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Introduction: In the far western United States of America, Ixodes pacificus is the

primary vector of several pathogens of public health and veterinary importance

including the Lyme disease spirochete Borrelia burgdorferi sensu lato (s.l.), as well

as Borrelia miyamotoi and Anaplasma phagocytophilum. Ixodes pacificus is

common in southern Oregon yet there are few published studies on the

distribution of tick-borne pathogens in this region.

Methods: Using real-time quantitative PCR, we assessed the prevalence of B.

burgdorferi s.l., B. miyamotoi, and A. phagocytophilum among 2,463 unfed I.

pacificus adults and nymphs combined into 260 pools (131 nymph, 129 adult) with

nearly equal numbers of each life stage from 12 locations in JacksonCounty,Oregon.

Results: In our study, 27.9% (36/129) and 29.8% (39/131) of adult and nymph pools,

respectively, tested positive for at least a single pathogen. Nymph pools had a higher

pool positivity rate (PPR) for B. burgdorferi s.l. with 15.3% (20/131) testing positive

compared to 3.1% (4/129) of adult pools. Nymph pools also had a higher minimum

infection rate (MIR) andmaximum-likelihood estimate of pooled prevalence (EPP) for

B. burgdorferi s.l. than adults. Interestingly, the prevalence of B. burgdorferi s.l. varied

greatly in nymph pools across collection sites (0-70%). PPR of B. miyamotoi was

21.7% (28/129) for adults and 12.2% (16/131) for nymphs,making it themost frequently

detected pathogen in adult pools and the most detected pathogen overall.

Anaplasma phagocytophilum was the least frequently detected pathogen overall

with a PPR of 3.1% (4/129) and 2.3% (3/131) for adults and nymphs, respectively.

Discussion: These findings underscore the importance of continued surveillance,

pathogen testing, and public education regarding ticks in areas such as southern

Oregon where I. pacificus is common but little research has been done.
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1 Introduction

The western black-legged tick, Ixodes pacificus, frequently bites

humans and is of significant public health concern in the far

western United States of America (USA), including the Pacific

Coast states of Oregon, California, and Washington (Eisen et al.,

2024). In this region, I. pacificus is the primary vector of multiple

pathogens transmissible to humans and animals, including the

Lyme disease spirochete Borrelia burgdorferi sensu lato (s.l.),

Borrelia miyamotoi, and Anaplasma phagocytophilum (McVicar

et al, 2022; Foster et al, 2023). Lyme disease, caused by the

spirochete B. burgdorferi s.l., is the most common vector-borne

disease in the USA (Diuk-Wasser et al., 2012). The incidence of

Lyme disease is lower in Pacific Coast states with 0.2 cases per

100,000 persons compared to 30–80 cases per 100,000 persons per

year in the Northeast and upper Midwestern states (Schwartz et al.,

2017). Lower Lyme disease rates in Pacific Coast states are often

attributed to the fact that in this region, lizards, primarily the

western fence lizard (Sceloporus occidentalis) and southern alligator

lizard (Elgaria multicarinata), serve as primary hosts for immature

I. pacificus rather than mammals but are not competent reservoirs

for B. burgdorferi s.l (Lane and Quistad, 1998; Wright et al., 1998;

Lane et al., 2006). However, the results of studies examining the

impact of lizards on the prevalence and distribution of Lyme disease

are mixed.

For instance, a study that conducted an experimental removal

of S. occidentalis found the density of infected nymphs (DIN) and,

therefore, human risk of Lyme disease, was reduced after lizards

were removed because ticks were not able to find an alternate,

Borrelia-competent host in the absence of lizards (Swei et al., 2011).

Other studies suggest lizards reduce Lyme transmission to humans

by diverting feeding juvenile ticks away from reservoir-competent

hosts such as the dusky-footed woodrat (Neotoma fuscipes),

California kangaroo rat (Dipodomys californicus), and western

gray squirrel (Sciurus griseus) (Lane and Brown, 1991; Salkeld

et al., 2008). Therefore, tick hosts play an important role in

pathogen transmission and prevalence since hosts differ in their

ability to serve as competent reservoirs (Swei et al., 2011).

Despite the complex ecology of B. burgdorferi, it is generally

accepted that nymphs are responsible for the majority of human

Lyme disease infections (Barbour and Fish, 1993; Swei et al., 2011).

In California, the majority of human Lyme disease cases occur

during periods when nymphs are more active than adults (Ley et al.,

1994; Clover and Lane, 1995; Salkeld et al., 2014). Additionally,

several California studies of pathogen prevalence in I. pacificus have

shown higher rates of B. burgdorferi s.l. in questing nymphs

compared to adults (Burgdorfer et al., 1985; Bissett and Hill,

1987; Lane and Lavoie, 1988; Clover and Lane, 1995; Lane et al.,

2010; Salkeld et al., 2014). A study in Washington found that 4.1%

of host-seeking adult I. pacificus were infected with B. burgdorferi

s.l. while 7.1% of nymphs were infected (Dykstra et al., 2020). The

only available peer-reviewed study conducted in southern Oregon

found that 3% of adult I. pacificus ticks pulled from rodents were

infected with B. burgdorferi s.l. spirochetes (Burkot et al., 1999).
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In 2013, B. miyamotoi was shown to cause disease in humans

(Krause et al., 2013; Chowdri et al., 2013). The prevalence of B.

miyamotoi and closely related relapsing-fever (RF) spirochetes in I.

pacificus is generally between 1 and 2% but varies geographically

(Barbour et al., 2009; Crowder et al., 2014). In California, infection

rates of 1.6% and 1.7% were reported in I. pacificus nymphs from

Mendocino and Sonoma counties, respectively, whereas adult

infection rates were less <1% (Mun et al., 2006; Crowder et al.,

2014). Another study in Mendicino County reported a 1.4%

infection rate in I. pacificus nymphs (Lynn et al., 2018) which was

similar to a statewide California study of B. miyamotoi prevalence

(Padgett et al., 2014). InWashington, a study found B. miyamotoi in

4.4% of I. pacificus adults but no nymphs were positive (Dykstra

et al., 2020). Unlike B. burgdorferi, which can only be transstadially

transmitted, B. miyamotoi can also be transmitted vertically from

female to larvae and was detected in all developmental stages of I.

pacificus in a northern California study although prevalence was

higher in adults and nymphs compared to larvae, suggesting that

most transmission was horizontal (Sambado et al., 2020).

Anaplasma phagocytophilum has been considered a pathogen of

veterinary importance since the 1930’s but was only recognized as a

cause of human disease in 1994 (Chen et al., 1994). In North

America, I. scapularis and I. pacificus are the most important

vectors (Stuen et al., 2013) and several mammalian host species

serve as competent reservoirs (Foley et al., 2008). Currently, there

are few studies focusing on this pathogen in the far western USA. In

a study conducted in Santa Cruz County, CA, a 6.19% A.

phagocytophilum infection rate in adult I. pacificus was reported

(Holden et al., 2003) while another study in the same county

reported a 1% and 10% infection rate in nymphs and adults,

respectively (Dingler et al., 2014). One study from Washington

found a 1.9% A. phagocytophilum infection rate in I. pacificus adults

while no nymphs in the study were positive (Dykstra et al., 2020).

Despite their importance as a vector of several human-infecting

pathogens, published research regarding the distribution of I.

pacificus and the prevalence of their associated pathogens in the

state of Oregon is scarce. Our study assesses the prevalence of three

important pathogens (B. burgdorferi s.l., B. miyamotoi, and A.

phagocytophilum) in I. pacificus from 12 sites in Jackson County,

Oregon to help address that gap. Our study provides baseline data

regarding tick abundance and disease prevalence to allow for the

monitoring of change over time and, importantly, we establish this

data not only for adult I. pacificus but also for nymphs, which are

regarded as epidemiologically more important.
2 Materials and methods

2.1 Field sampling

Tick collections were conducted in Jackson County, Oregon

located along the northern border of California (Figure 1). Lyme

disease risk has been shown to be relatively high in this region

(Eisen et al., 2006). Adult ticks used in this study were collected by
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the Jackson County Vector Control District (JCVCD) from October

to March 2022, 2023, and 2024 while nymphs were collected from

April to June 2023. Our 12 study sites were chosen from among

those used for prior adult tick collections. We excluded sites with

dense understories and limited access to open areas; factors that

would hinder nymph collection. We collected approximately 100

adults and 100 nymphs from each site which were all located on

public land owned by federal, county, or city agencies. The habitat

was either a mixed conifer or hardwood forest type. Questing adult

I. pacificus were collected from the tips of grass and other vegetation

along hiking trails, animal paths, and roadsides by sight and by

flagging with 1-m² white double nap flannel cloth flags attached to
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1.5-m wooden dowels. Nymphs were collected exclusively by

flagging on and around downed trees, rotting logs, stumps, and

other woody substrates since previous studies have shown that

nymphs rarely climb vegetation while host seeking (Lane

et al., 2007).

Because adult I. pacificus had been sampled at these sites by

JCVCD prior to this study, each adult collection took less than two

hours. In contrast, this was the first time nymphs had been sampled

and the amount of time it took to collect enough specimens to meet

the study goals was more varied, taking anywhere between two and

four hours at each site. Nymph collections tended to take less time

and effort at sites with easier access to downed woody debris. Also,
FIGURE 1

Map showing the location of Jackson County, Oregon, USA.
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in contrast to adult collections, some sites required two sampling

events to collect an adequate number of nymphs.

As ticks were being collected in the field, they were stored

together in 33mL polystyrene vials containing small pieces of grass

for moisture. After each sampling event, those vials of ticks were

placed inside resealable plastic bags labeled with collection site and

date. A small piece of damp paper towel was placed inside each bag

for additional moisture. Ticks were stored live in this manner for no

more than one week in a standard refrigerator at 4°C until they

could be processed further and separated into pools. Ticks were

then counted and pooled by developmental stage and collection site.

Adults were also pooled by sex. Pooled ticks were placed into 2ml

Safe-Lock tubes (Eppendorf, Hamburg Germany) and stored dry at

-80°C until they were sent for testing.
2.2 Statistical analyses

We used three methods to estimate pathogen prevalence in

pooled specimens commonly found in the literature: pool positivity

rate (PPR), minimum infection rate (MIR) and maximum-

likelihood estimate of pooled prevalence (EPP) (Fracasso et al.,

2023). PPR is defined and calculated as the ratio of positive pools to

the total number of pools tested (Bertola et al., 2021). MIR is defined

as the ratio of the number of positive pools to the total number of

specimens tested while EPP is the infection rate most likely to be

observed considering the tests results and an assumed probabilistic

model (Cowling et al., 1999; Pilloux et al., 2015). To account for

variable pool sizes, MIR and EPP estimates were calculated at a 95%

confidence interval (CI) per 100 ticks using the software

PooledInfRate v4.0 (Biggerstaff, 2009). Pearson’s Chi-Square tests

were run using the Epitools epidemiological calculators https://

epitools.ausvet.com.au/ (Sergeant, 2018) and were assessed at the

0.05 level to determine if differences in PPR were statistically

significant for any pathogen between nymphs and adults as well

as adult males and females.
2.3 Pathogen testing

For DNA extraction, ticks were pooled into 2ml Safe-Lock tubes

(Eppendorf, Hamburg Germany) containing two 4 mm borosilicate

glass beads along with 600 μl of grinding buffer composed of 3M

guanidinium thiocyanate, 20 mM EDTA (pH 8), and 10 mM Tris-

HCl (pH 8). Tick pools were homogenized for 60 seconds on an

Omni Bead Ruptor Elite (Kennesaw, GA) then centrifuged at 14,000

G for 20 minutes. Next, 100 μl of supernatant of each pool was

loaded in a deep well plate containing 600 μl extraction buffer (He

et al., 2017) and 100 μl Sera-Mag™ SpeedBeads™ (Cytiva) that

were prepared using a protocol maintained at OpenWetWare

(https://openwetware.org/wiki/SPRI_bead_mix#Nucleic_acid_

binding_bead_mixes). Extractions were carried out using the

Opentrons OT-2 liquid-handling robot (Opentrons Inc.,

Brooklyn, NY) with an extraction protocol outlined in He et al.
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A quantitative real-time PCR (qPCR) duplex assay for B.

burgdorferi s.l. and B. miyamotoi has previously been described

(Barbour et al., 2009) and here we expand the duplex assay into a

triplex assay by including the primers and probe for A.

phagocytophilum which were previously developed (Drazenovich

et al., 2006). For our triplex assay, A. phagocytophilum was labeled

with the Quasar 670™ dye while B. burgdorferi s.l. and B.

miyamotoi were labeled with FAM and TAMRA reporter dyes,

respectively. Primers and probes were obtained from BioSearch Inc.

(Petaluma, CA). Quantitative PCR experiments were performed in

25 μl-volume reactions containing 10μl template, 4μl TaqMan™

Fast Virus 1-Step mastermix, and primer and probe concentrations

at 900 nm and 200 nm, respectively. Cycling conditions were 50°C

for 2 minutes and 95°C for 10 minutes, followed by 45 cycles of 95°

C for 15 seconds and 64°C for 60 seconds on an Applied Biosystems

QuantStudio™ 5 real-time detection system. Samples with cycle

threshold (CT) values of < 40 were considered positive.

To determine the variant of A. phagocytophilum detected in

ticks, an ~300 bp portion of the succinate dehydrogenase B560

subuni t (SDHC) gene was ampl ified us ing pr imers

T C G T C G G C A G C G T C A G A T G T G T A T A A G A G A

CAGAGTGTCTATAAGCTGCCGATAA and GTCTCGTGGG

CTCGGAGATGTGTATAAGAGACAGAACATCAACCA

ACCACTGAA as described (Hojgaard et al., 2024). Amplicons

were detected in a 1% agarose gel stained with GelRed (Biotium,

Fremont, CA, USA) and extracted from the gel using a QIAGEN gel

extraction kit (Germantown, MD, USA). Amplicons were bi-

directionally sequenced at Genewiz (South Plainfield, NJ, USA).

Sequences were edited and assembled, primer sequences removed,

aligned with related sequences from GenBank, and a phylogenetic

tree was constructed using an approximately maximum-likelihood

method with FastTree v2.1 with a generalized time-reversible

(GTR) model in Geneious Prime 2024.0.7 (Biomatters Limited,

Auckland, New Zealand). Unique sequences were submitted to

GenBank (PV768874-PV768876).
3 Results

Overall, 2,463 unfed I. pacificus ticks consisting of 1,246 adults

(684 females, 562 males) and 1,217 nymphs were collected from 12

locations in Jackson County, Oregon and grouped into 260 pools of

131 nymph and 129 adult pools (Table 1). Most pools (70%)

contained 10 specimens, but pool size ranged from 4–16

individuals across the study. The number of pools from each site

for each life stage varied from 10-15. In our study, 27.9% (36/129)

and 29.8% (39/131) of adult and nymph pools, respectively, tested

positive for at least a single pathogen. Borrelia burgdorferi s.l. was

the most frequently detected pathogen in nymphs but PPRs for this

pathogen were low at most collection sites (~0-10%); however,

nymph pools from Roxy Ann Peak, Sterling Mine Ditch trail, and

Forest Park had higher PPRs for this pathogen (70%, 60%, and 30%,

respectively) (Table 2). For B. burgdorferi s.l., nymphs had a PPR of

15.3% (20/131) while adult pools had a PPR of 3.1% (4/129)
frontiersin.org
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(Table 3). For B. burgdorferi s.l., nymph pools had an EPP of 1.77

(1.12-2.68 CI) and a MIR of 1.64 (0.93-2.36 CI) compared to adult

pools which had an EPP of 0.32 (0.11-0.78 CI) and a MIR of 0.32

(0.01-0.64 CI) (Table 4).

The PPR of B. miyamotoi was 21.7% (28/129) for adults and

12.2% (16/131) for nymphs, making it the most frequently detected

pathogen in adult pools and the most detected pathogen overall

(Table 3). At least one adult pool from each collection site was

positive for B. miyamotoi (Table 2). The EPP of B. miyamotoi was

2.53 (1.72-3.60 CI) for adult pools compared to 1.38 (0.82-2.18 CI)

for nymphs. MIR for B. miyamotoi was also higher for adult pools

compared to nymphs (Table 4). A. phagocytophilum was the least

frequently detected pathogen in this study with PPRs of 3.1% (4/

129) and 2.3% (3/131) for adults and nymphs, respectively

(Table 3). A. phagocytophilum had the lowest EPP and MIR

estimates for all target pathogens but these estimates were slightly

higher for adults (Table 4).

A total of five ticks initially detected as positive for A.

phagocytophilum were positive with the SDHC gene PCR. Three

unique sequences were obtained, and they were 99%-99.7% similar

to each other and 98-98.7% similar to numerous ha-strains of A.

phagocytophilum from humans, domestic dogs, and I. scapularis

(Supplementary Table 1). The Oregon A. phagocytophilum

sequences were only 96.1-97.3% similar to non-ha strains from

white-tailed deer (Odocoileus virginianus) and I. scapularis

(Supplementary Table 1). Phylogenetically, the Oregon sequences

grouped together and were in a clade with several human-infecting

strains (Figure 2).

A Pearson’s Chi-Square test conducted at the 0.05 level

determined the difference in PPR between nymphs and adults for

B. burgdorferi s.l. was statistically significant (df = 4, P = 0.009).

Differences in PPR between developmental stages were not

statistically significant for B. miyamotoi (df = 4, P = 0.228) or A.

phagocytophilum (df = 4, P = 0.955). Differences in PPR between
Frontiers in Parasitology 05
adult males and females were not statistically significant for B.

burgdorferi s.l. (df = 4, P = 0.651), B. miyamotoi (df = 4, P = 0.512),

or A. phagocytophilum (df = 4, P = 0.757). Additionally, our study

found that 3.5% (9/260) of pools were positive for multiple

pathogens. Four adult pools and three nymph pools were

coinfected with B. burgdorferi s.l. and B. miyamotoi while one

adult pool and one nymph pool were coinfected with B. miyamotoi

and A. phagocytophilum.
4 Discussion

Although I. pacificus is commonly found in southern Oregon,

little is known about the distribution and prevalence of tick-borne

pathogens in the region. We assumed all Ixodes ticks collected for

our study were I. pacificus, although two previous studies

documented low totals of Ixodes spinipalpis and Ixodes angustus

infesting small mammals in southern Oregon (Burkot et al., 1999;

Xu et al., 2019). However, these species live almost exclusively

inside the nests or burrows of their host and are not known to quest

on exposed vegetation in warm, low humidity climates. Instead,

they prefer cooler and wetter conditions found along the Pacific

coast (Lane and Keirans, 1999; Gregson, 1956). Dermacentor spp.

were also collected as bycatch while flagging but were discarded.

Testing of nearly 2,500 unfed I. pacificus adults and nymphs for

select pathogens found that B. burgdorferi s.l., B. miyamotoi, and A.

phagocytophilum were all present. Sequence analysis of the SDHC

confirmed that five of the A. phagocytophilum samples were the

human-variant.

An important difference between this study and most studies

previously conducted in the far western USA, is that our study

tested ticks in pools rather than individually. Pool screening is

helpful in reducing processing times, limiting the cost of diagnostic

testing, and has been an accepted way to analyze arthropod vectors
TABLE 1 Overview of sites where I. pacificus were collected in 2022–2024 from Jackson County, Oregon.

Site Coordinates Elevation (m) No. of adults No. of nymphs

(1) Crowfoot Rd 42.61853 -122.68819 602 117 100

(2) Felton Trail 42.30111 -123.17358 748 100 100

(3) Forest Park 42.31800 -122.99900 587 100 100

(4) Lithia Park (Hitt Rd) 42.19056 -122.72632 816 104 100

(5) Lower Table Rock 42.46687 -122.94665 392 104 100

(6) Roxy Ann Peak 42.35505 -122.79203 898 100 100

(7) Sterling Creek 42.24500 -122.97800 921 100 100

(8) Sterling Mine Ditch Trl. 42.18660 -122.95012 784 100 100

(9) Upper River Road 42.44732 -123.01050 375 105 100

(10) W. Fork Evans Creek 42.59500 -123.01800 458 106 100

(11) Woodrat Mountain 42.23100 -123.00400 1,159 100 117

(12) Yellow Rock Trl. 42.69175 -122.72704 521 110 100

Total 1246 1217
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TABLE 2 Number of positive pools and pool positivity rate (PPR)% by collection site.

Adults Nymphs

otoi A. phagocytophilum No. pools No. ticks B. burgdorferi B. miyamotoi A. phagocytophilum

) 1 (9.1) 10 100 0 0 0

) 10 15 100 0 3 (20) 0

) 0 10 100 3 (30) 4 (40) 2 (20)

) 0 11 100 1 (9.1) 0 0

.2) 1 (9.1) 10 100 1 (10) 1 (10) 0

.1) 0 10 100 7 (70) 1 (10) 0

) 0 10 100 0 2 (20) 0

) 0 10 100 6 (60) 3 (30) 0

.7) 0 10 100 1 (10) 0 0

) 1 (10) 10 100 1 (10) 0 0

) 0 12 117 0 0 0

.3) 0 13 100 0 2 (15.4) 1 (7.7)

131 1217
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Site No. pools No. ticks B. burgdorferi B. miyam

1 11 117 1 (9.1) 1 (9.1

2 10 100 0 2 (20

3 10 100 0 3 (30

4 10 104 0 2 (20

5 11 104 1 (9.1) 2 (18

6 13 100 1 (7.7) 3 (23

7 10 100 0 4 (40

8 10 100 0 2 (20

9 12 105 0 2 (16

10 10 106 0 1 (10

11 10 100 1 (10) 2 (20

12 12 110 0 4 (33

Total 129 1246
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in human and veterinary medicine for decades (Dorfman, 1943;

Farrington, 1992). However, compared to testing specimens

individually, pool screening has limitations, and the accuracy of

results depend greatly on the pooling strategy used. Pooling strategy

is important for a number of reasons. First, the true number of

infected specimens cannot be determined in pools that test positive

for a pathogen (Furstenau et al., 2020). Secondly, high numbers of

specimens in a pool, low infection prevalence, or high engorgement

status can affect accuracy. Third, pools consisting of specimens

from different areas or that were collected at different times can

affect results. Lastly, if pools contain mixed life stages, results can be

biased and make comparison difficult since different life stages have

different chances of being infected (Fracasso et al., 2023). To

minimize these issues, we limited the number of specimens per

pool, and separately pooled specimens by life stage and sex.

In addition to the way specimens are pooled, the statistical

methods used to estimate prevalence can also introduce bias and

impact accuracy. We used three methods to estimate prevalence

found in the literature: pool positivity rate (PPR), minimum

infection rate (MIR), and maximum-likelihood estimate of pooled

prevalence (EPP). PPR is the most commonly used index but it does

not estimate the number of infected individuals in a pool; it is

simply the ratio of positive pools to the total number of pools tested

(Fracasso et al., 2023). MIR is a widely used method for estimating

infection prevalence in pooled samples but it is also influenced by

pool size and is only capable of estimating the lower limits of an

infection rate because it assumes only a single infected specimen
TABLE 3 Number of positive pools and pool positivity rates (PPR)% of
Borrelia burgdorferi, Borrelia miyamotoi, and Anaplasma
phagocytophilum DNA within I. pacificus adult and nymph pools.

Stage No. ticks No. pools

No. positive pools and
PPR (%)

Bb Bm Ap

Nymphs 1217 131 20 (15.3) 16 (12.2) 3 (2.3)

Adults 1246 129 4 (3.1) 28 (21.7) 4 (3.1)
TABLE 4 Maximum-likelihood estimate of pooled prevalence (EPP),
minimum infection rate (MIR) and confidence intervals (CI) for I.
pacificus adult and nymph pools.

Stage Pathogen

EPP with
lower and
upper limit
(95% CI)

MIR with
lower and
upper limit
(95%CI)

Nymphs

B. burgdorferi 1.77 (1.12-2.68) 1.64 (0.93-2.36)

B. miyamotoi 1.38 (0.82-2.18) 1.31 (0.67-1.95)

A. phagocytophilum 0.25 (0.07-0.67) 0.25 (0-0.53)

Adults

B. burgdorferi 0.32 (0.11-0.78) 0.32 (0.01-0.64)

B. miyamotoi 2.53 (1.72-3.60) 2.25 (1.42-3.07)

A. phagocytophilum 0.32 (0.11-0.78) 0.32 (0.01-0.64)
FIGURE 2

Phylogenetic tree for 296 bp of the succinate dehydrogenase B560 subunit (SDHC) gene of Anaplasma phagocytophilum from Ixodes pacificus from
Oregon, USA and representative sequences of human-infective (ha) and non-human-infective (non-ha) strains of A. phagocytophilum.
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exists in a positive pool (Cowling et al., 1999; Hojaard et al., 2024).

For estimating true individual infection prevalence, EPP is

considered superior to MIR because it better accounts for

confounding effects and covariates through the use of statistical

software packages (Biggerstaff, 2009; McLure et al., 2021; Fracasso

et al., 2023). To help account for variable pool sizes in the study, we

used a PooledInfRate software in Excel to estimate both MIR and

EPP at a 95% CI.

PPR was higher than MIR and EPP estimates in adults and

nymphs for all pathogens while estimates of MIR and EPP were

similar across life stages and pathogens (Tables 3, 4). This is

consistent with another study that compared methods for

estimating pathogen prevalence in pooled specimens (Fracasso

et al., 2023). Although it is difficult to draw direct inferences

between this study and those that test ticks individually, our

results showed, for B. burgdorferi s.l., all three of these calculations

were higher for nymphs compared to adults (Tables 3, 4). For

nymph pools, the EPP for B. burgdorferi s.l. was 1.77 (1.12-2.68 CI)

compared to 0.32 (0.11-0.78 for adult pools. The difference in PPR

for B. burgdorferi s.l. between nymphs (15.3%) and adults (3.1%) was

statistically significant but was not for other pathogens. These

numbers suggest that in southern Oregon, like California, questing

I. pacificus nymphs are typically infected with B. burgdorferi s.l. at

higher rates than adults and are therefore medically more important

(Burgdorfer et al., 1985; Lane and Lavoie, 1988; Clover and Lane,

1995; Burkot et al., 1999; Lane et al., 2007; Salkeld et al., 2021).

Interestingly, nymph pools at three sites, all heavily trafficked public

use trails, had considerably higher PPRs (30-70%) compared to other

sites where PPR was lower (0 -10%) (Table 2). Previous studies have

found wide variations in tick-borne pathogen prevalence between

collection sites, emphasizing the importance of reporting infection

prevalence not only on a state or regional scale, but also at site level

(Salkeld et al., 2021; Foster et al., 2023). Such variation in PPR is

important from a human risk standpoint because it suggests the

probability of contracting Lyme disease may vary greatly on a local

scale in Jackson County and perhaps in other nearby regions. Future

studies investigating host ecology in these areas to determine which

species are being utilized by immature ticks would be beneficial to

determine why higher PPRs were observed.

Borrelia miyamotoi was the most frequently detected pathogen

in adult pools and was the most common pathogen overall in adult

and nymph pools combined (Table 3). It was found in at least one

adult pool from every collection site (Table 2). This evidence shows

this pathogen is readily common in both nymphs and adults and is

widely distributed in Jackson County. MIR and EPP estimates for B.

miyamotoi in this study (Table 4) were similar to individual

infection rates reported in several previous studies from

California and Washington (Mun et al., 2006; Xu et al., 2019;

Dykstra et al., 2020). This evidence also suggests that there may be

significantly more human cases of B. miyamotoi in Jackson County

than are currently known.

Our study did confirm the presence of A. phagocytophilum in

Jackson County in both nymphs and adults. Anaplasma

phagocytophilum was the least commonly detected pathogen in
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this study and all estimation indexes were closer between adults and

nymphs for this pathogen than for any other (Tables 3, 4).

Prevalences between 0.3 – 2.0% have been reported from Oregon

and California (Xu et al., 2019; Eshoo et al., 2015; Pascoe et al.,

2019). Only 1 and 2 cases of anaplasmosis per million people in

Oregon and California respectively were reported via the National

Electronic Telecommunications System for Surveillance (NETSS)

and the Centers for Disease Control and Prevention (CDC) case

report form (CRF) (Demma et al., 2005). Although human cases

occur more frequently in the coastal northeast and northern

Midwest regions of the US and cases have increased nationwide

from 2012-2016 (Baker et al., 2020), the low prevalence of A.

phagocytophilum in our study seemingly correlates with low

incidences of anaplasmosis reported in the far western USA. The

SDHC sequences we detected were unique but clustered with the

human-infecting variants of A. phagocytophilum. The genetic

variation we detected could be due to lack of sequences from the

western United States (Hojgaard et al., 2024).

Our study also found that 3.5% (9/260) of pools were coinfected

with multiple pathogens. Although this presents the possibility of

coinfections in individual ticks, making this determination is

beyond the scope of our study. Additional work needs to be done

in our region testing individual ticks for pathogens as opposed to

pooled specimens. This could have epidemiological importance

since humans can become infected with multiple pathogens if

bitten by a coinfected Ixodes tick, potentially increasing the

severity of disease and making diagnosis, as well as treatment,

more difficult (Belongia, 2002).

Our results confirm the presence of three medically important

pathogens in I. pacificus adults and nymphs from southern Oregon.

This highlights the need for continued disease testing and

surveillance of I. pacificus in southern Oregon, as well as other

parts of the state where this species is common but little research

has been done to determine the distribution or prevalence of their

associated pathogens. This type of proactive monitoring is crucial

for protecting public health by allowing us to better understand and

anticipate the risk of tick-borne diseases, particularly in

understudied regions where this risk may actually be relatively

high. Our findings also suggest it would be helpful to conduct future

studies regarding host ecology at field sites where higher PPRs were

observed, particularly B. burgdorferi s.l., to determine if host species

at those specific sites could be causing higher infection rates in ticks.

In addition to increased disease testing and surveillance of ticks and

tick hosts, our results should emphasize the importance of raising

public awareness of ticks and tick-borne diseases whether or not

local public health agencies have any active surveillance programs

in place.
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