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Cryptosporidium species are parasitic organisms of vertebrates with a worldwide

distribution. They have an important impact globally upon human and animal

health, and livestock productivity. The life cycle of these species is complex and

difficult to disrupt to improve human health, animal health, food security and

economic growth. This may contribute to the fact that no new treatment strategy

has been widely accepted or applied in livestock for years. Here we consider the

natural history of these parasites, their biochemistry and economic impact. Using

recent developments in understanding these parasites we then consider viable

and affordable approaches to enhancing control of their effects on livestock.

These are based on advances in drug discovery, omics research and artificial

intelligence applications to human and veterinary medicine that indicate putative

new therapeutic approaches.
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1 Cryptosporidium species

Cryptosporidium are protozoan pathogens that result in the enteric disease

cryptosporidiosis (Helmy and Hafez, 2022). Previously they were classified as coccidia and

considered to be intracellular parasites. However, recent research states they are members of a

new class named cryptogregaria. In evolutionary terms this lies between coccidia and

gregarine (Cavalier-Smith, 2014). Features that set them apart from coccidia include

intracellular and extra-cytoplasmic localisation, feeder organ formation, presence of

morphological oocysts, smaller oocysts, absence of sporocysts or micropyles, and,
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importantly, resistance to all available anti-coccidial drugs (Hijjawi

et al., 2002; Smith and Corcoran, 2004; Helmy and Hafez, 2022). The

re-classification has not been challenged since its publication

meaning Cryptosporidium is now officially gregarine (Ryan et al.,

2016). Gregarines are single-celled apicomplexan parasites that

primarily infect the intestines of invertebrates and lower vertebrates
Frontiers in Parasitology 02
(Leander et al., 2003a; Leander et al., 2003b); Barta and Thompson,

2006; Leander, 2007; Valigurová et al., 2007). The transmission of

gregarines to new hosts usually takes place by water borne or land-

based ingestion of oocysts, see Figure 1A (Thompson et al., 2016).

This has recently been seen in an outbreak in Southern England likely

due to bovine faeces contamination of water supplies (BBC, 2024).
B

A

FIGURE 1

(A) The Cryptosporidium life cycle broken down into 8 component stages: 1) Pathogen is ingested and begins forming a feeder organelle
responsible for nutritional intake. 2) Pathogen attaches to cell surface, provoking cell to embrace rather than active invasion. 3) Once inside the host
cell, the sporozoite divides asexually three times into a type I meront, containing eight merozoites. Merozoites then either begin asexual
development cycle to produce more type I meronts or differentiate into type II meronts. 4) Type II meronts contain four merozoites that develop by
asexual division, they are divided into micro- and macro-gametes. 5) Mature micro-gametes fertilise macro-gametes and leave the cell, producing
zygotes. 6) Zygotes go through sporogony (meiosis) to form sporulated oocysts. 7) Thin-walled oocysts (20%) lead to endogenous autoinfection. 8)
Thick-walled oocysts (80%) represent exogenous stage and are excreted. The global estimated load of Cryptosporidium in livestock manure is a
huge 3.2 x1023 oocysts per year, predominantly sourced from cattle (Vermeulen et al., 2017). (B) Cryptosporidium sporozoite interacting with the
host cell before forming into an intracellular trophozoite. A: The sporozoite attaches to the host cell via apical contact, inducing discharge of rhoptry
neck (binding) and bulb (pathogenic) proteins into the host cell. B: This causes the host cell membrane to engulf the sporozoite, attracting host actin
polymers towards the parasite-host interface. C: As the host membrane fully engulfs the sporozoite, host and parasite actin polymers bind into a
plaque-like multiprotein web complex of unknown composition at the host-parasite junction. D: Structure of the Cryptosporidium trophozoite. As
the host cell cytoskeleton engulfs the sporozoite, this causes it to curve into a c-shape, relax into a straight line then contract into a rounded
trophozoite (above). The trophozoite’s niche is that it is intracellular within the host membrane yet extra-cytoplasmic due to the formation of the
parasitophorous vacuole, and partial separation from the host cell by the actin web. As the trophozoite is the growth stage of the parasite, it relies
heavily on the host cell for metabolites and nutrients. This is achieved via the formation of the feeder organelle at the host-parasite interface during
fusion with the host cell.
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There are over 40 recognised Cryptosporidium species, affecting

a variety of hosts, with ten posing zoonotic risk, eight affecting

livestock, and three affecting poultry (Fayer, 2010; Chalmers and

Katzer, 2013; Thomson, 2016; Feng et al., 2018). The most

frequently identified species globally is C. parvum, which almost

exclusively presents clinically in neonates as watery diarrhoea,

appetite loss, abdominal pain, and in extreme cases, death

(Thomson et al., 2017). Infection with C. parvum is the most

common cause of neonatal calf diarrhoea (NCD) worldwide, also

causing significant clinical disease in humans, lambs, and goats

(Thomson et al., 2017). Diarrhoea may be malabsorptive, caused by

villi blunting and loss of enterocytes, or secretory, when intestinal

secretion increases (Thomson, 2016). Other species such as C.

ryanae and C. bovis are shed by parasitised hosts, although not

associated with clinical disease (Fayer et al., 2008). Some species

multiply in the respiratory tissue such as C. baileyi, causing

respiratory symptoms and disease (Helmy and Hafez, 2022). C.

parvum is the only species proven to have zoonotic effects (Table 1)

and some human outbreaks have been attributed to waterborne

infection from cattle. C. hominis (formerly C. parvum genotype I),

has been shown to be specific to humans. Although

Cryptosporidium spp. are generally host specific, species including

C. suis, C. baileyi and C. bovis have occasionally been detected in

other animals and humans (Helmy and Hafez, 2022).
2 Market overview

There is a need to consider the economic drivers that require

advances in understanding and treatments for Cryptosporidium

infections. Cryptosporidium has a major agri-economic effect on

cattle. There are over 142 million dairy cattle worldwide, the highest

number being in India (61 million), followed by the EU (20 million)

and the US (9.5 million). The average volume of milk consumed per

person worldwide is 30.3kg/year, expected to grow annually by

6.87% (Shahbandeh, 2023), demonstrating the growing need for

new approaches to treat this disease and maintain food security.
Frontiers in Parasitology 03
Cryptosporidium prevalence varies between hosts, geographical

area, and diagnostic test used (Table 1; Figure 2).

The critical facet by which Cryptosporidium affects the livestock

economy is neonatal calf diarrhoea or NCD, the most common

cause of death in dairy calves, that also causes high morbidity,

growth retardation and other serious long-term consequences

(Brunauer et al., 2021). There are several viral, bacterial, and

parasitic causative agents of NCD; but one of the most frequently

identified at <30 days old is Cryptosporidium (57%) (Thomson

et al., 2017; Brunauer et al., 2021). Whilst the economic case is made

most clearly in the literature for cattle, other livestock also suffer

from Cryptosporidium infections. Thus, the cost across all livestock

species has a profound effect on agriculture. Notably, the prevalence

of Cryptosporidium infections in pigs globally is reported as

generally being high, especially in in post-weaned pigs. However,

pre-weaned pigs and finishing pigs are majorly impacted by the

disease in some regions such as China and Vietnam (Nguyen et al.,

2012; Wang et al., 2022; Chen et al., 2023).

In the US, to raise a beef calf to 24 months costs approximately

£1,763 ($2,260). Shaw et al. (2020) noted that a loss of 34kg/head

due to cryptosporidiosis would equate to a loss of £128.18/head, not

accounting for extra feed and husbandry costs, diagnostics, vet fees

or treatment. Therefore, measures to prevent and control shedding

in livestock will benefit both human and livestock health and

welfare significantly, whilst also increasing production efficiency

(Innes et al . , 2020). Economic losses associated with

Cryptosporidium are variously linked with mortality, decreased

growth rates, medicine requirement, veterinary care costs, and

increased labour (de Graaf et al., 1999). Thus, improving the

health and welfare of dairy calves is imperative to sustaining the

industry and decreasing methane (greenhouse gas emitted from

cattle) (Roblin et al., 2023). In economically less developed

countries, Cryptosporidium is a serious issue due to the limited

resources and diagnostics availability, lower hygiene, and poorer

livestock practices (Ahmed and Karanis, 2020; Fresán et al., 2021).

In other species, mortality rates due to cryptosporidiosis in lambs

equate to £40–100 million per year in the UK (Cutress and Rees,

2022). Similarly, a decreased growth rate in lambs was reported to

equate to a loss of approximately £7/head (Sweeny et al., 2011;

Agriculture and Horticulture Development Board, 2023). Economic

losses concerning pig and poultry production are currently

undocumented, though collectively, the data available

demonstrates the importance of Cryptosporidium parasites in

affecting agricultural production in these species too.

The economic case for improved prophylactic treatment

measures can be made, but any form of treatment, prophylactic

or otherwise, would have to consider the health-economic case

based on the incidence of the disease. The only licensed treatment

for Cryptosporidium in calves is halofuginone lactate (HL) (Jain

et al., 2015), licensed in regions such as the UK and EU, though not

in the US. A metareview of the literature recently argued that the

evidence is growing for the prophylactic use of this drug (Brainard

et al., 2021). But HL cannot be administered to calves that are

diarrhoeic for >24 hours when they are weaker and dehydrated

(European Medicines Agency, 2021). Thus, its use as a therapeutic

agent is limited given Cryptosporidium oocysts survive a range of
TABLE 1 Most pathogenic Cryptosporidium species, their host
and location.

Cryptosporidium
spp.

Main Hosts Location

C. parvum Humans, Cattle,
Sheep, Pigs

Small Intestine

C. bovis Cattle Small Intestine

C. ryanae Cattle Small Intestine

C. andersoni Cattle Abomasum

C. ubiquitum Sheep Small Intestine

C. xiaoi Sheep Small Intestine

C. suis Pigs Small Intestine

C. baileyi Chickens Cloaca, bursa, trachea

C. meleagridis Chickens Small Intestine
Collated from (Sréter and Varga, 2000) and (Helmy and Hafez, 2022).
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different cleaning agents, temperatures, and conditions, including

disinfectants. Therefore, we need to find new, cost-effective

treatments whilst halofuginone can be used prophylactically.
3 Species specific consideration of the
effects of Cryptosporidium infection

3.1 Cattle

There are over 18 Cryptosporidium species that affect cattle; the

main four documented are C. parvum, C. bovis, C. ryanae and C.

andersoni (Thomson et al., 2017). These species have been shown to

affect cattle on an age-related scale; C. parvum is predominantly

found in neonatal calves, C. bovis and C. ryanae are found in post-

weaned calves, and C. andersoni is found in adults (Dıáz et al.,

2021). The minimum infectious dose for clinical presentation in

neonatal calves is an amazingly small number of 17 oocysts, with C.

parvum being detected as early as day-old calves (Zambriski et al.,

2013; Thomson et al., 2019). This number shows the challenge in

prevention, prophylaxis, and treatment, as one primary case can

rapidly lead to an exponential incidence in infected animals.

Stocking density is a significant risk factor in the prevalence of C.

parvum in dairy calves. The prevention and control of this zoonosis

in dairy calves should receive greater attention, especially in regions

with a high degree of intensive dairy farming. Co-infection with

other pathogens and/or non-pathogenic diarrhoeal causes can

exacerbate symptoms and is one of the major causes of mortality

in calves (Björkman et al., 2018). The main sources of infection are

shedding of oocysts by infected neighbouring pens, and

contamination of bedding, water supply, and udders/teats of

dams (Helmy and Hafez, 2022).

Cryptosporidiosis influences calf productivity via costs of

mortality, diagnosis, treatment, and extra husbandry to reach

market weight (Olson et al., 2004). Cryptosporidium infections
Frontiers in Parasitology 04
have been shown to directly correlate to a lower live weight gain

and poorer productivity (Abreu et al., 2019). Shaw et al. (2020)

found that any weight lost during infection in neonatal calves is not

put back on in the subsequent six months, indicating that the

impact of cryptosporidiosis on the cattle industry may be greater

than originally thought.
3.2 Chickens

Unlike mammals, cryptosporidiosis in poultry manifests in two

forms, respiratory and intestinal (Sréter and Varga, 2000). C. baileyi

causes the respiratory form, affecting the nasal turbinates,

nasopharynx, sinuses, larynx, trachea, lungs, air sacs and

conjunctiva (Sréter and Varga, 2000). Respiratory infection

clinically presents as depression, lethargy, anorexia, un-thriftiness,

coughing, sneezing, dyspnoea, and conjunctivitis (Sréter and Varga,

2000). C. meleagridis causes the intestinal form resulting in

diarrhoea, enteritis, and dehydration (Nakamura and Meireles,

2015). C. parvum is rarely reported to be the cause of

cryptosporidiosis in chickens, though a more recent study

challenges this (Berrilli et al., 2012; Helmy et al., 2017). For

reasons unknown, prevalence of cryptosporidiosis in chickens has

been found to be higher in layers than broilers (Helmy et al., 2017).
3.3 Pigs

The most common species found in pigs are C. parvum, C. suis

and C. scrofarum (Zahedi and Ryan, 2020). Unlike ruminants, pigs

are largely asymptomatic towards Cryptosporidium infections,

unless the animal is immunocompromised or under extreme

stress (Ramirez et al., 2004). Although, nursing piglets (under 3

weeks) have been reported to have serious clinical presentations

(Rotkiewicz et al., 2001).
FIGURE 2

The variation of reported Cryptosporidium prevalence per species considered from a global perspective (raw data in Appendix 1). There is apparently
no country with significant livestock populations free from Cryptosporidium.
frontiersin.org

https://doi.org/10.3389/fpara.2024.1448076
https://www.frontiersin.org/journals/parasitology
https://www.frontiersin.org


Rideout et al. 10.3389/fpara.2024.1448076
3.4 Small ruminants

C. parvum, C. ubiquitum, and C. xiaoi are the most frequently

detected species in small ruminants, with C. andersoni, C. bovis, C.

ryanae, C. hominis, C. fayeri, C. baileyi, and C. suis all identified

sporadically (Santin, 2020). Clinical presentation results in acute

diarrhoea between 5–20 days, causing reduced growth and

productivity in lambs and kids (Paraud and Chartier, 2012;

Jacobson et al., 2016). Oocyst shedding has been associated with

lower carcass weight in both symptomatic and asymptomatic sheep

(Jacobson et al., 2016).
3.5 Zoonotic risk

Zoonotic transmission of C. parvum can occur via

contaminated drinking water or food, crops fertilised with

contaminated manure, direct contact with infected humans or

animals, and anal sexual contact (Dillingham et al., 2002; McKerr

et al., 2015). Cryptosporidium is the biggest pathogenic threat to the

water industry, accounting for most outbreaks of infectious

intestinal disease between 2004–2010 (Chalmers, 2012) (Karanis,

2018). In the US, exposure to contaminated swimming pools and

water parks resulted in 35% of the reported cryptosporidiosis

outbreaks between 2009–2017 (Gharpure et al., 2019). Despite

this, little is understood about how oocysts reach the water

source. The recent outbreak of cryptosporidiosis in Devon, UK,

highlights the impact that the parasite can have on public health,

with residents experiencing symptoms up to 10 days before

acknowledgment and advice from the water company where

infection was likely from bovine faeces (BBC, 2024).

Analysis of meta-data throughout a range of studies (Dong

et al., 2020) found global human prevalence of Cryptosporidium to

be 7.6% in 2020; the highest prevalence was found in Mexico (70%)

followed by Nigeria (34%), Bangladesh (42%) and Republic of

Korea (8%). Prevalence has been found to be higher in people

from low-and-middle-income countries (LMIC), children under

five, and those living in rural areas (Dong et al., 2020). For example,

people in rural areas of China have a significantly higher prevalence

of Cryptosporidiosis infections (1.8–12.9%) than those in urban

areas (0–3.7%), likely due to poor sanitation (Liu et al., 2020).

The incubation period of Cryptosporidium in humans is 5–21

days, preceding a self-limiting diarrhoea lasting 3–12 days. Clinical

signs include diarrhoea, vomiting, abdominal pain, nausea, fatigue

and on some occasions, respiratory symptoms such as coughing and

sneezing due to inhalation of oocysts from contaminated air

(Sponseller et al., 2014; Ahmed and Karanis, 2020). In many

countries, cryptosporidiosis is a major concern due to the

increasing number of immunocompromised adults and children

(Pumipuntu and Piratae, 2018). For example, in regions of Africa

where HIV/AIDS outbreaks are still common, there is a much

higher prevalence of cryptosporidiosis (Squire and Ryan, 2017). The

incidence of cryptosporidiosis is also increasing with climate change

as heavier rainfall and flooding increase the likelihood of pathogenic

water contamination (Gertler et al., 2015). Human-infective
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pathogens are subject to more intensive experimental research

than those affecting cattle. Excessive anticoccidial residues in

animal-derived food (i.e., meat, eggs, etc.) have been associated

with toxicological effects such as teratogenicity, hepatotoxicity, or

neurotoxicity (Tuck et al., 2016). Additionally, inappropriate usage

or excessive administrations can cause harmful side effects in

humans such as resistance, carcinogenicity, organ dysfunction

and other adverse effects (Zhou et al., 2018).
4 Diagnosis and treatment

4.1 Diagnostic procedures

4.1.1 Diagnostic tests
Conventionally, microscopic identification is used to confirm

presence of oocysts in animal stool samples, including various

staining techniques (Ziehl-Neelsen, safranin-methylene blue etc.).

Additionally, faecal concentration techniques are performed by

sedimentation using formalin-ethyl acetate or floatation using

zinc sulphate (ZnSO4) or salt (NaCl) (Pumipuntu and Piratae,

2018). Microscopic techniques are time consuming and laborious,

with misdiagnosis frequent due to insufficient knowledge of oocyst

morphology. Therefore, immunological techniques have now been

developed such as protein measurement-based Enzyme Linked

Immunosorbent Assays (ELISAs), immunofluorescence to detect

oocyst cell wall antigens using specific fluorescent antibodies, and

dipstick-like tests (Fayer et al., 2000). Antigen detection kits mean

that many samples can be processed easily and quickly, with 98–

100% specificity (Ghoshal et al., 2018). Immunochromatography

(ICT) or enzyme immunoassay (EIA) tests are available for

presence of Cryptosporidium alone, or in combination with others

parasite tests, such as for Giardia. A recent and comprehensive

summary of these tests has been published (Aboelsoued and

Megeed, 2022). Although these approaches are more sensitive and

specific, reducing labour, time and cost, there are no antibodies to

differentiate between Cryptosporidium species reliably (Pumipuntu

and Piratae, 2018). Molecular methods (e.g., polymerase chain

reaction – PCR) are increasingly used in reference diagnostic labs,

since they can be used to identify Cryptosporidium at the species

level and thus convey sensitivity and specificity. Such an assay was

first published in 1995 (Johnson et al., 1995).

4.1.2 Molecular diagnostic techniques
PCR tests are repeatable, automated, sensitive, and specific

techniques, giving them significant advantages over other

techniques. However, the quality and purity of DNA in the

sample affects the sensitivity of the test (Checkley et al., 2015).

The issue for Cryptosporidium diagnosis and monitoring are the

speed with which an assay can be performed, and the cost of such

assays, these two facets are linked. Rapid PCR reduces the time

required for assays to be performed, but testing costs are higher

(Fistera et al., 2023). Nonetheless, a rapid assay for several

Cryptosporidium species has been developed (Crannell et al.,

2014). The technique employed, Recombinase Polymerase
frontiersin.org
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Amplification (RPA), is an isothermal nucleic acid amplification

technique that has been widely used to detect different kinds of

pathogens (Piepenburg et al., 2006). RPA can achieve exponential

amplification of the target fragment in less than 30 minutes. This

RPA assays was described as easier and faster to carry the detection

results than existing methods, plus suitable for point-of-care

detection and valuable in prevention and control of infections.

The key question remains the economic cost inclusive of the assay,

staff time required, and frequency of use requirement

(Liu et al., 2023).

Loop-mediated isothermal amplification (LAMP) is an

isothermal amplification technique that discard complex thermal

cycling instruments and amplify the target fragment at a constant

temperature. LAMP is said to be low-cost, accurate and highly

sensitive but it is argued that high rates of false positive results are

an issue for clinical decision making, though there are means

suggested to overcome this issue (de Oliveira Coelho et al., 2021;

Alhamid et al., 2023). LAMP can be used to detect Cryptosporidium

with the ability to differentiate between six regions of the target gene

(Plutzer et al., 2010). LAMP has been used to detect a

gastrointestinal nematode in ovine populations and bovine

respiratory diseases (Khangembam et al., 2021; Pascual-Garrigos

et al., 2021). Thus, it has been suggested as a point of care test.

LAMP is faster than PCR due to it not requiring an incubator or

thermocycler, also being superior to nested PCR at detecting low

numbers of Cryptosporidium in apparently healthy animals

(Aboelsoued and Megeed, 2022). However, another field-based

approach has been proposed ; a sens i t ive assay for

Cryptosporidium detection using a portable platform. This

method is more sensitive, selective, and PCR-free, detecting

Cryptosporidium RNA using oligonucleotide modified gold

nanoparticles (AuNPs). The need for laboratory use was obviated

by undertaking assays on a chip in a three-dimensional printed

holder assembly. A smartphone camera was used to capture an

image of the colour change for quantitative analysis. This approach

may fill many of the needs of the livestock industry if cost effective

(Luka et al., 2021).

4.1.3 Postmortem findings
The final and postmortem method is pathology based where

findings for Cryptosporidium infection include generalised

enterocolitis, inclusive of curdled milk in abomasum, petechiae in

abomasal mucosa, intestinal serosa, and mesentery, enlarged lymph

nodes, and congested, ballooned small intestines (Bharti et al.,

2020). Similarly, histopathology findings are ileitis (characterised

by villous atrophy and necrosis), epithelial erosion, leukocyte

infiltration into lamina propria, and mucosal haemorrhage

(Gamsjäger et al., 2023).
4.2 Treatments and control

4.2.1 Best husbandry practices
Transmission of Cryptosporidium occurs via a faecal-oral route;

thus, water sources easily contaminated with oocysts, lead to
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outbreaks of cryptosporidiosis (Thomson, 2016). Oocyst shedding

can be high from infected hosts, such that faecal material can lead to

the parasite passing quickly to animals or humans. Infected calves

have been shown to shed around 1x104-108 oocysts/gram faeces 4–9

days after initial infection, for around 6–14 days (Fayer et al., 1998;

Faubert and Litvinsky, 2000; Zambriski et al., 2013). Infected

animals can vary in the degree of oocyst shedding based on the

infectious dose (Zambriski et al., 2013).

The life cycle of Cryptosporidium is complex. It consists of

sexual and asexual reproductive stages (Khan and Witola, 2023).

Tandel et al. (2019) suggest direct development of gametes from

type I meronts may occur, which has only been reported in

Cryptosporidium species (Figure 1B). The data on life cycles

indicate that good husbandry practice, clean water supplies and

surveillance can all help deal with infection and infection rates.

Affected animals should be quarantined for at least 1 week after the

diarrhoea subsides to avoid subsequent oocyst shedding from

contaminating the environment causing further transmission

(Innes et al., 2020). Efficient biosecurity and disinfection of

shared spaces (i.e., calf pens) is the best control strategy, though

this is easier said than done. Clean, dry housing with raised feed and

water troughs minimises chances of contamination and/or exposure

to parasites from the environment (Innes et al., 2020).

Cryptosporidium spp. have developed resistance to most chemical

disinfectants (Fayer et al., 2008). However, Björkman et al. (2018)

found that disinfection of the environment with hydrated lime,

whilst not a cure, is an effective way to reduce onset and severity of

cryptosporidiosis in calves. Other interventions making the oocyst

more sensitive to disinfectants would also be beneficial (see below).

Additionally, steam cleaning of enclosures between animals has

been shown to be effective, as oocysts become inactivated above

60°C (Robertson et al., 1992). C. parvum oocysts can survive

temperatures of -20°C, meaning they may be able to survive

cryoprotectants. However, UV light exposure has been shown to

render oocysts non-infectious (Sivaganesan and Sivaganesan, 2005).

4.2.2 Therapeutic approaches
As immunocompromised, neonatal, and malnourished patients

are the most vulnerable to the pathogen, they are most in need of

therapeutic treatment (Khan and Witola, 2023). Ensuring calves

receive an adequate supply of colostrum to boost their immune

system in their most naïve state is therefore essential for controlling

the clinical disease (Meganck et al., 2014). Oral rehydration

therapies are a therapeutic treatment option for cryptosporidiosis

due to the diarrhoea and lethargy associated with the clinical

disease. But the discovery of new drugs to treat livestock for

cryptosporidiosis has had considerable investment recently, with

several classes of compounds in various research stages (Innes et al.,

2020). These include studies on both Cryptosporidium, and related

parasites to identify new compounds (Lendner et al., 2015; Lee et al.,

2018; Buckner et al., 2019; Lunde et al., 2019). Additionally, given

that cryptosporidiosis is zoonotic, advancements in human drug

development may be transferrable to livestock in the future. Several

drugs have been tested in humans including macrolides, rifamycin,

letrazuril, paromomycin, nitazoxanide, clofazimine. With livestock
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production moving further towards sustainability and reducing

environmental impact, methods of tackling the disease with

biodegradable drugs are increasingly important.

Despite investment in discovery, deployment of new treatments

has moved at an extremely slow pace. There are only two treatment

options available for calves: HL and paromomycin (Table 2). Both

are used at the onset of clinical signs to reduce shedding and severity

of diarrhoea (Grinberg et al., 2002; Trotz-Williams et al., 2011). HL,

whilst registered for use in several countries (not the US), has a

substantial market price, narrow therapeutic index and displays

toxicity at twice the recommended dose (Health Products

Regulatory Authority, 2021). Almawly et al. (2013) also found

that the anti-cryptosporidial activity of HL is not preserved

during co-infection with Rotavirus and S. typhimurium in calves;

this is said to be due to diarrhoea, caused by these pathogens,

shortening gut transit time of HL, abolishing its effects.

Triazine-based anti-protozoal drugs are used in the treatment

of apicomplexan diseases. Toltrazuril, for example is used in

treatment of coccidiosis interfering with intracellular

developmental stages of parasites via effects on endoplasmic

reticulum mitochondria and cell division, potentially via

inhibition of succinate-cytochrome C reductase and NADH

oxidase and succinate oxidase (Harder and Haberkorn, 1989).

Azithromycin is an antibiotic that binds a ribosomal subunit and is

also effective in the prevention and treatment of cryptosporidiosis. The

drug is carried to sites of infection, conveniently, by neutrophils and

other myeloid cells (Parnham et al., 2014). Combination therapies are a
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way of improving outcomes and in the combined use of toltrazuril and

azithromycine there is a notable synergistic effect on cryptosporidiosis

in cows compared to either agent alone (Yagci et al., 2017).
5 Finding new therapeutic agents

There are numerous classes of drug targets that are under

investigation with respect to treatments in human disease. Given

the enormous budgets put to these drug discovery and drug

validation exercises, there is undoubted opportunity for learning

and repurposing to treat diseases observed in livestock and

companion animals. In respect of pharmacological intervention,

several targets have been studied (Figure 3).

Prospectively the knowledge base on drug targets and putative

inhibitory mechanisms in human disease will grow, and new classes

of compounds will become available. Some of these may have

application in veterinary medicine. A previous example would be

the use of imatinib to treat malignant disease in dogs via inhibition

of specific mutated, and thus activated, protein tyrosine kinases

(Macedo et al., 2022). The compound was developed to treat

Chronic Myeloid Leukaemia in humans and then developed for

use in malignant disease in dogs. Below we take a longer view of the

prospective areas where treatment for Cryptosporidiosis can

possibly be found.

Cryptosporidium lacks most mitochondrial functions and

cannot generate energy via oxidative phosphorylation (Mazurie
TABLE 2 List of currently licensed drugs for cryptosporidiosis in production animals.

Licensed Drugs for Cryptosporidiosis

Drug Name Manufacturer
Route
of

administration

Cost
(£/ml)

Dosage

Ingredients
Withdrawal
period (days)

Legal
category

Licensed for
Actives

mg/
ml

HALOCUR MSD Oral 0.13

35–45kg: 8ml/day
for 7 days; 46–

60kg: 12ml/day for
7 days; For other
weights: 2ml/
10kg BW

Halofuginone 0.5 13 POM-V Calves

Gabbrovet Multi Ceva Oral 0.49
150mg/kg/day for

5 days
Paromomycin 140

Cattle: 110;
Pigs: 3

POM-V Cattle, Pig

Parofor crypto Huvepharma Oral 0.28
2.5ml/10kg BW/
day for 7 days

Paromomycin 140 62 POM-V
Non-

ruminant calf

Kriptazen Virbac Oral 0.23
2ml/10kg BW/day

for 7 days
Halofuginone 0.5 13 POM-V Calves

STENOROL
CRYPTO

Huvepharma Oral Unknown
2ml/10kg BW/day

for 7 days
Halofuginone 0.5 13 POM-V Cattle

Halofusol Bimeda Oral 0.27

35–45kg: 8ml/day
for 7 days; 46–

60kg: 12ml/day for
7 days; For other
weights: 4ml/
20kg BW

Halofuginone 0.5 13 POM-V Cattle

Parofor Crypto
Sheep and goats

Huvepharma Oral 0.19
0.25ml/kg/day for

7 days
Paromomycin 140 24 POM-V

Non-ruminant
lambs and kids
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et al., 2013). Biosynthesis capacity is relatively limited, thus, energy

generation within the organism is restricted to anaerobic glycolysis

and the Krebs cycle (Denton et al., 1996). This is not to stay that the

organism cannot acquire amino acids and other biochemicals

required for anabolic processes, from its host. Indeed, there is a

major effect of the parasite on host cells inclusive of alteration in

truncated microvilli, altered epithelial junctions and the formation

of a complex host/pathogen interface which is clearly worthy of

investigation for potential disruption. The parasite reliance on host

biochemicals has been shown (Pawlowic et al., 2019), in this

instance nucleic acids. There is in vitro evidence to support

glycolysis as a drug target pathway (Vélez et al., 2021). Inhibitors

of glycolytic enzyme hexokinase, and sugar transporters, lactate

dehydrogenase inhibitors and glutamine metabolism inhibitors,

reduce parasite replication. Inhibition of anaerobic glycolysis

enzymes pyruvate kinase and lactate dehydrogenase both

adversely affect C.parvum growth and survival in an in vivo

model, but the combination of the two drugs has a synergistic

effect. The effects on livestock animals and their microbiomes,

however, may be so deleterious as to make the use of these drugs

inappropriate (Khan et al., 2023).

In using the transcriptome data they have derived, Walzer et al.

(2024) have given a deep insight into the various stages of the

Cryptosporidium life cycle beyond morphological definition, and

how these stages relate to patterns of gene expression. As has been

seen in studies on embryological development, the use of such data

will be of immense value to build a picture of life cycle stage and

associated pathway activation (and thus opportunities for targeted

therapy). Cryptosporidium has an elaborate interface with the host,

including the feeder organelle (Figures 1, 2), and there is clear

evidence of a requirement for nutrients from the host. Transporter

proteins as a target for drugs is an active area of research in human

medicine, and as discussed above, the potential for targeted

inhibition of substrate uptake into Cryptosporidium remains a

possible way forward that would leave host physiology unaffected.
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Cryptosporidial infection has been shown to modulate intestinal

epithelial glucose absorption and metabolism (Dengler et al., 2023)

which is a vignette of how the parasitic organism alters biochemical

flux pathways that can be targeted by drugs. For example, C.

parvum invasion requires localised membrane insertion of Na+/

glucose cotransporter 1 (SGLT1) using myosin aggregation (O'Hara

et al., 2010), and SGLT1 inhibition decreases invasion (Chen et al.,

2005). Membrane transporters are very much a subject of research

for novel inhibitors to treat diseases. Biochemical transporters are

increasingly being studied as drug targets (Galetin et al., 2024). For

example, SGLT inhibitors (e.g., dapagliflozin, empagliflozin) have

been approved as antihyperglycemic compounds for the treatment

of type 2 diabetes (FDA, 2023). As such drugs become available in

human medicine, they can then be considered for use in treatment

for cryptosporidiosis when efficacy is clear, and the economic case

can be made. Studies from human medicine more widely therefore

offer new opportunities for inhibition, killing and removal of

parasite load in the gut.

Microneme proteins of the parasite recognise carbohydrate

moieties to anchor parasite to the host cell; this may be another

area to target via disruption of the cell/parasite interaction. Lectins

are relatively small molecules that bond carbohydrate moieties that

are made by bacteria and plants. They have been considered for use

in treatment of several diseases, including viral mediated diseases

like HIV. Lectin delivery to the gut is feasible and as such, food

supplements could have a prophylactic or treatment role in

livestock (Lavıń de Juan et al., 2017). However, lectins in feed can

have adverse effects (Ansia and Drackley, 2020) thus a selective

approach is clearly required. Nonetheless, lectins affect epithelial

cells, by binding to the mucosa via a high affinity interaction with

carbohydrates on cell surfaces (Friedman and Brandon, 2001). If

specific lectins that targeted the GPI interaction between parasite

and host were found, this may be beneficial for animal health in the

face of parasitic ingestion. Lectins can be used as a delivery system

and could therefore target antiparasitic drugs to parasites, however
FIGURE 3

Potential drug target sites of Cryptosporidium sporozoites found in literature.
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the economics of manufacture are a key issue as well as the

development work required.

Cryptosporidium has the lowest number of paralogous proteins,

meaning a specific drug targeting programme has more chance of

successfully decreasing survival/proliferation of the parasite

(Mazurie et al., 2013). Extensive review of organelle proteomics in

Cryptosporidium has revealed fascinating detail on the constituents

of rhoptry, oocyst wall, secreted granules, microneme and plasma

membrane. This key analysis identifies proteins with extracellular

domains that can be considered drug targets (Guérin et al., 2023).

These proteins reorder the epithelium and thus are key to the

parasitic life cycle. An example of one area worthy of further

investigation is the fact that the oocyst wall proteome includes

patched family proteins that regulate lipid transport. This lipid

transport helps to build the structure that makes the oocyst

resistant to chemical attack or disinfectant (Samuelson et al.,

2013). A patched related protein in plasmodium is key in

membrane integrity of Plasmodium falciparum and its inhibition

makes this organism more susceptible to a detergent like compound

(Istvan et al., 2019). Related proteins are inhibited by specific small

molecule drugs but compounds that can inhibit these processes have

never been contextualised into cryptosporidial antiparasitic action

(Wu et al., 2022). However, in a malarial model, U18666A drug, that

leads to cholesterol sequestration, leads to restriction of parasite

growth likely via said cholesterol sequestration (Petersen et al., 2017).

Another cholesterol-lowering drug employed in human medicine,

ezetimide, blocks Toxoplasma. gondii, B. besnoiti and N. caninum

tachyzoite infectivity and replication in primary bovine endothelial

host cells. Perhaps just as important as the inhibitory effects is the

concept that the drug yields a more disinfectant sensitive population

of oocysts (Larrazabal et al., 2021b). High-density lipoprotein (a

cholesterol carrying protein in the blood) receptor SR-BI also

reduced invasive capacities of the above apicomplexans (Larrazabal

et al., 2021a). In other words, there is growing evidence that the

modulation of cholesterol metabolism using several different drugs

in anticomplexan-related diseases could have prophylactic, or

disease treatment value. As the cholesterol to phospholipid ratio in

plasma membranes is about 0.7 the importance of this steroid is

clear. Specifically, cholesterol content reduction can alter membrane

permeability and signal transduction (Blok et al., 1977; Whetton

et al., 1983; Shaheen et al., 2023).

Many different studies have revealed that a large number of

apicomplexan specific proteins are secreted by Cryptosporidium or

are associated with the parasite/host interface. These have been

detailed in a comprehensive and elegant review (Plattner and

Soldati-Favre, 2008). These studies do suggest opportunities for

disruption of rhoptry/microneme parasite protein interactions as a

way forward for intervention in cryptosporidiosis infection.

Cryptosporidium is epiparasitic, with a peripheral cellular

interaction, where only a part of the parasite is embedded in the

host cell. As knowledge of the unique proteins found in the cellular

interface develops (Guérin et al., 2023), new means of targeting the

parasite at an accessible site (the interface) will become apparent.

Protein-protein interactions (PPIs) are now regarded as druggable

targets (Bojadzic and Buchwald, 2018; Zhu et al., 2022). This

includes cell surface signalling complexes such as CD40-CD40
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ligand. Given the primary structure (amino acid sequence) of

(Cryptosporidium specific) parasite proteins, the tertiary structure

(folded shape) can be predicted using models that predict the shape

of proteins, such as Alphafold (Jumper et al., 2021). In the future

this will enable the Computer Aided Design (Hurwitz et al., 2022) of

peptide drugs that specifically bind to key functional parasitic

proteins (Wang et al., 2022).This will be after standard

biochemical, plus computer-based approaches in proteomics, have

identified membrane bound Cryptosporidium proteins to

membrane bound host protein interactions (Ren et al., 2022). As

stated, Cryptosporidium has a low number of paralogous proteins

meaning a specific drug effect is more probable. Such drug targets

may best be for the epiparasitic pathogen/host interactions. Cost of

manufacture, specificity and efficacy need to be considered in these

future avenues for research. Small molecule inhibitors are often too

small to inhibit PPIs. A contact area of 1500–3000 A2 usually

defines a PPI, but small molecules only cover 300–1000 A2 of the

protein surface. Peptide drugs (and modified peptide drugs) have a

greater size and thus, with specific design, can act as potent

inhibitors of PPIs. The clinical use of PPIs offers a higher

specificity than many low molecular weight inhibitors (Wang

et al., 2022). Furthermore, peptides are already widely used in

veterinary medicine.

A different approach to cryptosporidiosis is screening for drug

repurposing. This can play a major role in finding economically

viable treatments for cryptosporidiosis, in part because first human

trials have already been performed and possibly phase 2/3 clinical

trials. Plainly, repurposing for use in livestock wellness would

require further work but would be markedly cheaper than starting

with no information on molecular structure, pharmacodynamics/

kinetics and on in vivo effects. A high-content imaging assay for

inhibitors of C.parvum proliferation within a human intestinal

epithelial cell line has been used to find prospective new

treatments. This approach screened 78,942 known compounds

and found 12 drugs with activity against Cryptosporidium. These

included an inhibitor of Protein kinase C a and b, and the JAK2

tyrosine kinase. In respect of JAK2 kinase inhibitors, these have

already been deployed as treatment of human disease (e.g.

polycythaemia vera, myelofibrosis) and for veterinary medicine in

companion animals (Shawky et al., 2022). Protein kinase C

inhibitors have been thoroughly investigated and it remains to be

seen if they have a substantial clinical impact. Given the wealth of

data on JAK2 inhibitors and the fact that one such inhibitor,

Ruxolitinib (targets JAK1/2) has a European Union patent that is

expected to expire in August 2027 and the US patent is expected to

expire in December 2027 offers opportunity for use in parasitic

disease treatment. JAK2 also has a role in mastitis and milk

production in cows (Khan et al., 2020) providing a possible use

elsewhere in dairy farming. Bumped kinase inhibitor has shown

promise as an inhibitor of Cryptosporidium growth, likely via

calcium-dependent protein kinase 1 (CDPK1) inhibition

(Castellanos-Gonzalez et al., 2013). Novel artificial intelligence-

based assessment of kinase structure and inhibitor binding will in

the future enable increased speed of development for kinase

inhibitors in veterinary and human medicine (Liu et al., 2023).

Screens for inhibition of inosine-5’-monophosphate dehydrogenase
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have also shown some promise (Gorla et al., 2014) as have

polyamine analogs, but there is no evidence of clinical

development of these drugs (Yarlett et al., 2007).

The major finding of this above drug repurposing screening was

the effect of clofazimine, an antibiotic used in treatment of leprosy,

on Cryptosporidium. The mechanism of action of clofazimine is not

known but it is believed to be related to effects on membrane

structures or membrane-bound proteins. Whilst clofazimine has

limited oral bioavailability, it has been encapsulated to promote

higher absorption in the treatment of leprosy. The intestinal

permeability and hydrophobic nature of clofazimine enables the

drug to be retained in the gut, where Cryptosporidium is found

(Baik et al., 2013).

Recently, analysis of the Cryptosporidium transcriptome has

been performed at the single cell level. This extensive analysis of the

parasite at different developmental stages has much to offer in

respect of defining specific molecular targets to induce death in the

parasite. As one example, the Myb-M gene has been shown to be

key in sex determination in the parasite (Walzer et al., 2024). In

Cryptosporidium, sex is key in respect of infection and transmission.

Thus, Myb-M could be a target to adversely affect parasite

replication. In humans Myb is a transcription factor associated

with haematopoiesis and leukemogenesis (Pattabiraman et al., 2014;

Wang et al., 2018). Thus, it has been viewed as a drug target, even

though transcription factors are considered difficult targets against

which to develop small molecule inhibitors. The human Myb

interaction with p300 protein by which it elicits its effects has

however been the subject of interest and is therefore an attractive

target for prevention and intervention. Plumbagin and

naphthoquinones have been shown to inhibit Myb/p300

interaction (Uttarkar et al., 2016; Nicosia et al., 2023). Thus,

consideration of Myb-M structure using protein structure

prediction (Bouatta and AlQuraishi, 2023) and consideration of

these new molecules and others as protein:protein interaction

inhibitors (Zhang et al., 2024) may offer opportunities for

treatment/prevention of cryptosporidiosis.

There are currently no vaccines available to treat

cryptosporidiosis (Innes et al., 2020). This is due to the disease

largely affecting neonatal animals which would have difficulty

rapidly generating protective immunity through active vaccination.

Recent preliminary studies have investigated experimental vaccines

for dam or calf vaccination protocols with promising results, though

these were shown to be unsuccessful in large field trials; therefore,

they are not currently marketed (Jenkins, 2004; Maier et al., 2022).

Consequently, interventions address prevention, control, and

supportive therapies post-infection. Potentially mRNA vaccines

may be of benefit in the future as novel targets emerge and cost

per vaccination decreases (Savinkina et al., 2022).

The adoption of a One Health approach offers more

opportunities to control the spread of cryptosporidiosis,

particularly from zoonotic species such as C. parvum (Innes et al.,

2020). Investigation and control of Cryptosporidium in production
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animals ultimately leads to lower zoonotic risk and better public

health. Development of disease surveillance systems to identify the

source of infection and route of transmission in both humans and

animals is essential to controlling outbreaks (Hotchkiss et al., 2015).

For example, emerging technologies for early detection of

waterborne pathogens are enabling improved water and public

safety (Innes et al., 2020), though there is still a way to go.

Another element of the One Health approach is to take the

learning from drug development strategies in human disease and

apply them assiduously and with consideration of health-economic

issues to parasitology and veterinary medicine.
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et al. (2021). The age-related cryptosporidium species distribution in asymptomatic
cattle from North-Western SPAIN. Animals: an Open Access J. MDPI 11, 256.
doi: 10.3390/ani11020256

Dillingham, R. A., Lima, A. A., and Guerrant, R. L. (2002). Cryptosporidiosis:
epidemiology and impact. Microbes Infect. 4, 1059–1066. doi: 10.1016/S1286-4579(02)
01630-1

Dong, S., Yang, Y., Wang, Y., Yang, D., Yang, Y., Shi, Y., et al. (2020). Prevalence of
cryptosporidium infection in the global population: A systematic review and meta-
analysis. Acta Parasitologica 65, 882–889. doi: 10.2478/s11686-020-00230-1

European Medicines Agency. (2021). Halocur. Available online at: https://www.ema.
europa.eu/en/medicines/Vet./EPAR/halocur (Accessed 5/2/24).

Faubert, G. M., and Litvinsky, Y. (2000). Natural transmission of Cryptosporidium
parvum between dams and calves on a dairy farm. J. Parasitol. 86, 495–500.
doi: 10.1645/0022-3395(2000)086[0495:NTOCPB]2.0.CO;2

Fayer, R., Gasbarre, L., Pasquali, P., Canals, A., Almeria, S., and Zarlenga, D. (1998).
Cryptosporidium parvum infection in bovine neonates: dynamic clinical, parasitic and
immunologic patterns. Int. J. Parasitol. 28, 49–56. doi: 10.1016/S0020-7519(97)00170-7

Fayer, R., Morgan, U., and Upton, S. J. (2000). Epidemiology of Cryptosporidium:
transmission, detection and identification. Int. J. Parasitol. 30, 1305–1322. doi: 10.1016/
S0020-7519(00)00135-1
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