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Primary somatosensory cortex
oscillations in trigeminal
neuralgia: laser-evoked
signatures and their potential
relevance to microvascular
decompression
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Classical trigeminal neuralgia (TN) is a severe chronic pain disorder
characterized by sudden, intense facial pain attacks and represents a major
burden for affected individuals. Microvascular decompression (MVD) can
provide pain relief, yet not all patients benefit equally. A key challenge in
selecting candidates for MVD lies in the limited predictive accuracy of current
diagnostics, which mainly rely on subjective pain history and structural MRI
findings. Since many asymptomatic individuals show neurovascular contact
on imaging, its prognostic value remains limited. Electrophysiological
measures, particularly cortical oscillations, may offer more objective insights
into nociceptive system function. In this case series, we investigated 15 TN
patients scheduled for MVD using magnetoencephalography prior to surgery
to assess laser-evoked fields. Noxious stimuli were applied to the
symptomatic and contralateral trigeminal dermatome. Ten patients achieved
complete postoperative pain relief (responders), while five patients reported
persistent symptoms (non-responders). Source reconstruction showed
activation in the contralateral primary somatosensory cortex in all
participants. Responders exhibited reduced low-frequency oscillatory activity
at the pain site, whereas non-responders displayed increased activity in the
same frequency band. Group-level analysis revealed distinct differences in
oscillatory dynamics between responders and non-responders. These findings
indicate altered cortical processing in TN and suggest that oscillatory activity
patterns might serve as functional biomarkers. Incorporating these measures
could improve preoperative stratification and guide treatment decisions for
patients undergoing MVD.

KEYWORDS

trigeminal neuralgia, MEG, magnetoencephalography, S1, primary somatosensory
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Trigeminal neuralgia (TN) is a severe facial pain disorder
characterized by sudden, electric shock-like attacks within the
trigeminal nerve distribution. These attacks can be triggered by
innocuous stimuli such as touch, chewing, talking or drinking
and may also occur spontaneously (I, 2). TN is typically
categorized into three subtypes: (1) classical TN, associated with
vascular compression of the trigeminal nerve; (2) secondary TN,
resulting from structural pathologies such as cerebellopontine
angle tumors, multiple sclerosis or arteriovenous malformations;
and (3) idiopathic TN, in which no causative abnormalities are
identified on diagnostic imaging (2, 3).

When pharmacological treatment is insufficient or causes
intolerable side effects, surgical microvascular decompression
(MVD) is recommended as the first-line surgical intervention
for classical TN (4). While approximately 68.9% of patients
experience immediate postoperative pain relief, a subset, about
2.6%, reports no benefit, even with continued medication (5).

The clinical diagnosis of classical TN is primarily based on
patient history, whereas magnetic resonance imaging (MRI) is
essential for excluding secondary causes (6). Advances such as
3T MRI and high-resolution sequences like CISS (constructive
interference in steady state) have significantly improved
visualization of cranial nerves and their cisternal course (7).
MRI achieves high specificity and predictive value when a
neurovascular contact is accompanied by structural nerve
changes, such as atrophy, dislocation, indentation or flattening,
at the trigeminal root entry zone (6). Most commonly, the
superior cerebellar artery (SCA) is involved and associated with
better outcomes after MVD (5). Despite these advancements, the
diagnostic utility of structural MRI remains limited in clinical
decision-making. MRI frequently reveals neurovascular contacts
in asymptomatic individuals (8, 9), making it challenging to
differentiate between benign anatomical variants and clinically
relevant compressions. Many patients present with borderline
imaging findings, and the presence of neurovascular contact
alone does not necessarily predict pain severity or treatment
outcome. As a result, clinicians are often confronted with
diagnostic ambiguity, particularly in patients with conflicting
clinical and radiological profiles. In some cases, individuals with
clear neurovascular compression fail to benefit from surgery,
while others with unremarkable MRI findings experience
substantial postoperative relief. This discrepancy highlights a
crucial limitation: structural imaging lacks the capacity to reflect
the functional status of the trigeminal nociceptive system.
Without objective functional biomarkers, treatment decisions
rely heavily on subjective symptom reports and the clinician’s
judgment, which can lead to suboptimal patient selection for
invasive procedures such as MVD. Thus, there is a pressing
need for complementary diagnostic approaches that can provide
insight into the neurophysiological underpinnings of TN and
improve preoperative risk stratification.

The pathophysiology of TN is increasingly understood as
multifactorial, shaped by the interaction of anatomical, genetic
and neurophysiological factors (10). A genetic predisposition,
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especially involving variants in genes that govern membrane ion
channel dynamics, may contribute to the emergence of a
hyperexcitable neuronal phenotype (11).

Prolonged static or pulsatile vascular compression can result
in structural damage to the trigeminal nerve, particularly
). This
peripheral nerve injury may enable ephaptic crosstalk, wherein

demyelination, axonal loss and inflammation (12-

action potentials from non-nociceptive, demyelinated Af fibers
aberrantly activate adjacent nociceptive Ad and C fibers (12, 15).
These peripheral alterations might induce central sensitization
within the trigeminal nucleus or higher-order brain regions (16,

). Sustained or aberrant neuronal activity within trigeminal
circuits can enhance excitability of central neurons, contributing
to central sensitization. In addition, axonal degeneration may
lead to increased responsiveness of second-order neurons
through mechanisms of deafferentation-induced
hyperexcitability (10). Structural and functional neuroimaging
with TN have further

abnormalities in regions associated with pain modulation and

studies in patients demonstrated
affective processing (18), including reductions in grey matter
volume and disrupted connectivity within networks (19, 20).
During acute pain, a widespread network of brain regions is
consistently activated, including the primary (S1) and secondary
(S2) somatosensory cortices, the insula, the anterior cingulate
cortex (ACC), the prefrontal cortex and the thalamus (21, 22).
While experimental pain paradigms, typically involving brief,
evoked noxious stimuli, reliably activate a well-defined network
of brain cortical

regions, the representation of chronic

neuropathic pain —defined as pain arising as a direct
consequence of a lesion or disease affecting the somatosensory
system (23)— often appears less robust and more variable. It is
also important to note that evoked responses may only partially
capture the complexity of clinical pain, which often includes
spontaneous and affective components.

Unlike the robust and reproducible activation patterns seen in
experimental pain paradigms, chronic neuropathic pain is
associated with reduced cerebral blood flow in the thalamus and
other pain-related brain regions (24). Long-term neuroplastic
alterations in chronic neuropathic pain are observed at multiple
levels of the nervous system, including the spinal cord and
cortical structures (25). At the neuronal level, mechanisms such
as lowered activation thresholds, ectopic spike generation,
disinhibition ~and aberrant

altered  receptor

connectivity patterns have been identified (

sensitivity,
). Altered neural
plasticity in the context of neuropathic pain has been
consistently demonstrated across multiple brain regions.
Notably, cortical structures such as S1 and the ACC are
frequently implicated in the persistence and processing of
). Studies have highlighted that chronic

pain conditions are not merely localized phenomena but involve

neuropathic pain (27,

widespread disturbances in large-scale brain networks. In
particular, functional coupling between the salience network and
other pain-related systems, including the ascending nociceptive
pathway, descending modulatory circuits and the default mode
network, has been shown to be disrupted across multiple
frequency bands (theta, alpha, beta, gamma) (29). Furthermore,
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these cross-network abnormalities differ between neuropathic and
non-neuropathic pain states and their spectral characteristics have
been linked to clinical pain severity. Such broadband coupling
alterations suggest that chronic pain may be characterized by
aberrant oscillatory communication across distributed networks,
providing a potential systems-level framework for understanding
the complexity and variability of pain experiences.

In TN, several neuroimaging studies have reported alterations
in brain structure, function and connectivity (30, -34).
Functional alterations in large-scale networks involved in facial
pain processing, such as the default mode, sensorimotor and
salience networks, have been observed in patients with TN (30).
Structural MRI studies show reduced gray matter volume in S1
and thalamus in TN patients compared to healthy controls (35).
Furthermore, patients with TN and neurovascular contact
exhibited widespread grey matter reductions in regions
associated with bottom-up pain processing, such as the insula,
somatosensory cortex and thalamus, whereas those without
neurovascular contact showed more localized deficits, primarily
in the prefrontal cortex, suggesting altered top-down modulation
(36). (DTI) has
compromised white matter integrity in pathways connecting the

Diffusion tensor imaging demonstrated

thalamus to various cortical regions, including the
somatosensory cortex in individuals with classical TN (34, 37).
Given these findings, cortical mechanisms seem to play a
). Therefore,

future diagnostic strategies should aim to capture functional

significant role in the pathophysiology of TN (

changes not only in the peripheral trigeminal system but also in
cortical and subcortical processing pathways.

Laser-evoked potentials (LEPs) are a reliable method for
assessing small fiber function, as they selectively activate Ad and
C fibers while bypassing large myelinated AP fibers (39). In the
context of TN, Squintani et al. (40) demonstrated an association
between neurovascular compression and Ad fiber impairment,
suggesting that LEPs might be more sensitive than conventional
trigeminal reflexes in detecting small fiber dysfunction.

Laser stimuli represent discrete sensory events that induce
transient changes in the ongoing electroencephalogram (EEG)
or magnetoencephalogram (MEG), resulting in evoked potentials
or fields (EP/EF) as well as event-related modulations in the
amplitude or power of brain

oscillatory activity.

Neurophysiological —investigations of evoked pain have
traditionally focused on the time-domain characteristics of
evoked responses (41). To improve the signal-to-noise ratio of
these responses, across-trial averaging is commonly applied.
However, this approach selectively captures phase-locked activity
and might obscure induced (non-phase-locked) oscillatory
components that carry important functional information (42).

Time-frequency decomposition techniques overcome this
limitation by enabling the analysis of both evoked and induced
oscillatory activity, thus providing a more comprehensive
representation of the dynamic cortical responses to noxious
stimuli (43, 44).

The aim of this study was to investigate induced cortical
oscillations in patients with classical TN scheduled for MVD. By
neurophysiologically  characterizing

responders and non-
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responders, we sought to identify specific oscillatory patterns
associated with surgical outcomes. Such patterns might offer
predictive value for surgical success and pave the way for more
personalized diagnostic and therapeutic approaches in the future.

2.1 Participants

We enrolled 18 patients with classical TN scheduled for MVD
at the Department of Neurosurgery, Heidelberg University
Hospital. Patient characteristics are summarized in
Three participants were excluded from further analysis due to
excessive muscle artifacts or tremor during MEG recording.

Pain attacks were strictly unilateral and localized either in the
macxillary (V2) or mandibular (V3) branch of the trigeminal nerve.
Eleven patients identified V3 as the primary affected dermatome,
with eight patients experiencing pain in the right V3 and three
patients in the left V3. In the group of patients with symptoms
in the V2 dermatome, the pain attacks were localized in two
patients on the left side and in two patients on the right side.

All patients continued their prescribed analgesic medication
throughout the study period. Follow-up four weeks after surgery
identified ten with
constituting the responder group. Five patients who reported

patients complete pain remission,
persistent pain despite surgery and ongoing medication formed
the non-responder group.

MEG data were recorded one day prior to surgery. The final
sample included nine female and six male patients, aged
between 35 and 70 years. Fourteen participants were right-
handed, and one was left-handed.

All patients provided written informed consent before
participating. The study protocol was approved by the
Institutional Review Board of Heidelberg University (Study ID:
S-815/2019). No patient reported somatosensory dysfunction
outside the affected trigeminal dermatome. All participants
underwent a neurological assessment by a board-certified
neurosurgeon and presented with a clinical history consistent
with classical TN.

The responder group (n=10) consisted of patients who
reported complete absence of trigeminal pain attacks and
remained entirely pain-free four weeks after MVD. The non-
responder group (n=5), in contrast, was defined by persistent

pain symptoms despite continued use of medication.

2.2 Stimulation paradigm and recording
technique

Before MEG data acquisition, we determined individual laser
intensity by applying noxious laser pulses (Nd:YAP, Stimul
1,340, ELEn., Florence, Italy; wavelength: 1,340 nm, duration:
3 ms, diameter: 5 mm) of increasing intensity (0.5-2.0 J in 0.25
J increments) outside the recording room to three areas: the
dorsum of the right hand, the affected trigeminal dermatome
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TABLE 1 Clinical characteristics of patients with classic trigeminal neuralgia (TN) who underwent microvascular decompression (MVD).

‘ Dermatome Diagnoses -

Medication Duration | io finding | Responder
Right V3 Lumbar disc herniation, s/p Carbamazepine, amitriptyline, 2 years Arterial nerve
TBE conﬂlct gabapentin, novaminsulfone, impression
oxacarbazepin
2 Right V2 Hypothyreodism SCA Gabapentin, lamotrigine, 3 years Arterial and venous | Yes
conflict duloxetine nerve impression
3 Right V3 - SCA Carbamazepine, pregabalin 8 years Arterial and venous | Yes
conflict nerve impression
4 Right V3 - SCA Carbamazepine 2 years Arterial nerve No
conflict impression
5 Right V3 s/p MI, arterial hypertension SCA Carbamazepine, novaminsulfone 12 years Arterial nerve Yes
conflict impression
6 Right V3 Arterial hypertension SCA Carbamazepine, amitriptyline <1 years Arterial nerve Yes
conflict impression
7 Right V3 - Nerve Carbamazepine, gabapentin <1 years Arterial nerve No
atrophy impression
8 Right V3 s/p left MVD No typical | Carbamazepine 5 years Venous nerve No
conflict contact
9 Left V3 Anxiety disorder, s/p SCA Morphine, carbamazepine <1 years Arterial nerve Yes
ophthalmic zoster, conflict impression
neuroforaminal stenosis
10 Right V2 Atopic dermatitis SCA Oxcarbazepine, topiramate 7 years Arterial nerve Yes
conflict impression
11 Left V3 Arterial hypertension SCA Carbamazepine, oxycodone, 1.5 years Arterial and venous | No
conflict gabapentin contact, no
impression
12 Left V2 - SCA Carbamazepine, pregabalin, 8 years Arterial nerve Yes
conflict baclofen impression
13 Right V3 Arterial hypertension SCA Carbamazepine, amitriptyline, <1 years Arterial nerve Yes
conflict novaminsulfone impression
14 Right V3 - SCA Gabapentin, ibuprofen 1 years Arterial and venous | Yes
conflict impression
15 Left V2 Arterial hypertension No typical | Carbamazepine 14 years Arterial nerve Yes
conflict impression

Intraoperative classification of neurovascular compression was based on visible arterial or venous impressions on the trigeminal nerve. Patients were defined as responders if they achieved

complete pain relief within four weeks postoperatively. io, intraoperative; SCA, superior cerebellar artery; TBE, tick-borne encephalitis; MI, myocardial infarction; MRI, magnetic resonance

imaging; MVD, microvascular decompression.

and the corresponding contralateral control site. The intensity was
increased until patients reported the stimulus as no longer
tolerable. The individual stimulation intensity used during MEG
recordings was selected to be both tolerable and to elicit a pain
rating of at least 50 on the NRS (numerical rating scale) ranging
from 1 to 100. Seven patients tolerated a painful pricking
sensation at 2.00 J (~101.86 mJ/mm?), six patients at 1.75 |
(~89.13 mJ/mm?), and two patients reached their limit at 1.50 J
(~76.39 mJ/mm?).

The gradients of the magnetic fields were recorded using a
122-channel whole-head MEG system (Neuromag, Elekta Oy,
Helsinki, Finland) in a magnetically shielded room (Imedco,
Higendorf, Switzerland). Patients were seated in a comfortable
chair, wore laser safety goggles and were instructed to keep their
eyes open and focus on a monitor for at least 10 s after each
laser stimulus without moving.

Prior to the MEG recording, four head position indicator
(HPI) coils were attached to the patient’s scalp and digitized
together with 100 additional surface points at anatomical
landmarks (Polhemus 3D Space Isotrack II, Colchester, USA).
At the beginning of each recording, the position of the HPI
coils within the dewar was measured to allow for accurate head
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localization. The digitized head points were later used to fit a
spherical head model for source reconstruction. MEG signals
were sampled at 1,000 Hz and low-pass filtered at 330 Hz
during acquisition.

During MEG recording, patients received 30 noxious laser
~10s] at the affected
dermatome (TN site) and the contralateral control site. To

pulses [interstimulus interval (ISI):

precisely target the invisible laser beam, a He-Ne laser was used
to guide placement on the skin. After each stimulus, the beam
was repositioned to a different skin site to avoid tissue damage
and minimize nociceptor fatigue or sensitization.

Preoperative MRI data were primarily derived from externally
performed cranial MRI scans utilizing the CISS sequence.
Radiological findings were extracted from the corresponding written
reports. Intraoperatively, a neurosurgeon visually documented the

presence of significant neurovascular contact or nerve compression.

2.3 Preprocessing of recorded data

To reduce contamination from ocular, head movement and
muscle activity, we applied an artifact correction approach based

frontiersin.org
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on principal component analysis (PCA) to remove components
corresponding to these sources (45). Correction was computed
from a —500 to 3,000 ms event window, targeting low-frequency
(1-7 Hz) activity typically associated with ocular and head
movement artifacts, and high-frequency (40-240 Hz) activity
related to muscle artifacts (46). The first one to three principal
components, typically representing non-neural sources, were
removed from the data. Cleaned single trials were subsequently
segmented into epochs from 1,000 ms before to 9,000 ms after
stimulus onset. On average, 20-30 artifact-free trials were
retained per recording session and used for subsequent source
analysis and time-frequency decomposition.

2.4 Source estimation and time-frequency
analysis

We defined the baseline interval from —100 to 0 ms. To
analyze oscillatory activity at the source level, we employed a
locally fitted spheres approach (47) as implemented in the
Brainstorm toolbox (48). This method fits one local sphere
beneath each sensor to construct the forward model. For
anatomical alignment, we used the Colin 27 template brain (49),
scaled individually to match each patient’s head shape.

Noise covariance was computed using a baseline window from
—500 to 0 ms. To localize S1 activity on the cortical surface, we
applied a weighted minimum norm estimate (WMNE) (50). The
baseline was normalized using a z-score transformation based
on the interval from —100 to 0 ms. After normalization, source
reconstruction revealed pronounced cortical activation in
contralateral S1 within a temporal window spanning 50 ms
before to 50 ms after the first peak in the superimposed
gradiometer waveforms. Dipoles with constrained orientation
were seeded at the activity center. The region of interest was
then expanded using a correlation criterion of r=0.95, starting
from the vertex with the maximum amplitude.

Source waveforms were analyzed by averaging epochs from
—100 to 500 ms relative to stimulus onset. A band-pass filter
from 0.5 Hz to 15.0 Hz was applied after removing linear trends
and performing direct current (DC) correction (baseline: —100-
0ms). For source-level time-frequency analysis (TFA), we
applied a Morlet wavelet transform using a sliding Hanning
window to cover the 1-30 Hz frequency range (mother wavelet
center frequency fc=1Hz; time resolution FWHMtc=2s).
Power values were averaged across trials.

To examine induced, non-phase-locked oscillations, we
subtracted the power of evoked components from the total
power. The analysis was conducted in a time window from
—500 ms to 1,000 ms

subsequently applied a 1/f correction and calculated z-scores of

relative to stimulus onset. We
spectral activity relative to the baseline (-500-0 ms). Final
results were visualized as power transformations derived from
the time-frequency decomposition.

stratified into

postoperative

For descriptive statistics, patients were

responders and non-responders based on

outcomes four weeks after MVD. Between-group comparisons
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were conducted to evaluate neurophysiological differences

related to clinical outcome. For analysis of EF, source-
reconstructed N2 m components were evaluated using one-
sample f-tests against zero for each group and stimulation site.
Latency differences between sites and groups were assessed
using non-parametric permutation tests (1,000 permutations).
For TFA, spectral power was computed across epochs and
compared to baseline (-500-0 ms) using Student’s t-tests.
Significant power modulations within each group were first
identified, followed by inter-site (TN vs. control) and inter-
group
cluster-based permutation testing. A cluster-forming threshold

(responders vs. non-responders) comparisons using
of p<0.05 was applied, and significance was defined as clusters
exceeding the 95th percentile of the permutation distribution.

Analyses were performed using the Brainstorm toolbox.

Preoperative MRI findings revealed a neurovascular conflict
involving the SCA in twelve patients. Two patients showed no
radiologically typical neurovascular conflict, and one patient
presented with trigeminal nerve atrophy.

Intraoperative assessment confirmed a significant arterial
impression on the trigeminal nerve in 13 patients. Additionally,
in four of these patients, a concomitant venous conflict was
observed. One patient exhibited both arterial and venous
contacts without visible signs of nerve indentation, and another
patient displayed a venous contact only (see ).

Ten patients experienced complete pain relief four weeks
postoperatively and were categorized as responders. Five patients
continued to report residual pain despite surgery and ongoing
medication and were classified as non-responders. During MEG
recordings, no patient reported neuralgic pain attacks in
response to the contactless thermal laser stimulation.

Cortical source reconstruction consistently revealed
activation in  contralateral S1  across all patients
( ). In the responder group (n=10),

grand-average source waveforms exhibited significant N2 m
components at both the control site [t-test against zero:
136 ms, t(9) =-4.5, p=0.01] and the TN site [149 ms, #(9) = -
4.5, p=0.01;
observed between the control and TN sites in the temporal

]. No significant latency difference was

domain [permutation test: 149 ms, #(9) =1, p=0.2].

In non-responders (n =5), N2 m waveforms were observed
at the control site with a latency of 125ms [t(4)=-1.7,
p=0.07] and at the TN site with a latency of 115 ms [t(4) = -
2.5, p=0.05; ].
emerged when

However, no significant difference

comparing TN-site latencies between

responders and non-responders [permutation test: 153 ms, ¢
(13)=0.3, p=0.6).

TFA in the responder group revealed a significant power in
low-frequency range at the control site prior to surgery [¢-test
against baseline: 5 Hz/242-325 ms, #(9) =9, p=0.01; ].
At the TN site, oscillatory responses

were significantly
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FIGURE 1

Grand-average source waveforms evoked by noxious laser stimulation in the responder group (n = 10) revealed a significant phasic N2 m peak in the
contralateral primary somatosensory cortex (S1) at the control site [t-test against zero: 136 ms, t(9) = —4.5, p = 0.01] and the symptomatic dermatome
[149 ms, t(9) = —4.5, p = 0.01]. In the non-responder group (n =5), N2 m components were present with a latency of 125 ms at the control site [t
(4) =-1.7, p=0.07] and 115 ms at the affected side [t(4) = —2.5, p = 0.05]. Data were filtered using a 0.5-15.0 Hz band-pass filter.
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attenuated [permutation test: control vs. TN site: 4 Hz/105-
176 ms, £(9) =3, p =0.05, effect size: d = 1.342; Figure 3].

In contrast, the non-responder group showed enhanced
oscillatory activity at the TN site [t-test against baseline: 7 Hz/
280-352 ms, #(4) =23, p=0.01; Figure 2], exceeding that at the
[6 Hz/126-224 ms, t(4)=9, p=0.01]. These
responses  differed  significantly  between  dermatomes
[permutation test: TN vs. control site: 5 Hz/31-114 ms, #(4) =2,
p=0.05, d=1.265; Figure 3].

Notably, oscillatory patterns at the TN site significantly

control site

differed between responders and non-responders [permutation
test: 5 Hz/316-438 ms, #(13) =4, p=0.05, d =2.191; Figure 3].

4 Discussion

Consistent with previous studies, we observed comparable
latencies of the grand-average source waveforms in contralateral
S1 in TN patients (51). In contrast to previous studies reporting
altered latencies or amplitudes of nociceptive-evoked potentials
in TN, we did not observe significant differences between the
symptomatic and control sites, or between responders and non-
responders. Several factors may account for this discrepancy. All
participants their
antiepileptic medication during MEG recordings. Agents such as

remained on regular analgesic and

Frontiers in Pain Research

carbamazepine are known to affect synaptic transmission and
affect peripheral nerve conduction (52) and somatosensory-
evoked potentials (53). Furthermore, the relatively small sample
size and interindividual variability in pain chronicity and
cortical plasticity may have masked subtle effects.

In recent years, research has increasingly shifted its focus
towards oscillatory activity (54, 55), as transient phase-locked
responses provide limited correlation with subjective pain
perception and are susceptible to habituation effects (56).

Analyses of induced low-frequency oscillations in S1 provide
new insights into potential pathomechanisms of TN. The
observed alterations in laser-induced low-frequency activity
suggest a relevant functional pathology involving Ad fibers and
support the concept of small fiber dysfunction in classic TN
(51). In line with previous studies on acute experimental pain in
healthy participants, we detected oscillatory activity below 10 Hz
originating from contralateral S1 at the unaffected control site
(57). attenuated at the
symptomatic TN site in responders. These findings correspond
to structural MRI
reductions in S1 in TN patients compared to healthy controls

Interestingly, this response was

studies reporting gray matter volume
(35). Similar structural and anatomical changes in S1 have been
demonstrated in other neuropathic pain conditions, such as
diabetic (58) or
disorders, such as complex regional pain syndrome (CRPS) (59).

peripheral neuropathy nociplastic  pain

frontiersin.org
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[t-test against baseline: 6 Hz/126-224 ms; t(4) =9, p = 0.01].

Induced low-frequency oscillatory responses in the contralateral primary somatosensory cortex (S1) were analyzed for ten responders and five non-
responders at the control site and the affected trigeminal dermatome prior to microvascular decompression (MVD). Oscillatory power is displayed as
z-scores relative to a 500 ms baseline. In responders, time-frequency analysis revealed a significant power increase at the control site [t-test against
baseline: 5 Hz/242-325 ms; t(9) =9, p = 0.01]. At the affected side, the oscillatory response was diminished compared to the control site [t-test
against baseline: 6 Hz/8-188 ms and 5 Hz/25-28 ms; t(9) = 2, p = 0.05]. In contrast, non-responders exhibited a significant power increase at the
affected dermatome [t-test against baseline: 7 Hz/280-352 ms; t(4) = 23, p = 0.01], which exceeded the response observed at the control site

Frequency (Hz)

| -0.5 6 O:S 1
Time (s)

Neuroplasticity describes the capacity of the nervous system to
undergo functional and structural adaptations in response to
internal or external stimuli, a fundamental mechanism
underlying processes such as learning and memory formation.
In the context of pain processing, maladaptive changes can alter
synaptic efficacy, neuronal connectivity and the excitability of
pain-related circuits, thereby contributing to the amplification
and chronification of nociceptive signals (60, 61). Animal
studies have demonstrated that chronic pain states can lead to
hyperexcitability and intracortical remodeling within S1,
particularly among layer 2/3 excitatory neurons, which project
to other pain-relevant areas such as ACC (62).

Repetitive pain episodes seem to drive abnormal cortical
recruitment and functional plasticity within somatosensory
networks (63). Central facilitation and overactivation of the
trigeminal nociceptive system have been observed in chronic
migraine (64), chronic tension-type headache (63) and TN with
concomitant facial pain (51). Elevated theta activity has been
reported across various chronic pain conditions (65-67). In the

present study, it remains unclear whether the increased low-
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frequency oscillations observed in non-responders reflect
maladaptive plastic changes secondary to repeated pain episodes
and trigeminal nerve injury, or whether they indicate pre-
existing central susceptibilities that confer vulnerability to the
development or persistence of TN.

Comparable alterations have also been identified in the time
domain. Obermann et al. (51) found that TN patients with
exhibited
amplitudes of nociceptive-evoked potentials compared to those

without continuous pain. The authors attributed these findings

continuous  pain shorter latencies and higher

to central facilitation and sensitization (68), a mechanism
characterized by heightened responsiveness of pain-related brain
regions to normal or even subthreshold afferent input (69).
Once established, central sensitization may become independent
of peripheral which  has
implications: treatments targeting peripheral mechanisms might

input, important therapeutic
then no longer be effective.

The opposing low-frequency oscillatory patterns observed in
responders and non-responders may reflect distinct underlying

mechanisms of pain chronification and cortical processing. In
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Statistical comparison of low-frequency oscillations in the contralateral primary somatosensory cortex (S1) in ten responders to microvascular
decompression (MVD) revealed significantly lower oscillatory responses at the affected trigeminal dermatome (TN site) compared to the control
site [permutation test: control site vs. TN site, 4 Hz/105-176 ms; t(9) =3, p = 0.05]. In contrast, non-responders (n =5) showed a significant
increase in oscillatory power at the TN site relative to the control site [permutation test: TN site vs. control site, 5Hz/31-114 ms; t(4) =2,
p = 0.05]. Moreover, non-responders exhibited distinct oscillatory dynamics at the affected side when compared to responders [permutation test:
TN site non-responders vs. responders, 5 Hz/316-438 ms; t(13) = 4, p = 0.05].
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responders, the attenuation of oscillatory activity at the
symptomatic site may indicate a functional suppression or
disconnection of cortical nociceptive representation due to long-
standing peripheral input disruption, possibly reversible by
MVD. In contrast, non-responders exhibited enhanced low-
frequency activity, which may suggest maladaptive cortical
that
independently of peripheral compression. This heightened
cortical synchrony could represent a marker of entrenched

hyperexcitability —or central amplification persists

central sensitization or altered thalamocortical dynamics,
potentially rendering purely peripheral interventions insufficient.
Thus, the divergent oscillatory signatures may not only reflect
the current pain state but also hint at different dominant

mechanisms, peripheral vs. central, in individual patients.

These patterns could thus inform preoperative risk
stratification by identifying patients with predominantly central
dysfunction who may be less likely to benefit from

decompression surgery alone. In such cases, neuromodulatory
approaches, such as transcranial magnetic stimulation (TMS),
transcranial direct current stimulation (tDCS) or invasive
options like motor cortex stimulation, might serve as adjunctive
or alternative strategies. Particularly in patients with elevated
low-frequency activity or signs of cortical hyperexcitability, these
techniques may help to normalize dysfunctional network activity
and improve clinical outcomes. Ultimately, integrating
oscillatory biomarkers into clinical workflows could support
mechanism-based treatment decisions and pave the way for
personalized therapeutic algorithms in TN.

As this study was exploratory in nature, no formal power
calculation was conducted. While the limited sample size
restricts the generalizability and statistical power of the findings,
the observed group-level differences in cortical oscillatory
dynamics provide a valuable foundation for future studies

aiming to validate these effects in larger patient populations.
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While our findings offer valuable insights into the functional
associated with TN, the sample size
constitutes a notable constraint. Future studies with larger

alterations limited
cohorts are warranted to assess the robustness and predictive
of these
Comprehensive investigations will be critical to deepen our

value results as potential diagnostic markers.
understanding of the complex pathophysiology of TN and to
inform the development of more effective diagnostic and
therapeutic strategies.

In addition to the limited sample size, several other factors
may have influenced our findings. The patient cohort was
with affected

branches which may have

heterogeneous respect to disease duration,

trigeminal and medication,
contributed to interindividual variability in cortical responses.
Although all patients met strict diagnostic criteria for classical
TN, subtle

involvement or compensatory plasticity cannot be excluded.

differences in pain chronification, central
Furthermore, all participants remained on their prescribed
medication during MEG recordings. While this approach
ensured ecological validity and avoided symptom destabilization,
the use of antiepileptic and analgesic agents, particularly sodium
channel blockers, may have affected neural excitability and
oscillatory activity. Although such effects were likely present in
both responders and non-responders, they represent a potential
should be considered when

confounder and interpreting

the results.

5 Conclusions

MEG revealed distinct low-frequency oscillatory signatures in
contralateral S1 that differentiated patients who achieved complete
pain remission after MVD from those with persistent attacks.
While responders showed attenuated oscillatory responses at the
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symptomatic site, non-responders exhibited increased activity,
suggesting divergent underlying mechanisms. These findings
indicate that cortical oscillations may reflect the functional state
of the trigeminal nociceptive system and offer additional value
beyond structural imaging for preoperative evaluation. MEG-
derived measures could contribute to functional risk
stratification, helping identify patients more likely to benefit
from decompression and prompting consideration of adjunctive
neuromodulatory strategies when central sensitization is
suspected. Confirmation in larger, prospectively characterized
cohorts is required to establish robustness, define clinically
actionable thresholds, and standardize acquisition and analysis
pipelines. If validated, integrating MEG with high-resolution
imaging and clinical assessment could enable more mechanism-

informed, patient-specific decision-making in TN.
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