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Trypanosoma cruzi infection, currently endemic in 21 countries, is a public health

problem not only in the Americas but also in countries with Latin American

migrants. However, it is estimated that two-thirds of people with Chagas disease

currently live in urban areas and that only 10% of them are aware of it. This review

summarizes the most important aspects of the diagnosis of human T. cruzi

infection by describing the following aspects of clinical laboratory diagnosis: the

most widely used tests available in Latin America and those expected to improve

access to diagnosis of the affected population with their implementation; the

advantages, disadvantages, and sensitivity of the tests in the different phases of

infection; and their usefulness in the acute or chronic phases of infection and in

the context of immunosuppression. In this way, we hope to contribute to

broadening the knowledge about this prevalent infection in the Americas.

KEYWORDS

Chagas disease, Trypanosoma cruzi, molecular diagnostic techniques, immunological
tests, diagnostic reagent kits, parasitological diagnosis, neglected diseases
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GRAPHICAL ABSTRACT
1 Introduction

Chagas or American Trypanosomiasis is a parasitosis caused by the

protozoan Trypanosoma cruzi. The distinguishing morphological

feature is a prominent paraflagellar structure known as the

kinetoplast, which corresponds to a condensation of DNA (kDNA)

located within a single mitochondrion that is branched throughout the

cell. During its biological cycle, which involves vertebrates and

invertebrates, the parasite faces several environments and important

changes during its interaction with the host cells. It presents three

stages (epimastigote, trypomastigote and amastigote), which are

defined based on cell morphology (pyriform, elongated or spherical)

and on the relative position between the nucleus and the kinetoplast

(anterior or posterior). The mammal infected by T. cruzi can present

parasites either in the blood (in the trypomastigote stage, which is

the extracellular infective form) or in tissues of different organs, mainly

the heart, brain or digestive system (in the amastigote stage, which

is the intracellular replicative form) (Storino Rubén and Milei, 1994)

(Figure 1; Lopez-Albizu et al., 2022).

In some countries such as Colombia, Brazil, Peru, Costa Rica,

Panama, Bolivia, Venezuela, Honduras, El Salvador, Mexico and

Guatemala, the geographical range of T. cruzi overlaps with that of T.

rangeli (Cuba Cuba, 1998; Grisard et al., 1999; Vallejo et al., 2009).

This parasite is also transmitted by triatomine bugs and infects a wide

variety of mammals, including humans. It shares both the triatomine

vectors and mammalian hosts with T. cruzi, but is considered not

pathogenic for the mammalian host and parasitemias tend to be quite

low and transient. The biological cycles of both trypanosomatids are

distinct. T. rangeli is pathogenic to its invertebrate host, while T. cruzi

is pathogenic to its vertebrate host. Also, T. rangeli is transmitted

through bites, as the infective forms are released in the saliva of the

insect vector. In contrast, T. cruzi is typically transmitted through

insect bites that cause skin lesions, or via the mucous membranes, as

the parasite is eliminated in the feces of the vector (Cuba Cuba, 1998).
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Because of the similar geographical ranges, vectors, hosts and

genotypes, and because of their genetic similarity, it is possible to

confuse T. rangeli and T. cruzi. However, the blood stage

trypomastigotes are morphologically distinct. T. rangeli is a longer

parasite with a smaller kinetoplast, similar to African trypanosomes

(Cuba Cuba, 1998; Guhl and Vallejo, 2003). In addition, it has been

reported that 60% of the antigens purified by electrophoresis show

cross-reactivity between both pathogens (Cuba Cuba, 1998; Grisard

et al., 1999; Duffy et al., 2009). Therefore, for the serological diagnosis

of T. cruzi infection in geographically overlapping areas, it is advisable

to use recombinant antigens and synthetic peptides, and satellite

DNA sequences instead of kDNA sequences for the molecular

diagnosis (Cuba Cuba, 1998; Duffy et al., 2009; Duffy et al., 2013).

Based on the genetic differences within T. cruzi isolates, six

discrete typing units (DTUs) (TcI to TcVI) have been defined

(Zingales et al., 2009). In addition, a seventh lineage, named TcBat,

which is mainly associated with bats, has been described (Marcili

et al., 2009). However, the relationship of the infecting DTUs with

the evolution of the infection and the development of specific

clinical manifestations in humans continues to be a subject under

study (Zingales, 2018).

Chagas is a health problem that has been included in the World

Health Organization (WHO) list of neglected infectious diseases since

2005 (WHO, [[NoYear]]). It is endemic in 21 countries. The infection

was originally limited to rural regions of the Americas, since the

vectors that transmit T. cruzi live in the home and around the home

of rural areas of the region. However, in the last decades, there has

been an epidemiological change caused by: a) the implementation of

strong vector control in rural areas, b) the migration of the

population from the endemic countries of the Americas to the

large cities of the region and even to other non-endemic countries,

mainly the USA and Europe, and c) the shifting of the agricultural

frontier and climate change. As a consequence, Chagas has become a

global health problem, present not only in rural areas but also in large
frontiersin.org
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cities, and other routes of transmission with greater importance, such

as vertical and oral routes, have emerged (WHO, 2015; Perez-Molina

and Molina, 2018). This has also posed a challenge for diagnostic

laboratories located in non-endemic countries.

The parasite is transmitted by different routes, among which

vector transmission is the most important in endemic areas

without vector control and vertical transmission in endemic areas

where vector populations are under control, and in non-endemic

areas (WHO, 2015; Perez-Molina and Molina, 2018).

Global estimates indicate that there are 70 million people at risk,

between 6 and 7 million people infected, 30,000 new cases every

year in the Americas alone, and 8,000 infants annually born with

the infection. Moreover, 3 out of 10 infected people develop the

disease and more than 12,000 people die from this disease every

year (WHO, 2015; MSal, 2018). Thus, it is imperative to implement

health strategies that ensure timely access to diagnosis, treatment,

care, and follow-up for all people with Chagas disease who live in

rural, peri-urban, and urban settings. Accurate, rapid, and timely

diagnosis of T. cruzi infection represents a fundamental strategy in

the approach to Chagas disease, since early treatment can prevent

irreversible long-term consequences (PAHO, 2018). Treatment in

childhood is highly effective and well tolerated, with few and mild
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adverse reactions (Sosa-Estani et al., 2012; PAHO, 2018).

Furthermore, in recent years, there has been accumulating

evidence that treating women of childbearing age is an

intervention that can effectively reduce vertical transmission in

future pregnancies (Sosa-Estani et al., 2009; Fabbro et al., 2014;

Moscatelli et al., 2015; Alvarez et al., 2017; Murcia et al., 2017; MSal,

2018; PAHO, 2018).

Regarding the number of existing laboratory tests for the

diagnosis of T. cruzi infection, the diversity of applied

technologies, the scale of their use, and the heterogeneity of

algorithms developed in different countries have increased rapidly

in recent years. However, although different technologies and

algorithms have been proposed in the scientific literature, they

have not had a real impact in terms of public health. Indeed, in the

Americas, coverage in the diagnosis of the infection continues to be

deficient, and although it has grown in recent decades, it has not

reached the expected objectives (Cucunuba et al., 2017; Klein et al.,

2017; PAHO, 2017; Danesi et al., 2019).

This review summarizes the current status regarding the

availability of laboratory tests for their clinical application in the

diagnosis of T. cruzi infection, as well as recent developments, also

providing a description of their advantages and disadvantages.
FIGURE 1

Stages of Trypanosoma cruzi in mammals. Hematoxylin-eosin staining, observation at 400X. (A) Trypomastigote: This form is elongated, with the
kinetoplast located posterior to the nucleus. It is found in the blood of mammals and is the infective form. This form does not divide and is
characterized by its mobility. (B) Nest of amastigotes: This form is spherical or oval and is the replicative form inside mammalian cells (mainly in
muscle and nerve cells). This picture has been previously published [Lopez-Albizu et al. (2022)].
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2 Direct and indirect
microbiological diagnosis

In order to diagnose infectious diseases, fast, accurate, simple

and accessible methods must be available. Microbiological diagnosis

can be approached with various strategies, by making either a direct

diagnosis (in which the etiological agent is identified) or an indirect

diagnosis (in which the levels of specific antibodies against

pathogen antigens are detected) (Washington, 1996).

T. cruzi infection has two phases: an acute phase and a chronic

phase. In most of the patients, the acute phase lasts between 3 and 4

months from the entry of the parasite into the host, presents

asymptomatically, and is characterized by a high load of

circulating parasites in peripheral blood. This determines that the

direct diagnosis should be implemented in this phase. The chronic

phase begins when parasitemia decreases due to the patient’s

immune response, and is characterized by the presence of IgG

antibodies and low and intermittent parasite loads, detectable

mainly by amplification methods (Rassi et al., 2012; MSal, 2018)

This determines that the indirect diagnosis should be implemented

in this phase. Thus, the natural course of the infection is what
Frontiers in Parasitology 04
determines which microbiological diagnosis strategy is the most

appropriate to implement [Figure 2, (Lopez-Albizu et al., 2022)].
2.1 Direct parasitological diagnosis

Qualitative parasitological tests commonly used in the

laboratory diagnosis of acute T. cruzi infection or during infection

reactivation in humans allow the detection of the parasite or any of

its components. This section describes the direct methods, by first

describing those aiming to detect the parasite by using microscopy

(due to the advantage of the wide availability of the equipment

required in clinical laboratories and to the possibility of obtaining

an immediate result) and then those in which an amplification step

is performed prior to detection (which show greater sensitivity but

are only available in reference centers and whose result can take

days or months).
2.1.1 Microscopic detection
Direct observation under a microscope after concentration by

centrifugation allows detecting the parasites alive due to their
FIGURE 2

Schematic representation of parasitemia and specific anti-T. cruzi antibodies (Ab titer) in blood of infected patients during the course of infection.
Some diagnostic tests used in each period of infection are shown as examples. Parasitemia: Microscopic image when performing the
microhematocrit test in which the parasite is not seen but is illustrative of a preparation, since the search for the parasite is performed by
observation of its movement, IIF: microscopic image of a preparation with serum from an infected subject, IHA: columns A, B: “sheaths” are
observed as a result of the presence of anti-T. cruzi antibodies in the serum tested; columns C, D: “beads” are observed as a result of the absence of
anti-T. cruzi antibodies in the serum tested. ELISA: image of an ELISA plate, showing the wells with positive results in yellow and negative results
without staining. This picture has been previously published [Lopez-Albizu et al. (2022)].
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mobility. In situations of need and when there is no centrifuge

available, the parasite can be detected using direct observation

methods without prior centrifugation, by means of fresh drop

(thin drop of blood between the slide and the coverslip) or thick

drop (staining technique, also useful in areas where T. cruzi coexists

with Plasmodium). However, for diagnostic purposes, tests that

include a concentration step are recommended since this step

increases the sensitivity of the test (Flores et al., 1966).

Depending on the volume of blood used, direct observation

tests with a prior concentration step are called Strout or

microhematocrit/micromethod. Parasites can also be observed in

puncture fluids (trypomastigotes) as cerebrospinal fluid (CSF) or in

biopsies (amastigote nests) [Figures 1, 2, (Lopez-Albizu

et al., 2022)].

2.1.1.1 Strout’s test

The Strout’s test, first described in 1962 is the method

recommended for the detection of parasitemia in adult patients

with suspected acute infection or reactivation due to

immunosuppression (Strout, 1962). It is performed by using a

sample of 5 to 10 mL of venous blood collected in a tube without

anticoagulant. It allows concentrating a greater amount of parasites

with respect to the methods that use less volume. A study that

compared the results obtained in 66 patients with suspected acute

Chagas disease demonstrated a sensitivity of 61.8% of the Strout’s

test versus xenodiagnosis (see below) (Flores et al., 1966).

2.1.1.2 Microhematocrit and micromethod tests

The microhematocrit (or capillary) test, initiated by Worth,

(1964), has been widely applied in the qualitative diagnosis of

African trypanosomiasis (Woo, 1969). Subsequently, it was used

by Freilij et al. in the search for T. cruzi (Freilij et al., 1983) and,

since then, has been widely applied in the clinical setting for the

diagnosis of vertical Chagas infection because it can be performed

using a small sample volume (between 0.3 and 0.5 mL of blood) (La

Fuente et al., 1984; Bittencourt, 1985; Freilij and Altcheh, 1995). To

avoid the risk of cutting the glass of the capillaries and laboratory

accidents, variants of the method have been optimized. These

include: the rotation method, the oil immersion method, the wet

mounting method by using capillaries, and the tube micromethod

(Vera-Ku et al., 2019) and the micromethod using a 1.5-mL tube

instead of a capillary (De Rissio et al., 2010). These tests have shown

a sensitivity of 15-82% compared to serology at 10 months of life in

the diagnosis of vertical infection (De Rissio et al., 2010; Velazquez

et al., 2014; Messenger et al., 2017; Messenger and Bern, 2018;

PAHO 2018; Bisio et al., 2021).

2.1.1.3 Detection of T. cruzi in puncture fluids
and biopsies

After the first report of encephalitis in a patient co-infected with

T. cruzi and HIV in 1990 (Del Castillo et al., 1990) and with the

increase in transplants and immunosuppressive therapies, detection

of the parasite in other types of samples has become relevant for

diagnosis and infection monitoring in immunodeficient patients. In

addition to blood, parasites can be detected in pleural fluid,
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pericardial fluid, CSF, peritoneal fluid and biopsy samples of skin

and other tissues (Ferreira et al., 1997; Iliovich et al., 1998; Sartori

et al., 1999; Concetti et al., 2000; Lattes and Lasala, 2014). Regarding

puncture liquids, they are centrifuged and the sediment is then

observed between the slide and the coverslip. To detect nests of

amastigotes in biopsies, histological sections are observed after

staining with hematoxylin-eosin and Giemsa. The detection of

parasites in biopsy transport fluid has been recently described

(Lopez-Albizu et al., 2020a). No studies on the evaluation of

analytical parameters or standardization have been carried out for

this type of test. A systematic review of case reports of co-infection

with HIV has described a sensitivity of 15% and 78% for the

diagnosis of lesions at the central nervous system level in biopsy

and CSF samples, respectively (Almeida et al., 2011).

2.1.1.4 Advantages and disadvantages of
microscopic detection

Microscopic detection tests have shown good results in

reference centers, and high clinical sensitivity and specificity

values for the diagnosis of vertical and acute Chagas disease. They

have also been useful in the management of immunodeficient

patients. They have the advantage of not requiring a highly

complex laboratory and that the result can be obtained in less

than 1 h after taking the sample.

However, these tests are carried out “in house” and some have

not been subjected to analytical or clinical validation in prospective

multicenter trials. Since the detection of the parasite depends on the

observation of the mobility of live trypomastigotes, it has not been

possible to implement external quality programs that allow the

evaluation of the accuracy of the laboratories that perform it, ensure

quality over time and make improvements (Bisio et al., 2021).

Indeed, the sensitivity and specificity of these tests have mostly been

evaluated in the context of referral centers and low performance has

been described outside them (Flores et al., 1966; Freilij et al., 1983;

Freilij and Altcheh, 1995; De Rissio et al., 2010; Velazquez et al.,

2014). Therefore, they have traditionally been called “operator-

dependent” tests, since clinical sensitivity depends on the operating

conditions, the equipment available, and the experience of the

personnel who observe the samples under the microscope.

2.1.2 Detection of T. cruzi by
amplification methods

Due to the low sensitivity of microscopic methods,

parasitological and molecular amplification methods have been

optimized. In addition to their high sensitivity for diagnosis in

the acute phase, they can be used to try to demonstrate the presence

of the parasite in the chronic phase (Flores et al., 1966; Chiari

et al., 1989).

The parasitological methods of amplification are blood culture,

inoculation in mice or by means of triatomines (xenodiagnosis).

These methods have the disadvantage of requiring culture media,

laboratory animals or vectors, trained personnel, long incubation

times or development of the parasite cycle in the vector in blood

culture or xenodiagnosis, respectively (2 months), biological safety

cabinets, insectarium, birds to feed triatomines, vivarium, etc.
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Currently, these are not performed in clinical practice and are used

only for research purposes, so they were not addressed in

this review.

Molecular nucleic acid amplification methods began to be

evaluated for their use in the diagnosis of human T. cruzi

infection with the advent of polymerase chain reaction (PCR) in

1991 (Avila et al., 1991; Duffy et al., 2009; Benatar et al., 2021; Bisio

et al., 2021). This first test (currently called endpoint PCR) has been

used mostly in research and clinical trials. Its use has been extended

to the clinical diagnostic field after the standardization of real-time

PCR (qPCR) tests. On the other hand, as of 2010, new DNA

amplification tests called isothermal tests have been developed.

Two types of isothermal tests have been reported for T. cruzi

infection: loop-mediated isothermal amplification (LAMP) and

recombinase polymerase amplification (RPA), but only the

former has been proposed for diagnostic use (Rivero et al., 2017;

Besuschio et al., 2020; Ordonez et al., 2020).

2.1.2.1 qPCR tests

qPCR has been used in a large number of research studies and

clinical trials for the diagnosis of T. cruzi infection, with promising

results. Based on these results and those obtained in amulticenter study

promoted by WHO and Pan American Health Organization (PAHO),

the use of tests that amplify nuclear satellite DNA sequences (SatDNA)

and kDNA is recommended (Figure 3) (Schijman et al., 2011; Duffy

et al., 2013; Cura et al., 2017). Two in-house tests targeting SatDNA and

kDNA sequences have been validated against the Clinical And

Laboratory Standards Institute (CLSI) diagnostic standards; the

reported analytical sensitivity was 0.70 parasites equivalents/mL (par

eq/mL) and 0.23 par eq/mL respectively (Duffy et al., 2013; Ramirez
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et al., 2015). By using peripheral blood, a sensitivity of 84.2 to 100%was

described for the diagnosis of vertical Chagas disease (Messenger et al.,

2017; Bisio et al., 2021) and its use is also recommended in reactivations

in the context of immunosuppression and post-treatment follow-up.

In recent years, at least eight commercial qPCR tests for T. cruzi

infection have been developed (Supplementary Table). In 2021, a

multicenter study was performed to evaluate the diagnostic

performance of the prototype of one of these commercial kits,

which amplifies SatDNA. The results of this study showed

acceptable values of sensitivity and specificity for the diagnosis of

vertical infection (Benatar et al., 2021).

2.1.2.2 LAMP tests

In contrast to PCR tests, isothermal assays such as LAMP do not

require equipment that cycles through temperature changes during the

reaction (thermocyclers), or fluorescence readers, or software for data

analysis, since the result is read by direct observation (color change)

[Figure 3C, (Lopez-Albizu et al., 2022)]. This means that less

equipment is required. After the first description of the use of LAMP

for the detection of T. cruzi in feces of vector insects, different research

groups have optimized it for the detection of T. cruzi DNA in humans

(Thekisoe et al., 2010). However, this technique is still under evaluation

for implementation. Two LAMP tests have been analytically validated

(Rivero et al., 2017; Ordonez et al., 2020). One of them has been

evaluated in a prospective study for its use in the diagnosis of vertical

Chagas disease, with a performance similar to that of the

microhematocrit test (Bisio et al., 2021). The other, a commercial kit

prototype (Loopamp T. cruzi detection kit), has been evaluated using

panels of human samples (Besuschio et al., 2017; Besuschio et al., 2020),

but, to date, is not yet commercially available.
A

B C

FIGURE 3

Nucleic acid amplification tests for diagnosis of T. cruzi infection. (A) Molecular targets used in DNA amplification reactions; (B, C) Visualization of
laboratory results of real-time PCR and LAMP tests, respectively. SatDNA, nuclear satellite DNA sequences; kDNA, minicircle of kinetoplast DNA; T.c
(+), detectable T. cruzi DNA amplification; T.c (–), not detectable T. cruzi DNA amplification; IC (+), detectable internal control amplification. This
picture has been previously published [Lopez-Albizu et al. (2022)].
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2.1.2.3 Advantages and disadvantages of molecular
nucleic acid amplification tests

Although PAHO has not included qPCR tests in the

recommendations for the diagnosis of Chagas disease, in some

countries, their use has been included in patient care guidelines. In

Chile and Argentina, the use of qPCR has been recommended as an

alternative to the direct parasitological method in the vertical

Chagas diagnosis algorithm (MinSal, 2017; Lopez-Albizu et al.,

2022; MSal, 2022). These tests have shown greater clinical

sensitivity than microscopy for the diagnosis of vertical Chagas

disease and are useful in the management of immunosuppressed

patients. In addition, they allow automation, the preservation of

samples for processing, the organization of the laboratory routines

and the design of internal and external quality control programs by

the reference centers to allow the continuous improvement.

However, the supplies for molecular amplification tests are

expensive and, in areas where there is no installed capacity to

perform qPCR or LAMP, the samples must be derived, which

means increasing their cost and a longer time between sample

collection and delivery of the sample results with respect to

microscopic tests.
2.2 Indirect serological diagnosis

Serological tests allow the detection of specific anti-T. cruzi

circulating antibodies. Although some research studies have

reported the detection of anti-T. cruzi IgM, this isotype is not

commonly used for the diagnosis of acute infection. In contrast,

there are multiple commercial tests for the detection of IgG, which

are commonly used for diagnosis during the chronic phase of the

infection [Figure 2, (Lopez-Albizu et al., 2022)] (Abras et al., 2016).

The first serological tests, usually called “conventional”, are

based on semi-purified antigen lysates or fractions of T. cruzi

epimastigotes obtained by culture (Figure 5). The disadvantages

of conventional tests are that the occurrence of inconclusive, false-

negative, and false-positive results has been persistently reported,

and that there is no universally accepted reference standard (or

“gold standard”) for the confirmation of results. The ideal

serological test, with 100% specificity and 100% sensitivity, is

unlikely to be achieved; however, it is possible to diagnose most

cases using two serological tests (PAHO, 2018).

Currently, the antigens used for the detection of antibodies can

be from whole cells, crude antigen from cell extracts or purified

fractions, recombinant antigens and synthetic peptides (Figure 5)

(Camargo et al., 1986; Houghton et al., 1999; Longhi et al., 2012;

Bhattacharyya et al., 2014; Duarte et al., 2014; Abras et al., 2016).

Tests based on recombinant antigens can be associated with surface

proteins or cytoplasmic and/or flagellar antigens. However, since

not all hosts produce antibodies against these antigens, the use of

several recombinant antigens, ideally representing different stages of

the parasite, could increase the sensitivity of antibody detection

(Caicedo Diaz et al., 2019). In addition, differences in sensitivity

have been observed between tests that use similar antigens but have
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different principles. These differences are mainly due to factors

specific to the test that interfere or amplify the signal that expresses

the antigen-antibody binding (Camargo et al., 1986). On the other

hand, the diagnostic performance of the tests could be influenced by

other factors such as regional differences in parasite antigenicity due

to different DTUs. This has been suggested as an explanation for

their limited performance in North and Central America (Duarte

et al., 2014; Abras et al., 2016; Zingales, 2018; Caicedo Diaz et al.,

2019; Kelly et al., 2021; Majeau et al., 2021). Since the results of

serological tests are not generalizable to other geographical areas

and the performance of the tests with different principles is

potentially variable, the scientific evidence available is not

sufficient to make changes in the current diagnostic algorithm.

Therefore, PAHO indicates that T. cruzi diagnosis must be made

through the “diagnostic standard” (MSal, 2018; PAHO, 2018),

which considers that a person is infected when he/she has

reactive results with two of the following pairs of tests of different

principles and antigens: enzyme-linked immunosorbent assay

(ELISA)- indirect agg lut inat ion assay (IHA), ELISA-

immunofluorescence (IIF) or IHA-IIF. The two tests must be

carried out in parallel and, in the event that only one is reactive, a

third one that has not been used in the first processing should be

added. Other tests based on principles of direct agglutination (such

as latex agglutination test or direct agglutination, Supplementary

Table) have been developed. Although they are used in laboratories,

they have not been recommended by PAHO or WHO.

The serological methods that present greater specificity and

have therefore been proposed as confirmatory tests are:

radioimmunoprecipitation (RIPA), IIF and Western blot (WB)

(Otani et al., 2009; Berrizbeitia, 2013; Brossas et al., 2021; Daltro

et al., 2022). However, these methods are difficult to access for

clinical diagnosis. Indeed, RIPA is only available in the USA and

WB is only commercially available in Europe, so they will not be

described in this article (Supplementary Table).

2.2.1 Indirect hemagglutination assay: IHA
In the IHA, the antibodies present in the patient’s serum are

detected by the formation of a network product of their interaction

with the parasite’s antigens, which have previously bound to the

sensitized membrane of the red blood cell. This network is

visualized as a “sheath” or “thin film” at the bottom of the well

where the reaction is carried out [Figures 2, 4, (Lopez-Albizu et al.,

2022)]. Serum is considered reactive for T. cruzi infection when this

“sheath” covers more than 50% of the bottom of the well. If the

antibodies are not present in the patient’s serum, the sensitized red

blood cells settle in a “bead” at the bottom of the well [which covers

less than 50% of the bottom of the well) (Figures 2, 4, (Lopez-Albizu

et al., 2022)].

This assay has the advantages of being inexpensive, easy to

implement in laboratories (the reading of the results is made with

the naked eye without the need for equipment), semi-quantitative,

and useful in the follow-up of treated patients. A disadvantage is

that if serial dilutions are not carried out, the prozone phenomenon

and false negative results may occur (Linder and Miettinen, 1976).
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2.2.2 Indirect immunofluorescence: IIF
IIF uses the principle of primary antigen-antibody interaction

(Figure 4). Cultured epimastigotes (antigens) are fixed to a slide and

incubated with the serum sample. After washing, the slide is

incubated with a secondary antibody, fluorescein-labeled anti-

human IgG, which, in case of infection, recognizes the antigen-

antibody complex (Figure 4). The preparation is observed under a

fluorescence microscope. Fixed antigen slides are commercially

available (Supplementary Table). The result is considered reactive

if the fluorescence observed in the parasite’s membrane has greater
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intensity than that of the cytoplasm [Figures 2, 4; (Lopez-Albizu

et al., 2022)]. Among the tests with highest specificity, IIF is the

most feasible to be implemented, due to its low cost and

low complexity.

Although IIF is used in a large number of laboratories in

Argentina and Latin America, it has the following disadvantages:

i) a fluorescence microscope and trained personnel are needed to

avoid the risk of erroneous readings (false positives) by interpreting

sample reactivity when fluorescence is observed only in the

cytoplasm of the parasite; and ii) like in the IHA, the prozone
B

C

A

FIGURE 4

Antigen-antibody interactions in serological tests designed to detect anti-T. cruzi antibodies using different principles, (A) IHA, (B) IIF, (C) ELISA. Ag,
antigen; Ab, antibody.
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phenomenon may occur, for this reason, it is important to make

serial dilutions (a minimum of three) in the serum sample (Linder

and Miettinen, 1976; Mathai et al., 2020).

2.2.3 Enzyme linked immunosorbent assay: ELISA
Commercial ELISAs are routinely used in clinical laboratories for

the diagnosis of various infections. IgG-ELISA is a technique that has

also been widely used for T. cruzi chronic infection. ELISAs uses the

principle of primary antigen-antibody interaction. The antigens

(lysate, recombinant or synthetic peptides) are fixed to a solid

phase (plate) (Figure 5). Plates are incubated with a serum sample,

followed sequentially by an enzyme-conjugated anti-human IgG and

a substrate for the conjugate that is used. In case of infection, a color

reaction will take place (Figure 4). There is a wide diversity of

commercially available kits (Supplementary Table). Although the

results can be read by direct observation, it is recommended to read

the optical density or positivity ratio by using a spectrophotometer to

accurately differentiate samples with absorbance values close to the

cut-off value and report the optical density or the positivity ratio

obtained. IgG ELISA is less subjective than IIF and IHA instead of

immunofluorescence and large numbers of samples can be processed.

In addition to its usefulness as one of the tests within the

serological pair for the diagnostic standard of chronic infection, at

the end of the 2000s, a study was carried out to evaluate the different

commercial ELISAs for the screening of donor blood. Based on the
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results of this study, and given the high sensitivity observed for

these ELISAs, their use in blood banks is currently recommended

(Otani et al., 2009; PAHO, 2018). This assay does not include

confirmation of the diagnosis, but rather is a screening method to

exclude potential positive donors.
2.2.4 Electrochemiluminescence and
chemiluminescence: ECLIA and CLIA

In recent years, automated equipment-based assays such as

ECLIA and CLIA, used to diagnose other infections, have been

developed for the detection of T. cruzi infection. These techniques

consist in the use of soluble recombinant antigens marked with a

chemiluminescent molecule and biotin, which binds to streptavidin.

This technology has the capacity to process a large number of

samples in a shorter period of time than manual tests. The greater

sensitivity of ECLIA and CLIA, with respect to ELISAs, could be

due to the fact that they use, in addition to a chemiluminescent or

luminescent signal, a wide diversity of recombinant proteins which

represent the three morphological stages and genetic diversity of the

parasite (Abras et al., 2016; Flores-Chavez et al., 2018).
2.2.5 Immunochromatographic tests: ICTs
Also known as lateral flow immunoassays (LFA) or rapid

detection tests (RDT), ICTs allow obtaining the result in 30
B

C

A

FIGURE 5

Different antigens used in the diagnostic serological tests designed to detect anti-T. cruzi antibodies. (A) Total extract (lysate) or purified antigens;
(B) Recombinant antigens; (C) Synthetic peptides. Ag, antigen; AA, amino acid; HPLC, high performance liquid chromatography.
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minutes or less. They consist of specific antigens fixed on a

nitrocellulose membrane. After sample addition, if there are

specific antibodies against the fixed antigens, they subsequently

bind to the antigen, developing a red line that can be

directly observed.

These tests have the following advantages: they do not need

equipment or refrigeration, the result can be obtained in minutes,

and they can be performed at the point of care, without the need to

refer a blood sample to the laboratory. However, in very hot regions,

the manufacturer’s instructions regarding the maximum

conservation and storage temperatures must be observed.

Although studies evaluating these ICTs have been conducted

since the early 2000s, there are still no recommendations for their

diagnostic use (Luquetti et al., 2003; Ponce et al., 2005; Roddy et al.,

2008; Sosa-Estani et al., 2008; Chippaux et al., 2009; Verani

et al., 2009; Lopez-Chejade et al., 2010; Barfield et al., 2011; Shah

et al., 2014; Angheben et al., 2017; Eguez et al., 2017; Lozano et al.,

2019; Mendicino et al., 2019; Lopez-Albizu et al., 2020b; Suescun-

Carrero et al., 2021). In recent years, both the number of ICTs

available on the market and clinical validation studies have

increased (Supplementary Table). One difficulty in establishing

recommendations for their implementation in diagnosis or

screening is that few of these studies have used the diagnostic

standard recommended by PAHO as a reference test (Luquetti et al.,

2003; Shah et al., 2014; Mendicino et al., 2019; Lopez-Albizu et al.,

2020b). On the other hand, some studies have evaluated the use of

two ICTs as diagnostic tests (Eguez et al., 2017; Mendicino et al.,

2019). Since, so far, there are no recommendations on their use for

diagnosis, the positive results obtained during screening must be

confirmed with the diagnostic standard (Sanchez-Camargo et al.,

2014; Crudo et al., 2020; Lopez-Albizu et al., 2020b; Ortega-Arroyo

et al., 2021).
3 Perspectives

The last 50 years have seen major advances in clinical laboratory

diagnostic technology guiding high quality, safe and effective

clinical decision making. These advances include the development

of molecular diagnostics and recombinant antigens, the automation

of serological tests, and the use of rapid point-of-care diagnostic

tests. However, access to diagnosis of T. cruzi infection has not

improved. Indeed, it is estimated that two-thirds of people with

Chagas disease currently live in urban areas and that only 10%

worldwide are aware of it (Sanmartino et al., 2015; Cucunuba et al.,

2017; Klein et al., 2017; Danesi et al., 2019). As an example, PCR

tests were rapidly implemented for the diagnosis of H1N1 Influenza

virus and then, during the COVID-19 pandemic, for the detection

of SARS-CoV2. However, it is paradigmatic that, although they

have been used in multiple research studies since 1998

(Russomando et al., 1998), their implementation in Latin
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Chagas disease has been slow and only Chile and, recently,

Argentina have included them in their clinical recommendations

(MinSal, 2017; MSal, 2022).

With the diagnostic tests currently available and the progress in

quality evaluations and validations of the new technologies

developed in recent years, it is possible to implement quality

diagnostics for the early detection of T. cruzi infection, both in

laboratories with limited resources and in highly complex centers

that analyze a large number of samples daily (Rivero and Bisio,

2022). However, tools that allow greater access to diagnosis in

primary healthcare settings are necessary. Although a wide variety

of diagnostic tests have been described in both the scientific and the

gray literature (more than 110 commercial tests for Chagas disease

have been described, see Supplementary Table), there is still no gold

standard. In particular, in recent years, many commercial kits have

been developed, with their evaluation being partial and in different

clinical-epidemiological contexts.

The present review describes the available diagnostic tests and

provides a description from a narrative and conceptual perspective.

An evidence-based evaluation of the performance of available

immunoassays and nucleic acid amplification tests, which updates

previously conducted systematic reviews and meta-analyses

(Afonso et al., 2012), would facilitate decision-making regarding

the purchase and implementation of these tests in the laboratory.

Also, investment in the development, performance evaluation, and

quality of diagnostic assays for vector-borne diseases and other

poverty-related illnesses is scarce. The keys to achieving the

sustainable development objectives set by international

organizations are public awareness, motivation and training of

health personnel, and political commitment at all levels.
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