogenous control. Supporting
this view, medium-term pain fluctuations over 2-4 days have
been shown to be more frequent and severe in individuals with
high-impact temporomandibular pain compared to those with
lower-impact symptoms (11). This is consistent with broader
evidence of dysfunctional pain modulation in chronic pain
populations (12).

Despite these findings, it remains unclear whether short-term
pain variability is stable within individuals across days, and
whether it reflects trait-like differences that are linked to clinical
outcomes such as pain intensity, interference, or emotional
distress. Understanding the consistency and clinical significance
of these short-term patterns could enhance pain phenotyping
and support precision medicine approaches to treatment.

We also explored whether individuals with chronic pain are
capable of predicting their own pain levels for the following day.
This question is grounded in both theoretical and empirical
work on pain expectations, which have been shown to shape
pain perception via top-down mechanisms (13-15). Expectations
may also emerge from the brain’s ability to detect and learn
temporal regularities in noxious input, a process referred to as
temporal statistical learning (16, 17). If individuals with chronic
pain can make accurate predictions about their future pain, this
may reflect implicit learning of their own pain trajectories, even
in the face of subjective unpredictability. Such predictive
capacity could inform personalized self-management strategies
and improve clinical communication.

To address these questions, we conducted a smartphone-based
observational study in which participants with self-reported
chronic musculoskeletal pain (experiencing pain in the back, leg,
neck, or arm for more than 6 months) continuously rated their
pain over two consecutive days. After completing ratings on the
first day, participants also predicted the intensity of their pain
for the next day and reported their confidence in this
prediction. This approach allowed us to assess whether short-
term pain variability is (i) consistent across days, (ii) linked to
clinical features, and (iii) predictable by the individuals
themselves. Findings from this study may shed light on the

temporal structure and stability of chronic pain, while also
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identifying potential markers of pain self-awareness and

regulation that could inform tailored interventions.

2.1 Participants and screening procedures

We recruited 200 English-speaking participants online
through the Prolific platform (
eligibility process excluding individuals with dyslexia, speech

), which applies an internal

disorders, hearing loss, vision loss, color blindness, diabetes,
respiratory disease, head injury, or coronary artery disease, as
well as those who are pregnant or who had received a cancer
diagnosis within the previous 12 months. As an additional step,
all participants in our study completed a health screening
questionnaire to further evaluate eligibility. Before the screening,
their
adhering to procedures approved by the Department of

all participants provided digital informed consent,
Engineering, Ethics Committee of the University of Cambridge.

In order to ensure complete anonymity, the online
questionnaires and tasks did not require participants to provide
their names or contact details. The initial screening survey
included a brief health questionnaire (

), focusing on medical history, along with the standard
Musculoskeletal Health Questionnaire (MSK-HQ) (19). MSK-
HQ (scores between 0 and 56) individuals with

musculoskeletal conditions to report their symptoms and quality

enables

of life in a standardized way.

To be included in the experiment, participants had to meet the
following criteria: (a) having provided digital consent; (b)
experiencing pain in the back, leg, neck, or arm for more than 6
months; (c) having passed an attention check question; and (d)
not having any neurological, psychiatric, or developmental
disorders. Participants were included based on self-reported
The included detailed
questions about pain location, duration, and medical history,

chronic pain symptoms. screening
providing a reliable proxy for chronic pain conditions. This
choice was deliberate, in line with our goal to study the real-
world experience of individuals who identify as living with
chronic musculoskeletal pain. Self-report is a widely utilized
method in pain research, particularly for remote, app-based
observational studies, and is supported by prior literature
validity  of
). Based on these criteria, 123 participants

emphasizing the ecological subjective  pain
assessments (20,
were invited to take part in the two-day online experiment
detailed in Section 2.2. Of these, 81 participants successfully
completed the experiment on the first day, and 41 participants
completed both days. presents a flow
chart illustrating the inclusion and exclusion of study participants.

Among the 81 participants who completed Day 1, there were
58 females and 23 males, with an average age of 45.6 years
(+11.7), ranging from 22 to 65 years. These participants had
experienced chronic pain for an average of 9.7 years (+6.7) and
scored 36.6 (1+9.0) on the MSK-HQ scale. Among the 41

participants who completed both days of the experiment, 32
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were females and 9 were males, with an average age of 46.4 years
(£11.0). These participants had been experiencing chronic pain
for an average of 9.8 years (+6.6) and scored 36.2 (£+10.9) on
the MSK-HQ scale. Feedback from volunteers revealed that they
found the task very easy to do, but not very engaging. Informal
feedback from participants indicated that while the task was
easy to follow, it was not particularly engaging. The relatively
high dropout rate may be attributed to the online recruitment
method (via Prolific) and the
participation occur at approximately the same time of day as

requirement that Day 2

Day 1. For analytical purposes, Day 1 data were used to address
the primary research questions, while Day 2 data served to
evaluate test-retest reliability.

2.2 Experiment protocol

The entire experiment was conducted online, on smartphones,
over the course of two days. On each day, participants were
prompted to engage in a continuous rating task to provide their
pain intensity using an online application developed with the
open-source software package PsychoPy (22). The application
At the start of the study,
participants were provided with detailed instructions, which

was hosted on Pavlovia (23).

briefly described the continuous pain rating task and a simple
attention task resembling the actual procedure, and required to
complete a short practice run to ensure they understood how
the application worked. Once this was completed successfully,
the participants continuously rated their pain for approximately
five minutes on a vertical scale ranging from “Least Pain” to

10.3389/fpain.2025.1626589

“Most Pain.” We chose this vertical continuous scale to facilitate
intuitive and accessible real-time reporting across a wide range
of devices along with minimum cognitive load during
continuous rating tasks. Also, the simplicity of the anchors
allowed participants to focus on moment-to-moment
fluctuations rather than numerical calibration.

The interface of the application and the timeline of the
experiment are depicted in . During the experiment,
two attention tests were included to assess the participants’ level
of engagement with the task (tapping on a star briefly appearing
on the screen), at a random time within the 90-120 s range. The
attention checks interrupted the continuous rating process,
which had an average sampling rate of 55 Hz, giving rise to 3
trials of variable length. Participation were considered as invalid
if participants did not pass attention checks. After completing
the continuous pain rating, participants were asked to estimate
how much they expected their pain level to be the next day, at a
similar time of day, using a visual analog scale from “Least
Pain” to “Most Pain.” Although the VAS scale’s may have non-
linear properties (24, 25), minor differences between paper and

(26).

Participants also indicated their level of confidence in this

mobile assessments are not clinically significant
prediction on a scale from “Unsure” (low confidence) to “Sure”
(high confidence). This confidence scale was designed for
simplicity, compactness and ease of use [e.g., (27)].

asked to

questionnaires to provide a more complete description of their

Finally, participants were complete clinical

symptoms. Specifically, on day 1 of the experiment, participants
completed the Brief Pain Inventory (BPI) (28), while on Day 2
of the experiment, they completed the Pain Catastrophizing

90-120s

Attention Attention o .
Check Check Prediction — Confidence
! r——

How much pain do you FEEL NOW
Please rate your pain continuously

Please tap on the star

Most Pain Most Pain

*

Least Pain Least Pain

How much pain do you EXPECT to
feel tomorrow, roughly at this time
Please tap on the slider

Most Pain

How SURE are you in your guess

——

Least Pain

FIGURE 1

Experiment task design. Each day, participants engaged in an online pain rating task. Following instructions, volunteers were guided to continuously
maintain their finger on a slider and rating their pain intensity for a randomized duration of 90 to 120 s. During the task, a randomly appearing star on
the screen served as an attention check, which they tapped. This cycle repeated three times. Before finishing the task, participants were prompted to
predict their pain levels at the same time the following day and express their confidence in this prediction by tapping the slider
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Scale (PCS) (
helps quantifying both pain severity and functional interference

). Answering these questions was optional. BPI

across musculoskeletal and other chronic pain conditions. It is
brief, validated in dozens of languages, and highly responsive to
change. PCS assess the extent to which individuals tend to
catastrophize, or excessively dwell on and magnify, their pain
experience. Together, the BPI and PCS gave complementary
snapshots- what the pain feels like and how the participant
thinks about it. These are essential for interpreting the
clinical significance of the high-resolution temporal data. The
two questionnaires were spread over two days to avoid
participants from feeling overwhelmed by the volume of
questions if they were presented all at once.

2.3 Data pre-processing

Firstly, we removed trials which were interrupted by the
participants. Given that some participants did not keep their
fingers on the screen for the entire duration of each rating,
causing significant data “gaps” (lack of rating data) within a
trial, we segmented the rating data into epochs based on the
presence of large gaps (more than 10s). If any epoch had
gaps for less than 10s, the missing data were linearly

interpolated. Epochs with more than 3 gaps that
exceeded 10s were deemed invalid and excluded. The total
exclusion rate of trials was 23.8%. Following data

segmentation, all ratings were resampled at a 40 Hz sampling
rate for consistency.

2.4 Analysis of variability and reliability of
continuous pain rating

To describe the variability in the continuous ratings of the
participants, we calculated for each day the mean, coefficient of
variation (CV) ( ), and interquartile range (IQR)
( ), which
variability relative to the mean intensity, and dispersion of the

respectively, indicate the intensity,
rating of each participant. For a full day’s rating by a
participant, SD represents the standard deviation of the rating;
Mean is the mean value of the rating; Q1 corresponds to the
first quartile (25th percentile) of the data; Q3 corresponds to the

third quartile (75th percentile) of the data:

SD
CV = <m> x 100% (1)
IQR = Q3 — Q1 )

To assess the distribution of variability parameters, we generated
plots for each parameter and observed that they displayed a
skewed distribution. To reduce the influence of extreme values
and prevent the generation of invalid results in standard
statistical analyses, we applied a log transformation to reduce

the skewness. shows the distribution of
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both the raw factors and the log-transformed data. The resulting
distribution showed a clearer central tendency with a reduction
in the spread of values.

We evaluated the test-retest reliability of the ratings on Day 1
and Day 2, by calculating the intra-class correlation (ICC) and
Pearson’s correlation, corrected for multiple comparisons using
a Benjamini & Hochberg correction on the False Discovery Rate
(FDR). This analysis was performed to evaluate the consistency
of the above variability factors obtained from the ratings of the
same participant on both Day 1 and Day 2. Furthermore, we
estimated the lagged autocorrelation among the pain ratings, to
determine whether pain ratings at each time point were based
on recent pain levels.

To investigate the clinical significance of our variability
measures (CV, IQR), we correlated them with the clinical
questionnaire scores (MSK-HQ, BPI severity, and PCS). The
BPI severity score (out of 10) is calculated by the scores for
Questions 2, 3, 4 and 5 and then dividing by 4. For
consistency, we also correlated the mean pain level with
MSK-HQ, BPI severity, and PCS scores. Again, the FDR was
corrected for multiple comparisons. Correlations for day 1
were calculated based on participants who attended day 1,
while analyses for day 2 were performed using
participants who attended both days. All statistical tests were
statistical defined as

two-tailed, and

corrected p < 0.05.

significance was

2.5 Pain prediction

After assessing the variability of the ratings, we focused on
evaluating the accuracy of each participant’s pain prediction. At
the end of their participation in their task on Day 1,
participants were asked to predict their intensity of pain at a
similar time on the following day, along with their confidence in
that prediction. To gauge the precision of their predictions, we
calculated the Root Mean Square Error (RMSE) between their
actual pain rating values on day 2 and the predictions they
made the previous day. A higher RMSE indicates a lower
prediction accuracy. To quantify their prediction accuracy, we
subtracted the RMSE from the highest value on the prediction
slider (10). In the following
data on Day 2. Pred refers to the pain prediction for Day 2

, R; represents the rating

made on Day 1.

SF, (Ri — Pred)?

Acc =10 —
cc T

(©)

We correlated the prediction performance of participants
(prediction and accuracy) with the mean and variability
measures (CV and IQR).
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3 Results
3.1 Variability and reliability of pain ratings

The mean level of rated pain, its variability (CV) and spread
(IQR) were fairly stable across the two days of testing (see Table 1).

To assess the comparability between participants who
completed both days of the study and those who only attended
the first day, we conducted Mann-Whitney U tests on the Day 1
ratings. Specifically, we compared the mean, CV, and IQR
between the two groups. The results indicated no significant
differences across these measures (mean: p = 0.095; CV: p =
0.788; IQR: p = 0.155), suggesting that the participants who

TABLE 1 Test-retest reliability of two-day participation. Mean, CV and
IQR have been calculated from ratings in Day 1 and 2. Intraclass
Correlation Coefficient (ICC) and Pearson’s R were calculated between
factors on Day 1 in participants who attended both days and
corresponding to the same participant on Day 2.

10.3389/fpain.2025.1626589

completed only one day were not systematically different from
those who completed both. This supports the inclusion of data
from both groups in subsequent analyses.

To investigate the temporal dependencies in pain rating, we
conducted autocorrelation analyses. First, we computed the
autocorrelation across all lags for each participant’s individual
ratings. These values were then aggregated across participants to
calculate the mean and variance at each lag, providing a group-
level summary of the autocorrelation structure on both days.
Second, we calculated the lag-1 second autocorrelation, which
measures the correlation between rating points separated by a
1s interval, capturing short-term dependencies over a
behaviorally meaningful timescale.

The visualization of the mean autocorrelation function across
participants revealed a gradual decay across both days. The lag-1s
autocorrelation indicated a high level of short-term dependency in
the ratings (mean: 0.736 for Day 1, 0.709 for Day 2), with no
significant difference between the two days (Mann-Whitney

U test: U = 10855.0, p = 0.535). The group-level autocorrelation

Factor ICC| p-value @ Pearson’s p-value across all lags is presented in Figure 2A, and the distribution of
(ICC) R (Pearson’s R) lag-1 second autocorrelation is shown in Figure 2B.
Mean | 0.863 <0.001 0.823 <0.001 Mean pain levels were negatively correlated with CV (day 1:
v 0805 <0.001 0754 <0.001 Pearson’s R = —0.608, corrected p < 0.001; day 2: R = —0.741,
1R 0.788 <0.001 0.733 <0001 p < 0.001) and positively correlated with IQR (day 1: R = 0.382,
(A) 10 Group-level Autocorrelation
—— Mean auto_Corr (Dayl)
05 +1 Std Dev (Dayl)
_ —— Mean auto_Corr (Day2)
£ +1 Std Dev (Day2)
[
5 0.0
g
2
—0.51
—-1.0— " ' . .
0 20 40 60 80
B Lag (s)
( ) lag-1s autocorrelation
1.0
c
20.57
s
g
5
g
#0.01
o
Dayl Day?2
Date
FIGURE 2
Autocorrelation analysis (A—B). (A) autocorrelation across all lags; (B) The distribution of lag-1s autocorrelation.
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p < 0.001, Figure 3; day 2: R = 0.398, p = 0.013). Hence, the more
severe the intensity of the rated pain, the less variable it was, the
values regressing toward their central ranges. Furthermore, as
the relative variability increased, so did the data spread, but only
on day 1 (CV and IQR correlation in day 1: R 0.379,
p < 0.001; day 2: R = 0.103, p = 0.435).

3.2 Clinical significance

Mean pain levels and variability measures (CV, IQR) on day
1 were correlated with clinical scores to explore their clinical

Correlation
2.5
)
% vo}i ’_‘,T’
[} At
£0.0 '
0.0 o,
> Rt &3 A
O-25 T s -
® ®
0 O 0:5. 0,%
x 0. ® -
e} % ! .0
- a® & %
0o®
-2.5
=2:500 25 =5 0 -2.50.0 2.5
mean cv IQR
FIGURE 3
Correlation among variability parameters (mean, CV, and IQR) on
Day 1. Kernel density estimation of each factor and regression of
each correlation.

10.3389/fpain.2025.1626589

significance (Figure 4, Supplementary Table S1). Detailed
clinical information for all 81 participants is provided in
Supplementary Material S4. Because the BPI was assessed on
Day 1 and the PCS on Day 2, we used Day 1 data only
from participants who attended both days. We found a
strong negative correlation between pain variability (CV)
and BPI severity and a strong positive correlation with the
MSK-HQ score (n.b., the better the MSK-HQ score, the
better the health status). This again indicates that the
the the higher
The mean pain value also had a strong negative correlation

milder pain condition, its  variability.
with MSK-HQ and positive correlations with BPI severity
and PCS.

To validate these findings, the same correlation analysis was
performed on day 2 data, which showed similar results (S1): CV
with  BPI
moderately correlated with MSK-HQ, while mean pain was
strongly correlated with MSK-HQ, BPI Severity, and PCS.
Furthermore, the spread of pain ratings around mean values
(IQR) showed a moderate positive correlation with BPI severity

and PCS on day 2.

was  strongly  correlated Severity  and

3.3 Pain prediction

Immediately after completing the pain rating task on day 1,
participants predicted how much pain they would experience
the following day. The predicted pain intensity was strongly
correlated with the mean pain intensity rated on day 2 and was
negatively related to its variability (CV, day 2) (Figure 5,
Supplementary Table S2). Furthermore, the precision of this
prediction, as quantified by RMSE scores, was negatively,
although weakly, correlated with the variability (CV) of pain
rated on day 2, suggesting that the participants who gave the
most accurate predictions may also have experienced less
variable pain the following day.

(A) (B)

FIGURE 4

Pearson's R Correlation
— 1.0 -0.05 25 :
C e < ] © ] L
o JEXTEN 0.752 B8 <0.001 <0.001 0.004 [ go.o\ / /
£ 05 € 0.04
a0 98 ? &
O -0.609 -0.255 [ TONIPGR 0.002 <0.001 JeNel:¥ Bosiprin: Tay Yhsem
0.02
o —0.5 & 0.01 5 *° imia i et
leg -0-101  0.220 0.299 o- 0.256 0.109 0.061 . <] \"‘— b ] :
. -1.0 . — ‘ 725 25 50 2550 0 25
MSK-HQ BPI Severity PCS MSK-HQ BPI Severity PCS MSK-HQ  BPI Severity PCS

Correlation between variability measures (Day 1) and clinical outcomes (A-C). Log transformed Mean, CV, and IQR were correlated with MSK-HQ,
BPI Severity, and PCS questionnaire scores. (A) Pearson'’s correlation between variability factors and clinical outcome; (B) P-value of each correlation
after multiple comparison; (C) Scatterplots and regression lines for each pairwise relationship.

(©)
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FIGURE 5
Correlation between predicted and actual pain levels and variability (A-C). Variability factors include log transformed Mean, CV, and IQR. (A)
Pearson’s correlation among predicted pain on day 1, prediction accuracy (RMSE), mean pain, and variability rated on day 2; (B) P-value of each
correlation after multiple comparisons; (C) Regression of each correlation.

4 Discussion

This study offers new insights into the short-term variability of
ongoing chronic musculoskeletal pain and its potential clinical
relevance. While most research has focused on pain dynamics
over days or weeks, our findings highlight that meaningful
patterns also emerge over much shorter time scales—on the
order of seconds to minutes. We observed strong short-term
in high
autocorrelation values and a gradual decay in influence over

dependencies in pain ratings, reflected lag-1s
time. These temporal patterns were consistent across consecutive
days, reinforcing the stability of pain dynamics at fine-grained
timescales. Moreover, high test-retest reliability for mean pain
levels, coefficient of variation (CV), and interquartile range
(IQR) suggests that short-term fluctuations are not random
noise, but instead follow an individual-specific and structured
pattern. Pain variability (CV) was inversely related to mean pain
levels, indicating that individuals reporting higher average pain
experienced less fluctuation—potentially reflecting more
entrenched or rigid pain states. In contrast, the positive
correlation between mean pain and IQR suggests that even
when pain is severe, moment-to-moment ratings can still vary
substantially, highlighting a nuanced and multidimensional
picture of pain experience.

Our findings build on and extend prior work on the temporal
dynamics of chronic pain, which has traditionally emphasized
longer time frames—ranging from days to months—to capture
flare-ups, diurnal trends, or treatment responses (1, 4-6, 30).
These longer-term patterns have been linked to increased
disability, emotional distress, and maladaptive behaviors such as
overactivity during pain-free intervals (31-33). However, far

less attention has been paid to short-term pain dynamics (8),

Frontiers in Pain Research 07

despite their potential to reveal fast-acting regulatory processes
and to better reflect the real-time burden of chronic pain in
daily life.

Studying short-term variability is both practical and
meaningful. It can be easily measured using brief, app-based
self-report tools, and offers a complementary perspective to
long-term monitoring. The current study was developed with
input from people living with chronic pain, through Patient and
Public Engagement activities that emphasized the importance of
capturing the unpredictability and moment-to-moment changes
in pain. These temporal features are often invisible in traditional
assessments, yet they shape how individuals manage their pain
and interact with their environments (2-4).

Previous research on short-term variability has largely focused
on experimental pain paradigms, where individuals with chronic
pain show greater trial-to-trial variability in response to painful
stimuli than healthy controls (9). This variability has been
linked to prior expectations (17, 34-36), psychological traits
such as pain catastrophizing (9), and cognitive load (37),
suggesting that short-term fluctuations reflect the interaction of
neurophysiological and psychological systems.

Here, we extend these findings to naturalistic, self-reported
pain in daily life. We found that the CV of continuous pain
ratings was negatively correlated with clinical severity (e.g., BPI
severity) and  positively associated  with  self-reported
musculoskeletal health (MSK-HQ). In other words, individuals
with more severe, persistent pain showed less moment-to-
moment variability, whereas those with milder symptoms
experienced more fluctuation. This pattern cannot be easily
explained by a ceiling effect, as the ratings did not cluster near
the top of the scale. Instead, it may reflect the biological

stabilization of pain due to central sensitization or impaired
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descending modulation (38), leading to pain that is both elevated
and resistant to short-term modulation.

The observed relationship between short-term variability and
clinical outcomes underscores its potential value as a marker of
pain severity and flexibility. These findings suggest that high-
resolution self-report measures could be developed into practical
Patient-Reported Outcome Measures (PROMs), offering insights
not only into how much pain a person feels, but how that pain
behaves over time. Such metrics could support individualized
treatment planning and better reflect patients” lived experiences.
Future studies should examine the stability of these short-term
their
sensitivity to therapeutic interventions, and their potential for

patterns over longer durations (weeks or months),
guiding personalized care. All code for implementing the
continuous rating task is openly available on Zenodo (39),
enabling replication and further development by the research
and clinical communities.

In addition, our findings provide insight into the capacity of
individuals with chronic pain to anticipate their future pain
levels. The strong correlation between participants’ predicted
pain on Day 1 and their actual pain ratings on Day 2 suggests
that,
individuals were able to form reasonably accurate expectations

despite the inherent fluctuations in chronic pain,
about their near-future experiences. This supports the notion of

temporal statistical learning, whereby the brain detects
regularities within autocorrelated pain signals to generate
predictions about what will come next (16, 17). These results are
consistent with broader research on pain expectancy, which
shows that anticipatory processes can shape subsequent pain
perception and are influenced by contextual factors such as
sleep quality and emotional state (40,

findings highlight that the subjective predictability of pain (often

). Together, these

dismissed as erratic) may in fact be grounded in learned,
temporally structured patterns that individuals can implicitly
access and use to guide behavior and coping.

4.1 Limitations

Several limitations should be acknowledged. First, the sample
was recruited online through the Prolific platform, which may
limit the generalizability of the findings. Participants were self-
selected and may not fully represent the broader chronic pain
population, particularly in terms of age, socioeconomic status,
or clinical diagnoses. The relatively small number of male
participants who completed both days (n = 9) further restricts
the representativeness of the sample and may limit the ability to
generalize results across sexes.

Second, although efforts were made to ensure data quality
(such as attention checks and data pre processing), participant
dropout between days was relatively high. This may be due in
part to the requirement that Day 2 participation occur at a
similar time as Day 1, as well as the low-engagement nature of
the task. As a result, analyses involving test-retest reliability were
based on a smaller subset of participants, which may reduce
statistical power and introduce potential bias.
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Third, while continuous pain ratings offer a rich and
ecologically valid snapshot of moment-to-moment experience,
they still rely on subjective self-report and may be influenced by
individual differences in interpretation or interaction with the
rating scale. Furthermore, we did not collect physiological data
that validate the
fluctuations in pain.

could complement and self-reported
Finally, the sample covered a relatively wide age range.
Although this diversity reflects the broader chronic pain
population, the data were not analyzed by age groups (for
example, younger adults vs. middle-aged adults). As a result,
potential age-related differences in pain variability could not be
examined. Moreover, the study focused on short-term variability
over two consecutive days; future research is needed to examine
how these patterns evolve over longer timescales and in
response to treatment or other contextual changes.
these
groundwork for exploring short-term variability as a clinically

Despite limitations, the study lays important
relevant marker and demonstrates the feasibility of remote,

high-frequency pain tracking in real-world settings.

In conclusion, this study underscores the clinical relevance of
short-term variability in chronic musculoskeletal pain, revealing
that these moment-to-moment fluctuations are not only stable
and individually consistent, but also meaningfully linked to pain
severity and self-perceived health. Understanding the temporal
dynamics of pain at fine-grained timescales could open new
avenues for personalized pain management, offering insights
into an individual’s regulatory capacity and potential treatment
responsiveness. Importantly, the continuous self-report measures
used in this study were simple, scalable, and well-suited to
remote delivery—highlighting their promise as practical tools for
digital health monitoring and individualized assessment in
clinical settings.
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