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Chronic musculoskeletal (MSK) pain can be characterized by its temporal 

variability and evolution, affecting both pain management and treatment 

outcomes. While pain variability is traditionally studied over long timescales 

(e.g. days or weeks), few studies have explored short-term fluctuations (e.g. 

minutes to seconds) and their clinical relevance. This study investigated the 

short-term variability of chronic musculoskeletal pain across consecutive 

days, examining whether these fluctuations are stable, exhibit consistent 

temporal patterns, and relate to clinical severity. We also explored whether 

individuals with chronic MSK pain could predict their pain intensity on the 

following day, suggesting an ability to learn about their pain’s levels. Eighty- 

one participants with chronic MSK pain to the back, neck, leg or arm (22– 

65 years, 72% females, 28% males) rated their pain continuously over two 

days, using a smartphone-based app. Results indicated that pain ratings were 

stable and exhibited consistent temporal patterns across days, with a 

temporally correlated structure. High mean pain levels were associated with 

lower variability, possibly reflecting a stabilized pain state. Short-term pain 

variability negatively correlated with clinical severity, indicating that greater 

variability is linked to milder pain. These findings highlight the importance of 

short-term variability as a distinct and clinically relevant feature of chronic 

MSK pain, with implications for personalized pain management strategies.
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1 Introduction

A key clinical feature of chronic ongoing pain is its temporal variability and dynamic 

evolution, which can complicate pain management and in�uence treatment decisions (1). 

For example, the ability to anticipate how pain will change over time can inform 

medication timing, pacing of activity, and psychological coping strategies (2–4). 

Despite its relevance, most studies have investigated pain dynamics on longer time 

scales, spanning days or weeks (1, 4–6). In contrast, short-term �uctuations—on the 

order of minutes or seconds—have received comparatively little attention, despite their 

potential to reveal important mechanisms of peripheral variability and endogenous 

pain regulation.
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The transmission of endogenous noxious signals to the brain 

is known to follow a volatile and auto-correlated temporal 

structure (7–9). Continuous self-reports of spontaneous pain 

exhibit fractal properties, characterized by a power-law 

relationship between variability and the timescale of 

measurement. These properties vary not only between types of 

chronic pain (e.g., back pain vs. post-herpetic neuropathy) but 

also between real and imagined pain, or between spontaneous 

and evoked pain (8). People with chronic pain also exhibit 

greater variability in their ratings of experimental pain, relative 

to healthy controls, and such variability seems to be associated 

with pain catastrophizing (9).

Importantly, short-range temporal variability may re�ect the 

functional status of pain regulatory systems. For instance, 

moment-to-moment pain �uctuations have been linked to 

activity in the brainstem in individuals with chronic 

neuropathic pain (10), suggesting that temporal instability may 

be a marker of dysregulated endogenous control. Supporting 

this view, medium-term pain �uctuations over 2–4 days have 

been shown to be more frequent and severe in individuals with 

high-impact temporomandibular pain compared to those with 

lower-impact symptoms (11). This is consistent with broader 

evidence of dysfunctional pain modulation in chronic pain 

populations (12).

Despite these findings, it remains unclear whether short-term 

pain variability is stable within individuals across days, and 

whether it re�ects trait-like differences that are linked to clinical 

outcomes such as pain intensity, interference, or emotional 

distress. Understanding the consistency and clinical significance 

of these short-term patterns could enhance pain phenotyping 

and support precision medicine approaches to treatment.

We also explored whether individuals with chronic pain are 

capable of predicting their own pain levels for the following day. 

This question is grounded in both theoretical and empirical 

work on pain expectations, which have been shown to shape 

pain perception via top-down mechanisms (13–15). Expectations 

may also emerge from the brain’s ability to detect and learn 

temporal regularities in noxious input, a process referred to as 

temporal statistical learning (16, 17). If individuals with chronic 

pain can make accurate predictions about their future pain, this 

may re�ect implicit learning of their own pain trajectories, even 

in the face of subjective unpredictability. Such predictive 

capacity could inform personalized self-management strategies 

and improve clinical communication.

To address these questions, we conducted a smartphone-based 

observational study in which participants with self-reported 

chronic musculoskeletal pain (experiencing pain in the back, leg, 

neck, or arm for more than 6 months) continuously rated their 

pain over two consecutive days. After completing ratings on the 

first day, participants also predicted the intensity of their pain 

for the next day and reported their confidence in this 

prediction. This approach allowed us to assess whether short- 

term pain variability is (i) consistent across days, (ii) linked to 

clinical features, and (iii) predictable by the individuals 

themselves. Findings from this study may shed light on the 

temporal structure and stability of chronic pain, while also 

identifying potential markers of pain self-awareness and 

regulation that could inform tailored interventions.

2 Methods

2.1 Participants and screening procedures

We recruited 200 English-speaking participants online 

through the Prolific platform (18), which applies an internal 

eligibility process excluding individuals with dyslexia, speech 

disorders, hearing loss, vision loss, color blindness, diabetes, 

respiratory disease, head injury, or coronary artery disease, as 

well as those who are pregnant or who had received a cancer 

diagnosis within the previous 12 months. As an additional step, 

all participants in our study completed a health screening 

questionnaire to further evaluate eligibility. Before the screening, 

all participants provided their digital informed consent, 

adhering to procedures approved by the Department of 

Engineering, Ethics Committee of the University of Cambridge. 

In order to ensure complete anonymity, the online 

questionnaires and tasks did not require participants to provide 

their names or contact details. The initial screening survey 

included a brief health questionnaire (Supplementary Material 

S3), focusing on medical history, along with the standard 

Musculoskeletal Health Questionnaire (MSK-HQ) (19). MSK- 

HQ (scores between 0 and 56) enables individuals with 

musculoskeletal conditions to report their symptoms and quality 

of life in a standardized way.

To be included in the experiment, participants had to meet the 

following criteria: (a) having provided digital consent; (b) 

experiencing pain in the back, leg, neck, or arm for more than 6 

months; (c) having passed an attention check question; and (d) 

not having any neurological, psychiatric, or developmental 

disorders. Participants were included based on self-reported 

chronic pain symptoms. The screening included detailed 

questions about pain location, duration, and medical history, 

providing a reliable proxy for chronic pain conditions. This 

choice was deliberate, in line with our goal to study the real- 

world experience of individuals who identify as living with 

chronic musculoskeletal pain. Self-report is a widely utilized 

method in pain research, particularly for remote, app-based 

observational studies, and is supported by prior literature 

emphasizing the ecological validity of subjective pain 

assessments (20, 21). Based on these criteria, 123 participants 

were invited to take part in the two-day online experiment 

detailed in Section 2.2. Of these, 81 participants successfully 

completed the experiment on the first day, and 41 participants 

completed both days. Supplementary Figure S1 presents a �ow 

chart illustrating the inclusion and exclusion of study participants.

Among the 81 participants who completed Day 1, there were 

58 females and 23 males, with an average age of 45.6 years 

(+11.7), ranging from 22 to 65 years. These participants had 

experienced chronic pain for an average of 9.7 years (+6.7) and 

scored 36.6 (+9.0) on the MSK-HQ scale. Among the 41 

participants who completed both days of the experiment, 32 
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were females and 9 were males, with an average age of 46.4 years 

(+11.0). These participants had been experiencing chronic pain 

for an average of 9.8 years (+6.6) and scored 36.2 (+10.9) on 

the MSK-HQ scale. Feedback from volunteers revealed that they 

found the task very easy to do, but not very engaging. Informal 

feedback from participants indicated that while the task was 

easy to follow, it was not particularly engaging. The relatively 

high dropout rate may be attributed to the online recruitment 

method (via Prolific) and the requirement that Day 2 

participation occur at approximately the same time of day as 

Day 1. For analytical purposes, Day 1 data were used to address 

the primary research questions, while Day 2 data served to 

evaluate test-retest reliability.

2.2 Experiment protocol

The entire experiment was conducted online, on smartphones, 

over the course of two days. On each day, participants were 

prompted to engage in a continuous rating task to provide their 

pain intensity using an online application developed with the 

open-source software package PsychoPy (22). The application 

was hosted on Pavlovia (23). At the start of the study, 

participants were provided with detailed instructions, which 

brie�y described the continuous pain rating task and a simple 

attention task resembling the actual procedure, and required to 

complete a short practice run to ensure they understood how 

the application worked. Once this was completed successfully, 

the participants continuously rated their pain for approximately 

five minutes on a vertical scale ranging from “Least Pain” to 

“Most Pain.” We chose this vertical continuous scale to facilitate 

intuitive and accessible real-time reporting across a wide range 

of devices along with minimum cognitive load during 

continuous rating tasks. Also, the simplicity of the anchors 

allowed participants to focus on moment-to-moment 

�uctuations rather than numerical calibration.

The interface of the application and the timeline of the 

experiment are depicted in Figure 1. During the experiment, 

two attention tests were included to assess the participants’ level 

of engagement with the task (tapping on a star brie�y appearing 

on the screen), at a random time within the 90–120 s range. The 

attention checks interrupted the continuous rating process, 

which had an average sampling rate of 55 Hz, giving rise to 3 

trials of variable length. Participation were considered as invalid 

if participants did not pass attention checks. After completing 

the continuous pain rating, participants were asked to estimate 

how much they expected their pain level to be the next day, at a 

similar time of day, using a visual analog scale from “Least 

Pain” to “Most Pain.” Although the VAS scale’s may have non- 

linear properties (24, 25), minor differences between paper and 

mobile assessments are not clinically significant (26). 

Participants also indicated their level of confidence in this 

prediction on a scale from “Unsure” (low confidence) to “Sure” 

(high confidence). This confidence scale was designed for 

simplicity, compactness and ease of use [e.g., (27)].

Finally, participants were asked to complete clinical 

questionnaires to provide a more complete description of their 

symptoms. Specifically, on day 1 of the experiment, participants 

completed the Brief Pain Inventory (BPI) (28), while on Day 2 

of the experiment, they completed the Pain Catastrophizing 

FIGURE 1 

Experiment task design. Each day, participants engaged in an online pain rating task. Following instructions, volunteers were guided to continuously 

maintain their finger on a slider and rating their pain intensity for a randomized duration of 90 to 120 s. During the task, a randomly appearing star on 

the screen served as an attention check, which they tapped. This cycle repeated three times. Before finishing the task, participants were prompted to 

predict their pain levels at the same time the following day and express their confidence in this prediction by tapping the slider.
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Scale (PCS) (29). Answering these questions was optional. BPI 

helps quantifying both pain severity and functional interference 

across musculoskeletal and other chronic pain conditions. It is 

brief, validated in dozens of languages, and highly responsive to 

change. PCS assess the extent to which individuals tend to 

catastrophize, or excessively dwell on and magnify, their pain 

experience. Together, the BPI and PCS gave complementary 

snapshots- what the pain feels like and how the participant 

thinks about it. These are essential for interpreting the 

clinical significance of the high-resolution temporal data. The 

two questionnaires were spread over two days to avoid 

participants from feeling overwhelmed by the volume of 

questions if they were presented all at once.

2.3 Data pre-processing

Firstly, we removed trials which were interrupted by the 

participants. Given that some participants did not keep their 

fingers on the screen for the entire duration of each rating, 

causing significant data “gaps” (lack of rating data) within a 

trial, we segmented the rating data into epochs based on the 

presence of large gaps (more than 10 s). If any epoch had 

gaps for less than 10 s, the missing data were linearly 

interpolated. Epochs with more than 3 gaps that 

exceeded 10 s were deemed invalid and excluded. The total 

exclusion rate of trials was 23.8%. Following data 

segmentation, all ratings were resampled at a 40 Hz sampling 

rate for consistency.

2.4 Analysis of variability and reliability of 
continuous pain rating

To describe the variability in the continuous ratings of the 

participants, we calculated for each day the mean, coefficient of 

variation (CV) (Equation 1), and interquartile range (IQR) 

(Equation 2), respectively, which indicate the intensity, 

variability relative to the mean intensity, and dispersion of the 

rating of each participant. For a full day’s rating by a 

participant, SD represents the standard deviation of the rating; 

Mean is the mean value of the rating; Q1 corresponds to the 

first quartile (25th percentile) of the data; Q3 corresponds to the 

third quartile (75th percentile) of the data:

CV ¼

SD

Mean

� �

� 100% (1) 

IQR ¼ Q3 � Q1 (2) 

To assess the distribution of variability parameters, we generated 

plots for each parameter and observed that they displayed a 

skewed distribution. To reduce the in�uence of extreme values 

and prevent the generation of invalid results in standard 

statistical analyses, we applied a log transformation to reduce 

the skewness. Supplementary Figure S2 shows the distribution of 

both the raw factors and the log-transformed data. The resulting 

distribution showed a clearer central tendency with a reduction 

in the spread of values.

We evaluated the test-retest reliability of the ratings on Day 1 

and Day 2, by calculating the intra-class correlation (ICC) and 

Pearson’s correlation, corrected for multiple comparisons using 

a Benjamini & Hochberg correction on the False Discovery Rate 

(FDR). This analysis was performed to evaluate the consistency 

of the above variability factors obtained from the ratings of the 

same participant on both Day 1 and Day 2. Furthermore, we 

estimated the lagged autocorrelation among the pain ratings, to 

determine whether pain ratings at each time point were based 

on recent pain levels.

To investigate the clinical significance of our variability 

measures (CV, IQR), we correlated them with the clinical 

questionnaire scores (MSK-HQ, BPI severity, and PCS). The 

BPI severity score (out of 10) is calculated by the scores for 

Questions 2, 3, 4 and 5 and then dividing by 4. For 

consistency, we also correlated the mean pain level with 

MSK-HQ, BPI severity, and PCS scores. Again, the FDR was 

corrected for multiple comparisons. Correlations for day 1 

were calculated based on participants who attended day 1, 

while analyses for day 2 were performed using 

participants who attended both days. All statistical tests were 

two-tailed, and statistical significance was defined as 

corrected p , 0:05.

2.5 Pain prediction

After assessing the variability of the ratings, we focused on 

evaluating the accuracy of each participant’s pain prediction. At 

the end of their participation in their task on Day 1, 

participants were asked to predict their intensity of pain at a 

similar time on the following day, along with their confidence in 

that prediction. To gauge the precision of their predictions, we 

calculated the Root Mean Square Error (RMSE) between their 

actual pain rating values on day 2 and the predictions they 

made the previous day. A higher RMSE indicates a lower 

prediction accuracy. To quantify their prediction accuracy, we 

subtracted the RMSE from the highest value on the prediction 

slider (10). In the following Equation 3, Ri represents the rating 

data on Day 2. Pred refers to the pain prediction for Day 2 

made on Day 1.

Acc ¼ 10 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PT
i¼0 (Ri � Pred)2

T

s

(3) 

We correlated the prediction performance of participants 

(prediction and accuracy) with the mean and variability 

measures (CV and IQR).
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3 Results

3.1 Variability and reliability of pain ratings

The mean level of rated pain, its variability (CV) and spread 

(IQR) were fairly stable across the two days of testing (see Table 1).

To assess the comparability between participants who 

completed both days of the study and those who only attended 

the first day, we conducted Mann-Whitney U tests on the Day 1 

ratings. Specifically, we compared the mean, CV, and IQR 

between the two groups. The results indicated no significant 

differences across these measures (mean: p = 0.095; CV: p = 

0.788; IQR: p = 0.155), suggesting that the participants who 

completed only one day were not systematically different from 

those who completed both. This supports the inclusion of data 

from both groups in subsequent analyses.

To investigate the temporal dependencies in pain rating, we 

conducted autocorrelation analyses. First, we computed the 

autocorrelation across all lags for each participant’s individual 

ratings. These values were then aggregated across participants to 

calculate the mean and variance at each lag, providing a group- 

level summary of the autocorrelation structure on both days. 

Second, we calculated the lag-1 second autocorrelation, which 

measures the correlation between rating points separated by a 

1 s interval, capturing short-term dependencies over a 

behaviorally meaningful timescale.

The visualization of the mean autocorrelation function across 

participants revealed a gradual decay across both days. The lag-1s 

autocorrelation indicated a high level of short-term dependency in 

the ratings (mean: 0.736 for Day 1, 0.709 for Day 2), with no 

significant difference between the two days (Mann-Whitney 

U test: U = 10855.0, p = 0.535). The group-level autocorrelation 

across all lags is presented in Figure 2A, and the distribution of 

lag-1 second autocorrelation is shown in Figure 2B.

Mean pain levels were negatively correlated with CV (day 1: 

Pearson’s R = �0.608, corrected p < 0.001; day 2: R = �0.741, 

p < 0.001) and positively correlated with IQR (day 1: R = 0.382, 

TABLE 1 Test-retest reliability of two-day participation. Mean, CV and 
IQR have been calculated from ratings in Day 1 and 2. Intraclass 
Correlation Coefficient (ICC) and Pearson’s R were calculated between 
factors on Day 1 in participants who attended both days and 
corresponding to the same participant on Day 2.

Factor ICC p-value 
(ICC)

Pearson’s 
R

p-value 
(Pearson’s R)

Mean 0.863 <0.001 0.823 <0.001

CV 0.805 <0.001 0.754 <0.001

IQR 0.788 <0.001 0.733 <0.001

FIGURE 2 

Autocorrelation analysis (A–B). (A) autocorrelation across all lags; (B) The distribution of lag-1s autocorrelation.

Zheng et al.                                                                                                                                                            10.3389/fpain.2025.1626589 

Frontiers in Pain Research 05 frontiersin.org



p < 0.001, Figure 3; day 2: R = 0.398, p = 0.013). Hence, the more 

severe the intensity of the rated pain, the less variable it was, the 

values regressing toward their central ranges. Furthermore, as 

the relative variability increased, so did the data spread, but only 

on day 1 (CV and IQR correlation in day 1: R = 0.379, 

p < 0.001; day 2: R = 0.103, p = 0.435).

3.2 Clinical significance

Mean pain levels and variability measures (CV, IQR) on day 

1 were correlated with clinical scores to explore their clinical 

significance (Figure 4, Supplementary Table S1). Detailed 

clinical information for all 81 participants is provided in 

Supplementary Material S4. Because the BPI was assessed on 

Day 1 and the PCS on Day 2, we used Day 1 data only 

from participants who attended both days. We found a 

strong negative correlation between pain variability (CV) 

and BPI severity and a strong positive correlation with the 

MSK-HQ score (n.b., the better the MSK-HQ score, the 

better the health status). This again indicates that the 

milder the pain condition, the higher its variability. 

The mean pain value also had a strong negative correlation 

with MSK-HQ and positive correlations with BPI severity 

and PCS.

To validate these findings, the same correlation analysis was 

performed on day 2 data, which showed similar results (S1): CV 

was strongly correlated with BPI Severity and 

moderately correlated with MSK-HQ, while mean pain was 

strongly correlated with MSK-HQ, BPI Severity, and PCS. 

Furthermore, the spread of pain ratings around mean values 

(IQR) showed a moderate positive correlation with BPI severity 

and PCS on day 2.

3.3 Pain prediction

Immediately after completing the pain rating task on day 1, 

participants predicted how much pain they would experience 

the following day. The predicted pain intensity was strongly 

correlated with the mean pain intensity rated on day 2 and was 

negatively related to its variability (CV, day 2) (Figure 5, 

Supplementary Table S2). Furthermore, the precision of this 

prediction, as quantified by RMSE scores, was negatively, 

although weakly, correlated with the variability (CV) of pain 

rated on day 2, suggesting that the participants who gave the 

most accurate predictions may also have experienced less 

variable pain the following day.

FIGURE 3 

Correlation among variability parameters (mean, CV, and IQR) on 

Day 1. Kernel density estimation of each factor and regression of 

each correlation.

FIGURE 4 

Correlation between variability measures (Day 1) and clinical outcomes (A–C). Log transformed Mean, CV, and IQR were correlated with MSK-HQ, 

BPI Severity, and PCS questionnaire scores. (A) Pearson’s correlation between variability factors and clinical outcome; (B) P-value of each correlation 

after multiple comparison; (C) Scatterplots and regression lines for each pairwise relationship.

Zheng et al.                                                                                                                                                            10.3389/fpain.2025.1626589 

Frontiers in Pain Research 06 frontiersin.org



4 Discussion

This study offers new insights into the short-term variability of 

ongoing chronic musculoskeletal pain and its potential clinical 

relevance. While most research has focused on pain dynamics 

over days or weeks, our findings highlight that meaningful 

patterns also emerge over much shorter time scales—on the 

order of seconds to minutes. We observed strong short-term 

dependencies in pain ratings, re�ected in high lag-1s 

autocorrelation values and a gradual decay in in�uence over 

time. These temporal patterns were consistent across consecutive 

days, reinforcing the stability of pain dynamics at fine-grained 

timescales. Moreover, high test-retest reliability for mean pain 

levels, coefficient of variation (CV), and interquartile range 

(IQR) suggests that short-term �uctuations are not random 

noise, but instead follow an individual-specific and structured 

pattern. Pain variability (CV) was inversely related to mean pain 

levels, indicating that individuals reporting higher average pain 

experienced less �uctuation—potentially re�ecting more 

entrenched or rigid pain states. In contrast, the positive 

correlation between mean pain and IQR suggests that even 

when pain is severe, moment-to-moment ratings can still vary 

substantially, highlighting a nuanced and multidimensional 

picture of pain experience.

Our findings build on and extend prior work on the temporal 

dynamics of chronic pain, which has traditionally emphasized 

longer time frames—ranging from days to months—to capture 

�are-ups, diurnal trends, or treatment responses (1, 4–6, 30). 

These longer-term patterns have been linked to increased 

disability, emotional distress, and maladaptive behaviors such as 

overactivity during pain-free intervals (31–33). However, far 

less attention has been paid to short-term pain dynamics (8), 

despite their potential to reveal fast-acting regulatory processes 

and to better re�ect the real-time burden of chronic pain in 

daily life.

Studying short-term variability is both practical and 

meaningful. It can be easily measured using brief, app-based 

self-report tools, and offers a complementary perspective to 

long-term monitoring. The current study was developed with 

input from people living with chronic pain, through Patient and 

Public Engagement activities that emphasized the importance of 

capturing the unpredictability and moment-to-moment changes 

in pain. These temporal features are often invisible in traditional 

assessments, yet they shape how individuals manage their pain 

and interact with their environments (2–4).

Previous research on short-term variability has largely focused 

on experimental pain paradigms, where individuals with chronic 

pain show greater trial-to-trial variability in response to painful 

stimuli than healthy controls (9). This variability has been 

linked to prior expectations (17, 34–36), psychological traits 

such as pain catastrophizing (9), and cognitive load (37), 

suggesting that short-term �uctuations re�ect the interaction of 

neurophysiological and psychological systems.

Here, we extend these findings to naturalistic, self-reported 

pain in daily life. We found that the CV of continuous pain 

ratings was negatively correlated with clinical severity (e.g., BPI 

severity) and positively associated with self-reported 

musculoskeletal health (MSK-HQ). In other words, individuals 

with more severe, persistent pain showed less moment-to- 

moment variability, whereas those with milder symptoms 

experienced more �uctuation. This pattern cannot be easily 

explained by a ceiling effect, as the ratings did not cluster near 

the top of the scale. Instead, it may re�ect the biological 

stabilization of pain due to central sensitization or impaired 

FIGURE 5 

Correlation between predicted and actual pain levels and variability (A–C). Variability factors include log transformed Mean, CV, and IQR. (A) 

Pearson’s correlation among predicted pain on day 1, prediction accuracy (RMSE), mean pain, and variability rated on day 2; (B) P-value of each 

correlation after multiple comparisons; (C) Regression of each correlation.

Zheng et al.                                                                                                                                                            10.3389/fpain.2025.1626589 

Frontiers in Pain Research 07 frontiersin.org



descending modulation (38), leading to pain that is both elevated 

and resistant to short-term modulation.

The observed relationship between short-term variability and 

clinical outcomes underscores its potential value as a marker of 

pain severity and �exibility. These findings suggest that high- 

resolution self-report measures could be developed into practical 

Patient-Reported Outcome Measures (PROMs), offering insights 

not only into how much pain a person feels, but how that pain 

behaves over time. Such metrics could support individualized 

treatment planning and better re�ect patients’ lived experiences. 

Future studies should examine the stability of these short-term 

patterns over longer durations (weeks or months), their 

sensitivity to therapeutic interventions, and their potential for 

guiding personalized care. All code for implementing the 

continuous rating task is openly available on Zenodo (39), 

enabling replication and further development by the research 

and clinical communities.

In addition, our findings provide insight into the capacity of 

individuals with chronic pain to anticipate their future pain 

levels. The strong correlation between participants’ predicted 

pain on Day 1 and their actual pain ratings on Day 2 suggests 

that, despite the inherent �uctuations in chronic pain, 

individuals were able to form reasonably accurate expectations 

about their near-future experiences. This supports the notion of 

temporal statistical learning, whereby the brain detects 

regularities within autocorrelated pain signals to generate 

predictions about what will come next (16, 17). These results are 

consistent with broader research on pain expectancy, which 

shows that anticipatory processes can shape subsequent pain 

perception and are in�uenced by contextual factors such as 

sleep quality and emotional state (40, 41). Together, these 

findings highlight that the subjective predictability of pain (often 

dismissed as erratic) may in fact be grounded in learned, 

temporally structured patterns that individuals can implicitly 

access and use to guide behavior and coping.

4.1 Limitations

Several limitations should be acknowledged. First, the sample 

was recruited online through the Prolific platform, which may 

limit the generalizability of the findings. Participants were self- 

selected and may not fully represent the broader chronic pain 

population, particularly in terms of age, socioeconomic status, 

or clinical diagnoses. The relatively small number of male 

participants who completed both days (n = 9) further restricts 

the representativeness of the sample and may limit the ability to 

generalize results across sexes.

Second, although efforts were made to ensure data quality 

(such as attention checks and data pre processing), participant 

dropout between days was relatively high. This may be due in 

part to the requirement that Day 2 participation occur at a 

similar time as Day 1, as well as the low-engagement nature of 

the task. As a result, analyses involving test-retest reliability were 

based on a smaller subset of participants, which may reduce 

statistical power and introduce potential bias.

Third, while continuous pain ratings offer a rich and 

ecologically valid snapshot of moment-to-moment experience, 

they still rely on subjective self-report and may be in�uenced by 

individual differences in interpretation or interaction with the 

rating scale. Furthermore, we did not collect physiological data 

that could complement and validate the self-reported 

�uctuations in pain.

Finally, the sample covered a relatively wide age range. 

Although this diversity re�ects the broader chronic pain 

population, the data were not analyzed by age groups (for 

example, younger adults vs. middle-aged adults). As a result, 

potential age-related differences in pain variability could not be 

examined. Moreover, the study focused on short-term variability 

over two consecutive days; future research is needed to examine 

how these patterns evolve over longer timescales and in 

response to treatment or other contextual changes.

Despite these limitations, the study lays important 

groundwork for exploring short-term variability as a clinically 

relevant marker and demonstrates the feasibility of remote, 

high-frequency pain tracking in real-world settings.

5 Conclusion

In conclusion, this study underscores the clinical relevance of 

short-term variability in chronic musculoskeletal pain, revealing 

that these moment-to-moment �uctuations are not only stable 

and individually consistent, but also meaningfully linked to pain 

severity and self-perceived health. Understanding the temporal 

dynamics of pain at fine-grained timescales could open new 

avenues for personalized pain management, offering insights 

into an individual’s regulatory capacity and potential treatment 

responsiveness. Importantly, the continuous self-report measures 

used in this study were simple, scalable, and well-suited to 

remote delivery—highlighting their promise as practical tools for 

digital health monitoring and individualized assessment in 

clinical settings.
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