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Quantitative pain assessment is important for effective pain management. Pain

pressure threshold (PPT) and Pain Tolerance (PT) measured through pressure

algometry offer valuable tools for quantitative evaluation of nociceptive

stimuli. Low-cost algometers, described in literature require complex

calibration and lack a digital interface, limiting real-time data acquisition and

integration with electronic health record systems. In the current study, we

developed a durable and accurate pressure algometer built on the base of a

syringe, an Arduino microcontroller and an analog piezoelectric pressure

sensor. The PPT values obtained with our device are in good correlation with

data obtained utilizing commercially available digital and mechanical

algometers. In addition, our device can be easily connected to a computer via

a USB, allowing for convenient data storage and analysis. Our results

demonstrate the accuracy and reliability of a novel algometry device

constructed from readily available materials and requires minimal engineering

and programming skills.
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Introduction

According to epidemiological data, as much as 30% of the population regularly

experience pain (1, 2). Exposure to acute pain dramatically increases risk of developing

chronic pain, disrupts recovery after trauma and limits function of affected structures

(3). Painful experiences combine nociceptive signaling with additional emotional and

cognitive components, making accurate assessment of pain difficult (4). To address this,

several methods for objective assessment of pain have been developed (5, 6).

Algometry is one of the most widely implemented methods of pain assessment (7).

The basic principle of algometry is the application of a steadily increasing nociceptive

stimulus until the sensation becomes painful (Pain Threshold), or until the pain

becomes too distressing (Pain Tolerance). Several modes of stimuli may be utilized,

including high and low temperatures and application of pressure (8).

Pressure algometers have demonstrated excellent reliability and accuracy (9). Existing

designs are typically based on calibrated springs and digital pressure sensors to calculate

force applied to the patient. However, the high cost of commercially available

algometers can limit their use. To address this issue, several inexpensive designs have
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been developed. A low-cost model based on a plastic syringe has

been developed for use in an emergency response unit setting

(10). Another solution has been proposed in several studies—

utilization of a force gauge/hand-held dynamometer as an

algometer (11, 12). These devices share their working principle

with algometers and demonstrate high validity and reliability.

In this study, we propose a low-cost algometer based on a

plastic syringe and a high precision analog pressure sensor. This

device can provide pressure data with high temporal resolution.

This data can be readily stored on PC for further analysis.

Materials and methods

The mechanism of our device is based on a piston principle

similar to a previously described in literature (10). In the current

study, we used plastic syringes of various volumes combined with

a T-type Luer-lock valve to create an air-tight compartment. The

overall design of the algometer is presented in Figure 1.

The syringe thumb rest was flattened using abrasive paper. A

1 cm3 acrylic cube has been affixed to the thumb rest with epoxy

glue, creating a pressure probe. The side of the probe in contact

with the skin has been covered with a 1 cm2 sheet of rubber to

prevent slipping. A Luer-lock compatible T-type valve was

connected to the tip of the syringe. An 85 mm long, 3 mm wide

plastic tube with 1 mm-thick wall was connected to above

mentioned valve. This tube served as a connector between the

syringe and the pressure sensor.

Concurrent validity of pressure measurements test was done

utilizing the NUL-210 pressure sensor (SES Education, Israel)

instead of XGZP6847A piezoelectric pressure sensor (CFSensor,

China). For validation of force measurements, we implemented

the NUL-225 force plate sensor (SES Education, Israel). Nul-210

and Nul-225 sensors, which have built-in microcontrollers, were

directly connected to the computer via USB. Data from these

sensors was recorded and saved in the comma separated value

(CSV) format using the NeuLog Windows Application (SES

Education, Israel).

For data acquisition and transfer the XGZP6847A piezoelectric

pressure sensor (CFSensor, China) was connected to the Arduino

microcontroller (Arduino, Italy). Data recording and transfer

from Arduino microcontroller to the personal computer was

performed using a script written in Arduino IDE (see

Supplementary Materials). Specifications of all sensors used in

this work are summarized in Supplementary Table S1. For

analysis we utilized pressure measurements obtained after visual

stabilization of Serial monitor data output.

To assess concurrent validity of our device we utilized the

pressure values and converted them to force (see Figure 2 for

explanation) which was subsequently compared to data obtained

with commercially available algometers: 60 Pound BASELINE

Algometer [Fabrication Enterprises, USA, similar to Fischer (12)]

and the AMF-500 Digital Force gauge (ALIYIQI, China). Pain

Pressure Threshold (PPT) measurements were obtained from 22

healthy volunteers aged 30.38 ± 2.85 years of which 13 females

aged 31.5 ± 3.6 years and 9 males aged 29.25 ± 3.0 years. From

the mentioned above group 16 volunteers agreed to undergo

testing with all 3 devices (namely syringe–based device, 60

Pound BASELINE Algometer and AMF-500 Digital Force gauge)

while all 22 agreed to undergo testing with syringe–based device

and AMF-500 Digital Force gauge). Individuals reporting active

pain, either acute or chronic, were excluded. All tests were

conducted in a calm environment, with only the participant and

the researcher present. Each above-mentioned device was applied

FIGURE 1

Design of the syringe-based digital algometer. (A) Algometer application sites: anterior midpoint of the forearm 1. the trapezius muscle 2. anterior

midpoint of the thigh 3. the sole of the foot 4. Sites are color-coded, each color corresponding to relevant algometer which was tested at certain

site. (B) Representative application of the syringe-based algometer to a model of a forearm: the air-tight syringe 1. the XGZP6847A pressure

sensor 2. the Arduino microcontroller in a plastic case 3. (C) Schematic illustration of the syringe-based algometer. During syringe application to a

specific organ air pressure increase inside the barrel (P) is continuously monitored by the pressure sensor.

Abbreviations

PPT, pain pressure threshold; VAS, visual analog scale; NRS, numeric rating

scale; ADC, analog-digital converter.
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3 times at the midpoint of the forearm with 3 min-long interval

between measurements. The same procedure was also repeated

for the upper back (corresponding to the trapezius muscle),

midpoint of the thigh region (corresponding to the quadriceps

muscle) and plantar aspect of the foot.

In addition, we tested whether our device measurements were

consistent with an existing device (AMF-500 Digital Force gauge)

(13). We chose the anterior midpoint of the forearm, the

trapezius muscle, the anterior midpoint of the thigh, and the sole

of the foot (Figure 1A). The AMF-500 Digital Force gauge was

applied to each point once with an interval of 1 min between

applications. After a 3 min-long refractory period, the same test

was repeated with the syringe-based algometer. Peak values of

applied force at each pressure point were registered.

Concurrent validity of pressure and force measurements was

estimated using linear regression utilizing SigmaPlot 11 for

Windows (Grafiti LLC, USA). To assess data bias, we used

Bland-Altman plots (11). Data correlation analysis was

conducted utilizing Pearson correlation coefficient. For normality

estimation we used Shapiro–Wilk normality test.

All experiments involving human subjects were approved by

the Ariel University Medical School Ethical Committee (approval

number AU-MED-DY-20231219).

Results

Initially we measured the inside syringe pressure (PXGZ,

atmospheric pressure subtracted) at various positions of the

plunger corresponding to different remaining air volumes in

syringe utilizing XGZP6847A sensor and compared the results to

the NUL-210 pressure sensor (PNUL210, atmospheric pressure

subtracted). Data obtained using a 60 ml syringe is shown in

Figure 3. For each measurement the plunger was placed at the

most extended position corresponding to remaining volume of

60 ml (Figure 3A). For each remaining volume pressure

measurement was repeated 5 times (n = 5).

Considering the fact that several pressure ranges may be

required for pressure threshold assessment of different patients

and hand size of an examiner may vary too we conducted

similar experiment for other syringes (3, 5 and 20 ml). Relevant

data is summarized in Supplementary Materials Supplementary

Figure S2s. In particular, for each of the above mentioned

syringes generated pressure was measured for range of remaining

air volumes in syringe and correlation between pressure

measured for each volume was assessed between the XGZP6847A

sensor and NUL-210 pressure sensor. Similar to the experiment

with 60 ml syringe the plunger was placed at the maximal

FIGURE 2

Comparison of directly measured force and calculated force. (A) Derivation of calculated force (FCALC) from PXGZ and surface area of the plunger tip (S).

For surface areas of specific syringe seals (see Table 1). (B) Comparison of applied force measured using the NUL-255 Force Plate (FNUL225) to force

calculated from internal pressure (FCALC). R—Pearson correlation coefficient. (C–H) Bland-Altman plots comparing applied force measured using the

NUL-255 Force Plate (FNUL225) and FCALC in other barrel volumes, data from 60 ml syringe. Remaining volumes for corresponding plots: (C) 15 ml;

(D) 20 ml; (E) 25 ml; (F) 35 ml; (G) 40 ml; (H) 45 ml. ΔF = FNUL225-FCALC.
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volume position at the beginning of each measurement. It can be

seen from Supplementary Figure S2s that similar to data

demonstrated in Figure 3 for 60 ml syringe there is a

decremental relationship between the remaining volume and the

pressure generated in the syringe (i.e., the lower the remaining

volume the higher is the generated pressure) and also there is

good correlation between the force generated by the plunger and

the pressure measured inside the syringe for all tested syringes

(3, 5 and 20 ml total volume) and whole range of the tested

remaining volumes.

FIGURE 3

Pressure measurement validation. (A) Cartoon presentation of pressure measurement procedure. (B) PXGZ (mean value ± standard error, n= 5,

atmospheric pressure subtracted) vs. remaining volume for a 60 ml syringe. (C) PXGZ vs. PNUL210 (NUL-210 pressure sensor, atmospheric pressure

subtracted). Data shown as mean value ± standard error, n= 5 for each remaining volume. Error bars represent standard error. The correlation is

assessed utilizing R—Pearson correlation coefficient, P—P-Value.

FIGURE 4

Comparison of the NUL-210 and XGZP6847A pressure sensors. (A–F) Bland-Altman plots comparing measurements of internal air pressure made with

NUL-210 (PNUL210) and XGZP6847A (PXGZ) pressure sensors at specific volumes. Data obtained for 60 ml syringe. Each data point represents a separate

measurement. Remaining volumes for corresponding plots: (A) 15 ml; (B) 20 ml; (C) 25 ml; (D) 35 ml; (E) 40 ml; (F) 45 ml. ΔP = PNUL210 - PXGZ.
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To assess the possible bias of pressure measurements, we

utilized Bland-Altman analysis for each remaining volume. Data

is shown in Figure 4 and represents measurements conducted for

60 ml syringe.

Algometry data is commonly reported in units of force (12).

We estimated the generated force for each pressure

measurement based on Boyle’s Law (14). We assumed that

plunger tip is a cone and calculated its area utilizing an

equation shown in Figure 2A. The base of the cone was

assumed to be circle with diameter [equal to 2 radii (r)]

measured utilizing an electronic caliper (plunger tip areas for

different syringes are summarized in Table 1). We compared

the calculated force values to those directly measured utilizing

the NUL-225 force plate sensor. Collected data is summarized

in Figures 2B–H.

Subsequently, we compared the pressure threshold data

obtained with our device to that measured with two commercial

algometers. The comparison was done at midpoint of the right

forearm. Data collected from a group of human volunteers is

shown on Figure 5.

In addition, we compared measurements taken with the

syringe-based algometer and with the AMF-500 Digital Force

gauge over another 3 commonly tested pressure spots. Results

and comparison are presented in Figure 6.

TABLE 1 Surface area of rubber plunger lining (S on Figure 2A).

Syringe total
volume (ml)

Lateral surface area of
plunger lining [m2]

3 0.7·10−4

5 1.36·10−4

10 1.86·10−4

20 3.28·10−4

60 6.34·10−4

FIGURE 5

Comparison of the syringe-based algometer (60 ml) and two commercially available algometry devices. (A) Pain threshold measured with the syringe-

based algometer and the BASELINE mechanical algometer (n= 16 volunteers). (B) Bland-Altman plot comparing the syringe-based algometer and the

BASELINE algometer. (C) Pain threshold measured with the syringe-based algometer and the AMF-500 Digital Force gauge (n= 22 volunteers).

(D) Bland-Altman plot comparing the syringe-based algometer and the AMF-500 Digital Force gauge. R—Pearson correlation coefficient. Data was

obtained from midpoint of the right forearm.
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Discussion

In this study, we present a low-cost algometer constructed from

a plastic syringe, a pressure sensor and an Arduino microcontroller.

The performance of this device was extensively evaluated utilizing

the Nul-210 pressure sensor and the Nul-225 force sensor. In both

cases, correlation coefficients obtained from linear regression

analysis were close to 1, as demonstrated in Figures 3B, 2B,

indicating good concurrent validity with 2 sensors (Nul-210 and

Nul-225). Moreover, our device demonstrated high precision in

internal pressure measurements, with a standard error-to-signal

ratio of 0.1%–3.4% (Figure 3A).

Blind-Altman analysis of pressure measurement (Figure 4)

comparing data obtained utilizing Nul-210 pressure sensor and

XGZP6847A sensor demonstrated <15% absolute difference

between both sensors for all remaining volumes measured for

60 ml syringe. It must be emphasized that we observed positive

differences between measurements generated by both sensors.

This finding may indicate bias introduced by different physical

characteristics of both sensors (in particular radius of nozzle of

Nul-210 sensor is 0. 65 mm and of XGZP6847A sensor is

0.25 mm). Based on these findings, we suggest that our device

exhibits acceptable concurrent validity and precision compared to

other pressure measuring devices.

Direct comparison of pain threshold measurements utilizing

our device with those obtained from two commercially available

algometers demonstrated good agreement when tested on human

volunteers midpoint forearm (Figures 5A,C) and for another

three common pain threshold testing points (Figure 6).

Several digital algometers are currently available on the

market, including the Algomed (Medok Instruments, Israel),

Commander Echo (MTM, Canada), Wagner FPIX (Wagener

Instruments, USA) among others. The cost of these devices is

typically ranging from 900 USD to several thousand USD,

making them financially prohibitive for newer or smaller

laboratories (15). In contrast, the total cost of our device,

including the sensor, syringe, connectors and tubing—remains

below $150. As of now, all components are readily available

for purchase internationally.

Syringe-based algometers were described in previous studies,

such as for short-term use in emergency response units (10) or

for examination of coccydinia (15). Major advantages of our

device is integration of an analog pressure sensor and Arduino

microcontroller. This combination provides reasonable

solution to calibration challenge inherent to earlier syringe-

based algometers (10). Additionally, high frequency data

sampling (up to 15 kHz) and multi-channel data acquisition

become available. It can be seen from examination of the

attached script, that required programming skills are minimal

(see Supplementary Material). Moreover, in the future the

multi-channel acquisition capability of our device could be

expanded to connect several biometric sensors (e.g.,

electrodermal activity, ECG, EMG) to the same

microcontroller with lower cost than previously described

devices. Furthermore, our device can be modified in order to

measure not only pain pressure threshold but also pressure

tolerance. This feature will require either improvement of our

device ergonomic properties (i.e., adding handle) or further

development (including automatization of force application).

In summary, current study describes an affordable, low

cost, and high precision algometry device designed for

measuring Pain Pressure threshold and Pain tolerance. With

future development and necessary certification, this device has

the potential to be implemented as a medical device in

the future.
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FIGURE 6

Comparison of the syringe-based algometer and the AMF-500 digital force gauge in commonly tested pressure points. (A–C) Comparison of force

calculated from internal pressure readings (FCALC) and measured using the AMF-500 Digital Force gauge (FAMF). (A) at the trapezius muscle; (B) at the

anterior midpoint of the thigh; (C) at the sole of the foot. See Figure 1A for specific locations. R—Pearson correlation coefficient, P—P-Value.
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